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Inspired by the Z2Z4-additive codes, linear codes over Z
r
2 × (Z2 + uZ2)

s have
been introduced by Aydogdu et al. more recently. Although these family
of codes are similar to each other, linear codes over Z

r
2 × (Z2 + uZ2)

s have
some advantages compared to Z2Z4-additive codes. A code is called constant
weight (one weight) if all the nonzero codewords have the same weight. It is
well known that constant weight or one weight codes have many important
applications. In this paper, we study the structure of one weight Z2Z2[u]-
linear and cyclic codes. We classify one weight Z2Z2[u]-cyclic codes and also
give some illustrative examples.
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1. Introduction

In algebraic coding theory, the most important
class of codes is the family of linear codes. A lin-
ear code of length n is a subspace C of a vector
space Fn

q where Fq is a finite field of size q. When
q = 2 then we have linear codes over F2 which are
called binary codes. Binary linear codes have very
special and important place all among the finite
field codes because of their easy implementations
and applications. Beginning with a remarkable
paper by Hammons et al. [1], interest of codes
over variety of rings have been increased. Such
studies motivate the researchers to work on dif-
ferent rings even over other structural algebras
such as groups or modules. A Z4-submodule of
Z
n
4 is called a quaternary linear code. The struc-

ture of binary linear codes and quaternary lin-
ear codes have been studied in details for the last
two decades. The reader can see some of them
in [2–4]. In 2010, Borges et al. introduced a
new class of error correcting codes over the ring

Z
α
2 ×Z

β
4 called additive codes that generalizes the

class of binary linear codes and the class of qua-
ternary linear codes in [5]. A Z2Z4-additive code

C is defined to be a subgroup of Zα
2 × Z

β
4 where

α+2β = n. If β = 0 then Z2Z4-additive codes are
just binary linear codes, and if α = 0, then Z2Z4-
additive codes are the quaternary linear codes
over Z4. Z2Z4-additive codes have been general-
ized to Z2Z2s-additive codes in 2013 by Aydogdu
and Siap in [6], and recently this generalization
has been extended to ZprZps-additive codes, for a
prime p, by the same authors in [7]. Later, cyclic

codes over Zα
2 ×Z

β
4 have been introduced in [8] in

2014 and more recently, in [9], one weight codes
over such a mixed alphabet have been studied.
A code C is said to be one weight code if all the
nonzero codewords in C have the same Hamming
weight where the Hamming weight of any string
is the number of symbols that are different from
the zero symbol of the alphabet used. In [10],
Carlet determined one weight linear codes over
Z4 and in [11], Wood studied linear one weight
codes over Zm. Constant weight codes are very
useful in a variety of applications such as data
storage, fault-tolerant circuit design and comput-
ing, pattern generation for circuit testing, identi-
fication coding, and optical overlay networks [12].
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Moreover, the reader can find the other applica-
tions of constant weight codes; determining the
zero error decision feedback capacity of discrete
memoryless channels in [13], multiple access com-
munications and spherical codes for modulation
in [14, 15], DNA codes in [16, 17], powerline com-
munications and frequency hopping in [18].

Another important ring of four elements other
than the ring Z4, is the ring Z2 + uZ2 = R =
{0, 1, u, 1 + u} where u2 = 0. For some of the
works done in this direction we refer the reader
to [19–21]. It has been shown that linear and
cyclic codes over this ring have advantages com-
pared to the ring Z4. For an example; the finite
field GF (2) is a subring of the ring R. So factor-
ization over GF (2) is still valid over the ring R.
The Gray image of any linear code over R is al-
ways a binary linear code which is not always the
case for Z4.

In this work, we are interested in studying one
weight codes over Z

r
2 × (Z2 + uZ2)

s = Z
r
2 × Rs.

This family of codes are special subsets of Zr
2×Rs

which their all nonzero codewords have the same
weight. Since the structure of one weight binary
linear codes were well classified by Bonisoli [22],
we conclude some results that coincides with the
results in [22] for Z2Z2[u]-linear codes, and we
classify cyclic codes over Zr

2×Rs and also we give
some one weight linear and cyclic code examples.
Furthermore, we look at the Gray (binary) im-
ages of one weight cyclic codes over Zr

2 × Rs and
we determine their parameters.

2. Preliminaries

Let R = Z2 + uZ2 = {0, 1, u, 1 + u} be the four-
element ring with u2 = 0. It is easily seen that
the ring Z2 is a subring of the ring R. Then let us
define the set

Z2Z2[u] = {(a, b) | a ∈ Z2 and b ∈ R} .

But we have a problem here, because the set
Z2Z2[u] is not well-defined with respect to the
usual multiplication by u ∈ R. So, we must de-
fine a new method of multiplication on Z2Z2[u]
to make this set as an R-module. Now define the
mapping

η : R → Z2

η (p+ uq) = p.

which means; η(0) = 0, η(1) = 1, η(u) = 0
and η(1 + u) = 1. It can be easily shown that η
is a ring homomorphism. Furthermore, for any

element e ∈ R, we can also define a scalar multi-
plication on Z2Z2[u] as follows.

e (a, b) = (η(e)a, eb) .

This multiplication can be extended to Zr
2×Rs for

e ∈ R and v = (a0, a1, ..., ar−1,b0, b1, ..., bs−1) ∈
Z
r
2 ×Rs as,

ev = (η(e)a0, η(e)a1, ..., η(e)ar−1,eb0, eb1, ..., ebs−1) .

Lemma 1. Z
r
2 × Rs is an R−module under the

multiplication defined above.

Definition 1. A non-empty subset C of Zr
2 × Rs

is called a Z2Z2[u]-linear code if it is an R-
submodule of Zr

2 ×Rs.

Now, take any element a ∈ R, then there exist
unique p, q ∈ Z2 such that a = p+ uq. Also note
that the ring R is isomorphic to Z

2
2 as an addi-

tive group. Therefore, any Z2Z2[u]−linear code
C is isomorphic to an abelian group of the form
Z
k0+k2
2 ×Z

2k1
2 , where k0, k2 and k1 are nonnegative

integers. Now define the following sets.

CF
s = 〈{(a, b) ∈ Z

r
2 ×Rs | b free over Rs}〉

where if 〈b〉 = Rs then b is called free over Rs.

C0 = 〈{(a, ub) ∈ Z
r
2 ×Rs | a 6= 0}〉 ⊆ C\CF

s

C1 = 〈{(a, ub) ∈ Z
r
2 ×Rs | a = 0}〉 ⊆ C\CF

s .

Therefore, denote the dimension of C0, C1 and CF
s

as k0, k2 and k1 respectively. Under these pa-
rameters, we say that such a Z2Z2[u]-linear code
C is of type (r, s; k0, k1, k2). Z2Z2[u]-linear codes
can be considered as binary codes under a special
Gray map. For (x, y) ∈ Z

r
2 × Rs, where (x, y) =

(x0, x1, . . . , xr−1, y0, y1, . . . , ys−1) and yi = pi+uqi
the Gray map is defined as follows.

Φ : Zr
2 ×Rs → Z

n
2

Φ (x0, . . . xr−1, p0 + uq0, . . . ps−1 + uqs−1)

= (x0, . . . xr−1, q0, . . . , qs−1, p0 + q0, . . . , ps−1 + qs−1) ,

(1)

where n = r + 2s.

The Hamming distance between two strings x and
y of the same length over a finite alphabet Σ de-
noted by d(x, y) is defined as the number of posi-
tions at which these two strings differ. The Ham-
ming weight of a string x over an alphabet Σ is



94 İ. Aydoğdu / IJOCTA, Vol.8, No.1, pp.92-101 (2018)

defined as the number of its nonzero symbols in
the string. More formally, the Hamming weight
of a string is wt(x) = |{i : xi 6= 0}|. Also note
that wt(x− y) = d(x, y).

The minimum distance of a linear code C, denoted
by d(C) is defined by

d(C) = min{d(c1, c2) : c1, c2 ∈ C, c1 6= c2}.

The Lee distance for the codes over R is the Lee
weight of their differences where the Lee weights
of the elements of R are defined as wtL(0) =
0, wtL(1) = 1, wtL(u) = 2 and wtL(1 + u) = 1.
The Gray map defined above is a distance pre-
serving map which transforms the Lee distance in
Z
r
2 × Rs to the Hamming distance in Z

n
2 . Fur-

thermore, for any Z2Z2[u]-linear code C, we have
that Φ (C) is a binary linear code as well. This
property is not valid for the Z2Z4-additive codes.
And also, we define

wt(v) = wtH(v1) + wtL(v2),

where v = (v1, v2), wtH(v1) is the Hamming
of weight of v1 and wtL(v2) is the Lee weight
of v2. If C is a Z2Z2[u]-linear code of type
(r, s; k0, k1, k2) then the binary image C = Φ(C)
is a binary linear code of length n = r + 2s
and size 2n. It is also called a Z2Z2[u]-linear
code. Now, let v = (a0, . . . , ar−1, b0, . . . , bs−1) ,
w = (d0, . . . , dr−1, e0, . . . , es−1) ∈ Z

r
2 × Rs be any

two elements. Then we can define the inner prod-
uct as

〈v, w〉 =



u
r−1∑

i=0

aidi +
s−1∑

j=0

bjej



 ∈ Z2 + uZ2.

According to this inner product, the dual linear
code C⊥ of a Z2Z2[u]-linear code C is also defined
in a usual way,

C⊥ = {w ∈ Z
r
2 ×Rs| 〈v, w〉 = 0 for all v ∈ C} .

Hence, if C is a Z2Z2[u]-linear code, then C⊥ is
also a Z2Z2[u]-linear code.

The standard forms of generator and parity-check
matrices of a Z2Z2[u]-linear code C are given as
follows.

Theorem 1. [23] Let C be a Z2Z2[u]-linear code
of type (r, s; k0, k1, k2). Then the standard forms
of the generator and the parity-check matrices of
C are:

G =





Ik0 A1 0 0 uT
0 S Ik1 A B1 + uB2

0 0 0 uIk2 uD





H =





−At
1 Ir−k0 −uSt 0 0

−T t 0 −(B1 + uB2)
t +DtAt −Dt Is−k1−k2

0 0 −uAt uIk2 0





where A, A1, B1, B2, D, S and T are matrices
over Z2.

Therefore, we can conclude the following corol-
lary.

Corollary 1. If C is a Z2Z2[u]-linear code
of type (r, s; k0, k1, k2) then C⊥ is of type
(r, s; r − k0, s− k1 − k2, k2).

The weight enumerator of any Z2Z2[u]-linear code
C of type (r, s; k0, k1, k2) is defined as

WC(x, y) =
∑

c∈C

xn−wt(c)ywt(c)

where, n = r + 2s. Moreover, the MacWilliams
relations for codes over Z2Z2[u] can be given as
follows.

Theorem 2. [23] Let C be a Z2Z2[u]−linear
code. The relation between the weight enumera-
tors of C and its dual is

WC⊥ (x, y) =
1

|C|
WC (x+ y, x− y) .

We have given some information about the gen-
eral concept of codes over Z

r
2 × (Z2 + uZ2)

s. To
make reader understanding the paper easily we
give the following example.

Example 1. Let C be a linear code over Z
3
2 ×

(Z2 + uZ2)
4 with the following generator matrix.





1 1 0 0 u u u
0 1 1 1 1 + u u 0
0 1 0 u u u 0



 .

We will find the standard form of the generator
matrix of C and then using this standard form, we
find the generator matrix of the linear dual code
C⊥ and also we determine the types of both C and
its dual.

Now, applying elementary row operations to above
generator matrix, we have the standard form as
follows.

G =





1 0 0 0 u 0 u
0 1 0 0 0 u 0
0 0 1 1 1 + u 0 0



 .
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Since, G is in the standard form we can write this
matrix as

G =





1 0 0 0 u 0 u
0 1 0 0 0 u 0

0 0 1 1 1 + u 0 0





=

[
Ik0 A1 0 uT

0 S Ik1 B1 + uB2

]

.

Hence, with the help of Theorem 1 the parity-
check matrix of C is

H =







0 0 1 u 0 0 0
1 0 0 1 + u 1 0 0
0 1 0 0 0 1 0
1 0 0 0 0 0 1






.

Therefore,

• C is of type (3, 4; 2, 1, 0) and has 2241 = 16
codewords.

• C⊥ is of type (3, 4; 1, 3, 0) and has 2143 =
128 codewords.

• C = {(0, 0, 0, |0, 0, 0, 0), (1, 0, 0, |0, u, 0, u),
(0, 1, 0, |0, 0, u, 0), (0, 0, 1, |1, ū, 0, 0),
(0, 0, 0, |u, u, 0, 0), (0, 0, 1, |ū, 1, 0, 0),
(1, 1, 0, |0, u, u, u), (1, 0, 1, |1, 1, 0, u),
(0, 1, 1, |1, ū, u, 0), (1, 1, 1, |1, 1, u, u),
(1, 0, 0, |u, 0, 0, u), (0, 1, 0, |u, u, u, 0),
(1, 1, 0, |u, 0, u, u), (1, 0, 1, |ū, ū, 0, u),
(0, 1, 1, |ū, 1, u, 0), (1, 1, 1, |ū, ū, u, u)},
where ū = 1+u.

• WC(x, y) = x11 + 3x8y3 + x7y4 + 2x6y5 +
4x5y6 + x4y7 + 2x3y8 + 2x2y9.

• WC⊥(x, y) = 1
|C|WC(x + y, x − y) = x11 +

6x9y2+8x8y3+16x7y4+32x6y5+26x5y6+
24x4y7 + 15x3y8.

• The Gray image Φ(C) of C is a [11, 4, 3]
binary linear code.

• Φ(C⊥) is a [11, 7, 2] binary linear code.

3. The Structure of One Weight

Z2Z2[u]-linear Codes

In this part of the paper, we study the struc-
ture of one weight codes over Zr

2 × Rs. Since the
binary(Gray) images of Z2Z2[u]-linear codes are
always linear, our results about the one weight
Z2Z2[u]-linear codes will coincide with the results
of the paper [22]. So, in this section of the paper
we will prepare for Section 4 and also we give some
fundamental definitions and illustrative examples
of one weight Z2Z2[u]-linear codes.

Definition 2. Let C be a Z2Z2[u]-linear code. C
is called a one (constant) weight code if all of its
nonzero codewords have the same weight. Fur-
thermore, if such weight is m then C is called a
code with weight m.

Definition 3. Let c1, c2, e1, e2 be any four dis-
tinct codewords of a Z2Z2[u]-linear code C. If the
distance between c1 and e1 is equal to the distance
between c2 and e2, that is, d(c1, e1) = d(c2, e2),
then C is said to be equidistant.

Theorem 3. [22] Let C be a [n, k] linear code
over Fq with all nonzero codewords of the same
weight. Assume that C is nonzero and no column
of a generator matrix is identically zero. Then C
is equivalent to the λ-fold replication of a simplex
(i.e., dual of the Hamming) code.

Corollary 2. Let C be an equidistant Z2Z2[u]-
linear code with distance m. Then C is a one
weight code with weight m. Moreover, the binary
image Φ(C) of C is also a one weight code with
weight m.

Example 2. It is worth to note that the
dual of a one weight code is not necessarily
a one weight code. Let C be a Z2Z2[u]-linear
code of type (2, 2; 0, 1, 0) with C = 〈(1, 1|1 +
u, 1 + u)〉. Then C = {(0, 0|0, 0), (1, 1|1 +
u, 1 + u), (1, 1|1, 1), (0, 0|u, u)} and C is a one
weight code with weight m = 4. On the
other hand, the dual code C⊥ is generated
by 〈(1, 0|u, 0), (0, 1|u, 0), (0, 0|1, 1)〉 and of type
(2, 2; 2, 1, 0). But d(C⊥) = 2 and C⊥ is not a one
weight code.

Remark 1. The dual code for length greater than
3 is never a one weight code.

Example 3. Let C be a Z2Z2[u]-linear code
with the standard form of the generator ma-

trix

[
1 0 1 0 u
0 1 1 1 1 + u

]

, then C is of type

(3, 2; 1, 1, 0) and one weight code with weight 4.
Furthermore, Φ(C) is a binary linear code with
parameters [7, 3, 4]. Here, note that the binary
image of C is the binary simplex code of length 7,
which is the dual of the [7, 4, 3] Hamming code.

Now, we give a theorem which gives a construc-
tion of one weight codes over Zr

2 ×Rs.

Corollary 3. Let C be a one weight Z2Z2[u]-
linear code of type (r, s; k0, k1, k2) and weight m.
Then, a one weight code of type (γr, γs; k0, k1, k2)
with weight γm exists, where γ is a positive inte-
ger.

Definition 4. Let C be a Z2Z2[u]-linear code. Let
Cr (respectively Cs) be the punctured code of C by
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deleting the coordinates outside r (respectively s).
If C = Cr × Cs then C is called separable.

Corollary 4. There do not exist separable one
weight Z2Z2[u]-linear codes.

Proof. Since Φ(Cr × Cs) = Φ(Cr) × Φ(Cs), the
proof is obvious. �

Corollary 5. If C is a Z2Z2[u]-linear code of
type (r, s; k0, k1, k2) with no all zero columns in
the generator matrix of C. Then the sum of the

weights of all codewords of C is equal to |C|
2 (r+2s).

Proof. From [22], since the sums of the weights
of a binary linear code [n, k] is n2k−1, the sum of
the all codewords of C is

∑

c∈C

wt(c) = r
|C|

2
+ s|C| =

|C|

2
(r + 2s).

�

Corollary 6. Let C be a one weight Z2Z2[u]-
linear code of type (r, s; k0, k1, k2) and weight m.
If there is no zero columns in the generator ma-
trix of C, then;

i) m = α 2(k0+2k1+k2)−1 where α is a
positive integer satisfying (r + 2s) =
α
(
2k0+2k1+k2 − 1

)
. In addition, if m is

an odd integer, then r is also odd and
C = 〈(1 · · · 1

︸ ︷︷ ︸

r times

|u · · ·u
︸ ︷︷ ︸

s times

)〉.

ii) d(C⊥) ≥ 2. Also, d(C⊥) ≥ 3 if and only if
α = 1.

iii) for α = 1, if |C| ≥ 4 then d(C⊥) = 3.

We have known from the above corollary that
if C is a one weight Z2Z2[u]-linear code of type
(r, s; k0, k1, k2) and weight m then there is a posi-

tive integer α such that m = α 2(k0+2k1+k2)−1, so
the minimum distance for a one weight Z2Z2[u]-
linear code must be even. In the following, we
characterize the structure of Z2Z2[u]-linear codes.

Theorem 4. Let C be a one weight Z2Z2[u]-linear
code over Z

r
2 × Rs with generator matrix G and

weight m.

i) If v = (a|b) is an any row of G, where
a = (a0, . . . , ar−1) ∈ Z

r
2 and b =

(b0, . . . , bs−1) ∈ Rs, then the number of
units(1 or 1 + u) in b is either zero or m

2 .
ii) If v = (a|b) and w = (c|d) are two distinct

rows of G, where b and d are free over Rs,
then the coordinate positions where b has
units (1 or 1 + u) are the same that the
coordinate positions where d has units.

iii) If v = (a|b) and w = (c|d) are two distinct
rows of G, where b and d are free over Rs,
then |{j : bj = dj = 1 or 1 + u}| = |{j :
bj = 1, dj = 1+u or bj = 1+u, dj = 1}| =
m

4 .

Proof. i) The weight of v = (a|b) is wt(v) =
wtH(a) + wtL(b) = m. Since C is linear
uv = (0|ub) is also in C then, if ub = 0
then b does not contain units. If ub 6= 0,
then wt(v) = m = 0 + wtL(ub) and there-
fore, wtL(ub) = 2|{j : bj = 1 or 1 + u}| =
m. Hence, the number of units in b is m

2 .
ii) Multiplying v and w by u we have, uv =

(0|ub) and uw = (0|ud). If v and w
have units in the same coordinate posi-
tions then we get uv + uw = 0. So, as-
sume that they have some units in differ-
ent coordinates. Since C is a one weight
code with weight m, if uv + uw 6= 0 then
the number of coordinates where b and d
have units in different places must be m

2 .
To obtain this, the number of coordinates
where {bj = 1 = dj} and {bj = 1 + u =
dj} has to be m

2 , and in all other coordi-
nates where {bj = 1 or 1 + u} we need
{dj = 0 or u}, and also in all other co-
ordinates where {bj = 0 or u} we need
{dj = 1 or 1+u}. Hence, consider the vec-
tor v+(1+u)w. This vector has the same
weight as v + w in the first r coordinates
but for the last s coordinates, it has u′s
in the coordinates where {bj = 1 = dj}
and {bj = 1 + u = dj}, so its weight is
greater than m. This contradiction gives
the result.

iii) Let x = v+w and y = v+(1+u)w be two
vectors in C. The binary parts of these two
vectors are the same, and for the coordi-
nates over Rs we know from ii) that v and
w have units in the same coordinate po-
sitions, and for the all other coordinates
in Rs, the values of x and y are the same.
Therefore, the sum of the weights of the
units in v must be same in x and y. So,
they also have the same number of coor-
dinates with u. But this is only possible
if |{j : bj = dj = 1 or 1 + u}| = |{j :
bj = 1, dj = 1 + u or bj = 1 + u, dj = 1}|.
We also know from i) that the number of
units in v is m

2 , so we have the result.

�

Theorem 5. Let C be a one weight code of type
(r, s; k0, k1, k2). Then k1 ≤ 1 and C has the fol-
lowing standard form of the generator matrices.
If k1 = 0 then
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G =

[
Ik0 A1 0 uT
0 0 uIk2 uD

]

.

If k1 = 1 then

G =





Ik0 A1 0 0 uT
0 s 1 a b1 + ub2
0 0 0 uIk2 uD





where s, a, b1, b2 are vectors over Z2.

Proof. From Theorem 4 i), we know that any two
distinct free vectors have their units in the same
coordinate positions. So, if we add the first free
row of the generator matrix to the other rows,
we have only one free row in the generator ma-
trix. Hence, k1 ≤ 1 and considering this and us-
ing the standard form of the generator matrix for
a Z2Z2[u]-linear code C given in Theorem 1, we
have the result. �

4. One Weight Z2Z2[u]-cyclic Codes

In this section, we study the structure of one
weight Z2Z2[u]-cyclic codes. At the beginning,
we give some fundamental definitions and theo-
rems about Z2Z2[u]-cyclic codes. This informa-
tion about Z2Z2[u]-cyclic codes was given in [24],
with details.

Definition 5. An R-submodule C of Z
r
2 × Rs

is called a Z2Z2[u]-cyclic code if for any code-
word v = (a0, a1, . . . , ar−1, b0, b1, . . . , bs−1) ∈ C,
its cyclic shift

T (v) = (ar−1, a0, . . . , ar−2, bs−1, b0, . . . , bs−2)

is also in C.

Any codeword c = (a0, a1, . . . , ar−1, b0, b1, . . .
, bs−1) ∈ Z

r
2 ×Rs can be identified with a module

element such that

c(x) = (a0 + a1x+ . . .+ ar−1x
r−1, b0 + b1x

+ . . .+ bs−1x
s−1)

= (a(x), b(x))

in Rr,s = Z2[x]/ (x
r − 1) × R[x]/ (xs − 1) . This

identification gives a one-to-one correspondence
between elements in Z

r
2×Rs and elements in Rr,s.

Theorem 6. [24] Let C be a Z2Z2[u]-cyclic
code in Rr,s. Then we can identify C uniquely
as C = 〈(f(x), 0) , (l(x), g(x) + ua(x))〉, where
f(x)| (xr − 1) ( mod 2), and a(x)|g(x)| (xs − 1)
(mod 2) , and l(x) is a binary polyno-
mial satisfying deg(l(x)) < deg(f(x)),

f(x)|

(
xs − 1

a(x)

)

l(x) (mod 2) and f(x) 6=
(
xs − 1

a(x)

)

l(x) (mod 2).

Considering the theorem above, the type of C =
〈(f(x), 0) , (l(x), g(x) + ua(x))〉 can be written in
terms of the degrees of the polynomials f(x), a(x)
and g(x). Let t1 = deg f(x), t2 = deg g(x) and
t3 = deg a(x). Then C is of type ( [24])

(r, s; r − t4, s− t2, t2 + t4 − t1 − t3)

where d1(x) = gcd

(

f(x),
xs − 1

g(x)
l(x)

)

and t4 =

deg d1(x).

Corollary 7. If C is a one weight cyclic code gen-
erated by (l(x), g(x) + ua(x)) ∈ Rr,s with weight
m then m = 2s.

Proof. We know from Theorem 5 that if C is
a one weight Z2Z2[u]-linear code then k1, which
generates the free part of the code, is less than
or equal to 1. So, in the case where C is cyclic,
it means that s − t2 ≤ 1, where t2 = deg g(x).
Therefore we have deg g(x) = s− 1 and the poly-
nomial g(x) + ua(x) generates the vector with all
unit entries and length s. If we multiply the whole
vector (length= r+s) by u, then we have a vector
with all entries 0 in the first r coordinates and all
coordinates u in the last s coordinates. So the
weight of this vector is 2s. Hence the weight of C
must be 2s. �

Theorem 7. [24] Let C = 〈(f(x), 0) , (l(x), g(x) + ua(x))〉
be a cyclic code in Rr,s where f(x), l(x), g(x) and
a(x) are as in Theorem 6 and f(x)hf (x) = xr−1,
g(x)hg(x) = xs − 1, g(x) = a(x)b(x).

Let

S1 =

deg(hf )−1
⋃

i=0

{
xi ∗ (f(x), 0)

}
,

S2 =

deg(hg)−1
⋃

i=0

{
xi ∗ (l(x), g(x) + ua(x))

}

and

S3 =

deg(b)−1
⋃

i=0

{
xi ∗ (hg(x)l(x), uhg(x)a(x))

}
.

Then S = S1 ∪S2 ∪S3 forms a minimal spanning
set for C as an R-module.
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Let C = 〈(f(x), 0) , (l(x), g(x) + ua(x))〉 be a
one weight cyclic code in Rr,s. Consider the
codewords (v, 0) ∈ 〈(f(x), 0)〉 and (w1, w2) ∈
〈(l(x), g(x) + ua(x))〉. Since C is a one weight
code, wt(v, 0) = wt(w1, w2). Further, since C is
an R-submodule, u(w1, w2) = (0, uw2) ∈ C and
wt(v, 0) = wt(0, uw2). Moreover, (v, uw2) ∈ C
because of the linearity of C. But it is clear
that wt(v, uw2) 6= wt(v, 0) and wt(v, uw2) 6=
wt(0, uw2). Hence, 〈(f(x), 0)〉 can not generate
a one weight code.

Now, let us suppose that C = 〈(l(x), g(x) + ua(x))〉
is a one weight cyclic code in Rr,s. We know from
Corollary 7 that deg g(x) = s−1, m = 2s and g(x)
generates a vector of length s with all unit en-
tries. Therefore, l(x) also must generate a vector
over Z2 with weight s. Hence, to generate such
a cyclic one weight code we have two different
cases; r = s and r > s.

If r = s then, to generate a vector with
weight s, the degree of l(x) must be s − 1.
So, (l(x), g(x) + ua(x)) generates the codeword
(1 · · · 1
︸ ︷︷ ︸

length s

|unit · · ·unit
︸ ︷︷ ︸

length s

).

Further, if we multiply (l(x), g(x) + ua(x)) by
hg(x) we get (hg(x)l(x), uhg(x)a(x)) and it gen-
erates codewords of order 2. Since r = s and the
degrees of the polynomials l(x) and g(x) are s−1
we have hg = x + 1 and hg(x)l(x) = 0. Hence,
uhg(x)a(x) must generate a vector with weight 2s,
i.e, hg(x)a(x) must generate a vector of length s
with all unit entries. This means that

hg(x)a(x) =
xs − 1

(x+ 1)

⇒ (x+ 1)a(x) =
xs − 1

(x+ 1)

a(x) =
xs − 1

(x+ 1)2
.

Hence we get a(x) = xs−1
(x+1)2

. But, since we al-

ways assume that s is an odd integer, a(x) is not
a factor of (xs − 1) and this contradicts with the
assumption a(x)|(xs − 1). So, we can not allow
ua(x)hg(x) to generate a vector, i.e, we must al-
ways choose a(x) = g(x) to obtain ua(x)hg(x) =
0. So in the case where C is a one weight cyclic
code generated by (l(x), g(x) + ua(x)) in Rr=s,s,
we only have C is a Z2Z2[u]-cyclic code of type
(s, s; 0, 1, 0) with weight m = 2s.

In the second case we have r > s. We know that
C is a one weight cyclic code with weight m = 2s
and g(x) = xs−1

x+1 generates a vector with exactly

s nonzero and all unit entries. Let v = (v1, v2)

be a codeword of C such that v1 =< l(x) > and
v2 =< g(x) + ua(x) >. We can write v as

(a0a1 · · · ak−1ak
︸ ︷︷ ︸

s nonzero entries

|unit · · ·unit
︸ ︷︷ ︸

length s

)

where ai ∈ Z2, k ∈ Z. Since C is an R-submodule
we can multiply v by u, then we have

(00 · · · 0
︸ ︷︷ ︸

length r

| u · · ·u
︸ ︷︷ ︸

length s

).

Let w = (w1, w2) be another codeword of C gen-
erated by (hg(x)l(x), ua(x)hg(x)). Since C is a
one weight code of weight 2s, we can write w =
( b0b1b2 · · · bt−1bt

︸ ︷︷ ︸

2s− 2p nonzero entries

|u0uu0 · · ·uu0u
︸ ︷︷ ︸

p nonzero entries

), bi ∈ Z2, t ∈

Z. Since w+uv must be a codeword in C, we have

w + uv = ( b0b1b2 · · · bt−1bt
︸ ︷︷ ︸

2s− 2p nonzero entries

| 0u00u · · · 00u0
︸ ︷︷ ︸

s− p nonzero entries

).

Therefore, wt (w + uv) = 2s − 2p + 2s − 2p =
4s − 4p and since C is a one weight code with
m = 2s,

4s− 4p = 2s =⇒ 2s = 4p =⇒ s = 2p.

But this contradicts with our assumption, that is,
s is an odd integer. Consequently, for r > s and
g(x) 6= 0 there is no one weight Z2Z2[u]-cyclic
code. Under the light of all this discussion, we
can give the following proved theorem.

Theorem 8. Let C be a Z2Z2[u]-cyclic code
in Rr=s,s generated by (l(x), g(x) + ua(x)) with
deg l(x) = deg a(x) = deg g(x) = s − 1. Then
C is a one weight cyclic code of type (r, s; 0, 1, 0)
with weight m = 2s. Furthermore, there do not ex-
ist any other one weight Z2Z2[u]-cyclic code with
g(x) 6= 0.

Example 4. Let C = 〈(l(x), g(x) + ua(x))〉 be a
cyclic code in R7,7 with l(x) = g(x) = a(x) =
(
1 + x+ x3

) (
1 + x2 + x3

)
= 1 + x + x2 + x3 +

x4 + x5 + x6. Hence, C is a one weight code with
weight m = 14 and the following generator matrix,

(
1 1 1 1 1 1 1 1 + u 1 + u 1 + u 1 + u 1 + u 1 + u 1 + u

)
.

Furthermore, the dual cyclic code C⊥ has the fol-
lowing generator matrix
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






















0 0 0 0 0 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 1 + u
0 0 0 0 0 0 1 1 + u 0 0 0 0 0 1
1 0 0 0 0 0 0 1 1 + u 0 0 0 0 0
0 1 0 0 0 0 0 0 1 1 + u 0 0 0 0
0 0 1 0 0 0 0 0 0 1 1 + u 0 0 0
0 0 0 1 0 0 0 0 0 0 1 1 + u 0 0
1 1 1 1 1 1 1 u u u u u u u
























.

It is obvious from this matrix that C⊥ is not a one
weight code. However, it is a Z2Z2[u]-cyclic code
of type (7, 7; 7, 6, 0) and its image under the Gray
map is a binary cyclic code with the parameters
[21, 19, 2].

5. Examples of One Weight

Z2Z2[u]-cyclic Codes

In this part of the paper, we give some examples of
one weight Z2Z2[u]-cyclic codes. Furthermore, we
look at their binary images under the Gray map
that we defined in (1). Actually, according to the
results of [22], any binary linear one (constant)
weight code with no zero column is equivalent to
a λ-fold replication of a simplex code. Hence, the
examples of one weight Z2Z2[u]-cyclic codes that
will be given in this section are all λ-fold replica-
tion of simplex code Sk. Therefore, any such code
has length n = λ2k − 1, dimension k and weight
(or minimum distance) d = λ2k−1. It is also well-
known that a binary simplex code is cyclic in the
usual sense.

If the minimum distance of any code C get the
possible maximum value according to its length
and dimension, then C is called optimal (distance-
optimal) or good parameter code. For an exam-
ple, the binary image of a dual code in Example 4
has the parameters [21, 19, 2] which are optimal.
Let C be a Z2Z2[u]-linear code with minimum dis-
tance d = 2t + 1, then we say C is a t-error cor-
recting code. Since, the Gray map preserves the
distances, Φ(C) is also a t-error correcting code of
length r+2s over Z2. Since, |Φ(C)| = |C|, we can
write a sphere packing bound for a Z2Z2[u]-linear
code C. With the help of usual sphere packing
bound in Z2,

|Φ(C)|
t∑

j=0

(
r + 2s

j

)

≤ |2r+2s|,

we have

|C|

t∑

j=0

(
r + 2s

j

)

≤ |2r+2s| = |Zr
2 ×Rs|.

If C attains the sphere packing bound above then
it is called a perfect code. Let C be a Z2Z2[u]-linear
code of type (3, 2; 2, 1, 0) with standard form of
the generator matrix

G =





1 0 1 0 u
0 1 0 0 u
0 0 1 1 1 + u



 .

It is easy to check that C attains the sphere pack-
ing bound, so C is a perfect code. Moreover, the
dual code C⊥ of C is generated by the matrix

H =

(
1 0 1 u 0
1 1 0 1 + u 1

)

(2)

and C⊥ is a one weight Z2Z2[u]-linear code with
weight m = 4.

Plotkin bound for a code over Fn
q with the mini-

mum distance d is given by,

1. If d =
(

1− 1
q

)

n, then |C| ≤ 2qn.

2. If d >
(

1− 1
q

)

n, then |C| ≤ qd
qd−(q−1)n .

If C ⊆ Fn
q attains the Plotkin bound then C

is also an equidistant code [25]. Since any one
weight binary linear code is a λ-fold replica-
tion of a simplex code and have the parame-
ters [λ(2k − 1), k, λ(2k−1)], a binary image of any
one weight Z2Z2[u]-cyclic code always meet the
Plotkin bound.

Finally, we will give the following examples of one
weight Z2Z2[u]-cyclic codes. We also determine
the parameters of the binary images of these one
weight cyclic codes. Further we list some of them
in Table 1.

Example 5. Let C be a Z2Z2[u]-cyclic code in
R15,15 generated by (l(x), g(x) + ua(x)) where

l(x) = 1 + x3 + x4 + x6 + x8 + x9 + x10 + x11,

g(x) = x15 − 1,

a(x) = 1 + x3 + x4 + x6 + x8 + x9 + x10 + x11.

Then C is a one weight code with weight m = 24
and following generator matrix







1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 u 0 0 u u 0 u 0 u u u u 0 0 0
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 u 0 0 u u 0 u 0 u u u u 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 u 0 0 u u 0 u 0 u u u u 0
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 u 0 0 u u 0 u 0 u u u u






.
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Furthermore, the binary image Φ(C) of C is a
[45, 4, 24] code, which is a binary optimal code
[26]. Also, it is important to note that Φ(C) is a
3-fold replication of the simplex code S4 of length
15.

Example 6. The Z2Z2[u]-cyclic code C =
〈(l(x), g(x) + ua(x))〉 in R9,9 is a one weight code
with m = 18, where l(x) = g(x) = a(x) =
1 + x + x2 + x3 + x4 + x5 + x6 + x7 + x8. C has
the generator matrix of the form,

(
1 1 1 1 1 1 1 1 1 ū ū ū ū ū ū ū ū ū

)

where ū = 1+u. The Gray image of C is a 9-fold
replication of the simplex code S2 of length 3 with
the optimal parameters [27, 2, 18].

Example 7. Let C = 〈(l(x), g(x) + ua(x))〉,
l(x) = a(x) = 1 + x + x2 + x4, g(x) = x7 − 1,
be a cyclic code in R7,7. Then the generator ma-
trix of C is





1 1 1 0 1 0 0 u u u 0 u 0 0
0 1 1 1 0 1 0 0 u u u 0 u 0
0 0 1 1 1 0 1 0 0 u u u 0 u



 .

C is a one weight code with m = 12 and Φ(C) is a
3-fold replication of the simplex code S3 of length
7 with the parameters [21, 3, 12].

6. Conclusion

In this paper, we study the one weight linear and
cyclic codes over Zr

2 × (Z2 + uZ2)
s where u2 = 0.

We also classify one weight Z2Z2[u]-cyclic codes
and present some illustrative examples. We fur-
ther list some binary linear codes with their pa-
rameters which are derived from the Gray images
of one weight Z2Z2[u]-cyclic codes.
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