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The main objective of this work is to discuss a generalized synchronization of
a coupled chaotic identical and nonidentical dynamical systems. We propose
a method to study generalized synchronization in master-slave systems. This
method, is based on the classical Lyapunov stability theory, utilizes the master
continuous time chaotic system to monitor the synchronized motions. Various
numerical simulations are performed to verify the effectiveness of the proposed
approach.
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1. Introduction

For the last few decades, chaotic phenomena have
been seen to be new kinds of oscillating system
for the successful applications in different scien-
tific fields including physics, chemistry, ecology,
biology, etc. The chaotic oscillators are found in
many dynamical systems of various origins. Their
behavior is characterized by instability and lim-
ited predictability in time. The original work on
synchronization was introduced in coupled pendu-
lum by Huygens [1]. Since this discovery has been
carried out, it has attracted very considerable at-
tention over the past three decades in different sci-
entific fields including physical and biological pro-
cesses. The surprising synchronization phenom-
ena generated between coupled chaotic systems
has been discovered by Pecora and Carroll [2].
They proposed that ”synchronization can be ob-
served even in chaotic systems”. Then, the syn-
chronization of coupled chaotic systems has been
extensively and intensively studied.

Thus, behavior of a chaotic phenomenon can be
classified into several types of synchronization
such as: identical or complete synchronization
appears as the coincidence of states of interact-
ing systems, phase synchronization which means
entrainment of phases of chaotic oscillators in a
closely controlled phase relationship, lag synchro-
nization appears as having a parameter mismatch
in mutually coupled chaotic oscillator. This type
of lag synchronizations has important technolog-
ical implications in engineering systems. In the
literature, a large number of researchers have ex-
tensively concentrated on identical synchroniza-
tion [2], generalized synchronization [3, 4], active
control methods such as adaptive control, feed-
back control, sliding mode control, impulsive con-
trol and fuzzy control and so on [5–10].

In the case of synchronization of master-slave sys-
tems, the designed controller makes the trajecto-
ries of the state variables of the master system
to track the trajectories of the slave system. This
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fact may pose a trouble in using the results of the-
oretical analyses in practical applications of syn-
chronized chaos.

In this paper, we further study a generalized syn-
chronization of chaotic systems and propose a
new and more general method for constructing a
master system to implement the generalized syn-
chronization with slave chaotic system by using
the Lyapunov stability theory. This technique,
known as master system method, is practically
established in a simple form since it is effectively
guaranteed for the stability of generalized chaotic
synchronization. Besides, we present the gener-
alized synchronization for two basic categories,
namely; synchronization between two identical
chaotic systems and synchronization between two
nonidentical chaotic systems. Synchronization
of nonidentical chaotic systems can be found in
many natural systems, such as Lorenz system,
Chua’s system, Rossler system, asthalamic neu-
rons in the human brain etc.

The rest of the paper is organized as follows: Sec-
tion 2 gives a general description of a general-
ized synchronization by constructing master sys-
tems for detecting generalized synchronization of
chaotic systems based on the classical Lyapunov
stability theory. Section 3 studies the synchro-
nization behaviour of two identical chaotic sys-
tems. Section 4 presents the results of an experi-
ment with synchronization of nonidentical chaotic
systems. Section 5 concludes main results of the
present work and recommendations for further
studies.

2. Generalized synchronization systems

The basic master and slave chaotic system is given
as,

{

ẋ(t) = f(x(t), u(x(t), y(t)) master,

ẏ(t) = g(y(t)) slave,

(1)

where the vector x(t) ∈ R
n and y(t) ∈ R

n rep-
resent the master signal and the slave signal, re-
spectively. The functions f ∈ Rn and g ∈ Rn

are
f(x(t)) = Ax(t) + s(x(t))

and
g(y(t)) = By(t) + h(y(t)),

where A and B of size n× n are assumed to
be constant matrices and the functions s ∈ Rn

and h ∈ Rn represent the nonlinear parts of f

and g, respectively. The master system synchro-
nizes with the system slave in a state of general-
ized synchronization, if there exists a transforma-
tion u : R2n −→ R

n, a manifold T = {(x, y) ∈
R2n, y(t) = φ(x(t))}, where φ : Rn −→ R

n being
a smooth function. The function transforms the
trajectories on the attractor of the first system
into those on the attractor of the second system.
The problem consisting of the controller function
u exists and satisfies the following property:

lim
t−→∞

‖e(t)‖ = lim
t−→∞

‖y(t)− φ(x(t))‖ = 0 , (2)

for all initial conditions.

To explain the synchronization of the driver and
the response systems, the error equation is given
by

e(t) = y(t)− φ(x(t)).

By the Lyapunov direct method we consider a
Lyapunov function

V (t) =
1

2
e(t)TPe(t). (3)

Note that P is a symmetric positive definite ma-
trix and is independent of time. Here, P is given
as the identity matrix. We assume that the error
system e(t) is small enough and satisfies a differ-
ential equation of the form

ė(t) = −M(t)e(t), (4)

where M is an appropriate matrix.

In this paper, we construct a master system
driven by the synchronization signal (4) to im-
plement linear generalized synchronization with
the slave system.

Now then

ė(t) = ẋ(t)− JΦ(y(t))ẏ(t)

= Ax(t) + s(x(t)) + u(x(t), y(t))

−Jφ(y(t))f(x(t)), (5)

where Jφ is the Jacobian matrix of the function
φ. According to condition (4), the corresponding
controller function u exists and is given by

u(x(t), y(t)) = −M(t)e(t) + Jφ(y(t))f(x(t))

−Ax(t)− h(y(t)). (6)

Then, system (1) becomes
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{

ẋ(t) = −M(t)e(t) + Jφ(y(t))f(x(t)) master,

ẏ(t) = h(y(t)) slave.

(7)

In order to find a generalized synchronization, the
following assumptions on the master system are
needed: Φ must be a continuously differentiable
function and the matrix MT (t)P + PM(t) is a
positive definite matrix. In the next section, we
present two simulation results: first between two
nonidentical systems and other between two iden-
tical systems. For the time integration the fourth
order Runge-Kutta (RK4) method has been used
under the initial conditions x(0) and y(0). The
interval time [t0, T ] is partitioned into N subinter-
vals [tn, tn+1] with tn = t0+n∆t for n = 0, · · · , N ,

∆t =
T − t0

N
.

3. Synchronization of two nonidentical

systems

The Rössler system described by the nonlinear
autonomous differential equations is [11]:







































dx1

dt
= −y1 − z1 + u1(x(t), y(t))

dy1

dt
= x1 + ay1 + u2(x(t), y(t))

dz1

dt
= z1(x1 − c) + b+ u3(x(t), y(t))

(8)

where, u(t) = [u1(1), u2(t), u3(t)]
T for x(t) =

[x1(t), y1(t), z1(t)], y(t) = [x2(t), y2(t), z2(t)]
T .

The set of parameters representing chaotic attrac-
tors for the famous Rössler systems are taken to
be a = 0.25, b = 3, c = 0.5 and d = 0.05 and
chosen as master system.

The unified chaotic system is described as fol-
lows [12]:







































dx2

dt
= (25α+ 10)x2 − (25α+ 10)y2

dy2

dt
= (28− 35α)x2 + (29α− 1)y2 − x2z2

dz2

dt
= −

(α+ 8

3
z2 + x2y2

.

(9)

Thus system (9) reduces to the Lorenz system
if α = 0 and chosen as the slave system. The

Rössler and Lorenz systems exhibit the chaotic
attractor with the initial conditions are chosen to
be x(0) = (1, 1, 1)T and y(0) = (1, 1, 0)T . The
time interval is taken to be [t0, T ] = [0, 2000] as
shown in Figure 1.

To achieve the reduced order synchronization be-
havior between the Rössler and Lorenz systems,
we consider that the Rössler as the master system
and Lorenz as the slave system. Then, we rewrite
the master system in the form

ẏ = −M(t)e(t) + JΦ(y(t))f(x(t)),

where

B =





0 −1 −1
1 a 0
0 0 −c



 and g(y) =





0
0

x1z1 + b



 .

To solve the synchronization problems of (8) and
(9) with the control functions u(x(t), y(t))as cal-
culated by (6), one can define the nonidentity
vector function as Φ(x1, y1, z1) = (x1 + z1, y1 +
z1, x1)

T . For the sake of the simplicity, we con-
sider M = kI3. We see that the master-slave sys-
tems are synchronized by the designed controller
function between two nonidentical chaotic sys-
tems, namely, that lim

t−→∞

|x2−x1| = 0, lim
t−→∞

|y2−

y1| = 0 and lim
t−→∞

|z2 − z1| = 0. Thus, we confirm

that the convergence of the synchronization is ob-
tained at the optimal value k ⋍ 0.7 as shown in
Figure 2.
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Figure 1. The chaotic attractor of
the Rössler and Lorenz systems:
x1x2- plane projections.

Figure 2. Time series for x2 and
x1 for the coupling strengths k =
0.1, 0.4, 0.7, respectively.

4. Synchronization of two identical

systems

In this section, the proposed method is applied
to synchronization behaviour of two identical
Hindmarsh-Rose (HR) neuron systems. We fo-
cus on the synchronisation of two well defined
chaotic systems in which the control method can
be applied to the master-slave synchronization of
the HR neurons. The HR model is then given
by [13,14].























































































dx1

dt
= −a z1 + b x21 + c x1 + d+ ey1

−f x31 + g I(t) + u1(x(t), y(t))

dy1

dt
= −α− βx21 − µy1 − γx1

+u2(x(t), y(t))

dz1

dt
= η(ρ(x1 − C)− z1)

+u3(x(t), y(t))
(10)

where, u(t) = [u1(1), u2(t), u3(t)]
T for x(t) =

[x1(t), y1(t), z1(t)], y(t) = [x2(t), y2(t), z2(t)]
T .

The set of parameters are given as a = 1, b = 0,
c = 3, d = 2, e = 5, f = 1, g = 1, α = 1, β = 1,
µ = 2, γ = 1, η = 0.005, ρ = 4 and C = −2.6.
Here, I(t) is the externally applied current at time
t and the parameter C is the x-coordinate of the
leftmost equilibrium point of the model without
adaptation. To study synchronization motions of
the two identically coupled HR neuronal systems,
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it is assumed that system (10) is considered to be
the master system. The slave system is given by























































dx2

dt
= −a z2 + b x22 + c x2 + d+ ey2

−f x32 + g I(t)

dy2

dt
= −α− βx22 − µy2 − γx2

dz2

dt
= η(ρ(x2 − C)− z2)

.

(11)

We can rewrite system (10) as

ẏ(t) = −M(t)e(t) + JΦ(X2(t))f(X2(t)),

where

B =





c e −a

−γ −µ 0
ηρ 0 −η



 and g(y) =





bx22 − fx32 + gI

−α− βx22
−C(ηρ)



 .

Again, as in the above example, the control
functions u(x(t), y(t)) are given by (6), where
Φ(x1, y1, z1) = (x2, y2, z2) is the identity func-
tion. We produce numerical results using the
RK4 method for the master-slave systems, by us-
ing M = kI3. In our simulation, the initial con-
ditions are chosen to be x(0) = (−0.54,−1, 3)T

and y(0) = (0.54, 1,−3)T . The time interval is
taken to be [t0, T ] = [0, 5000]. The chaotic be-
havior of the HR system is shown in Figure 3,
for I = 3.25. In Figure 4, we consider coupling
for k −→ ∞. It can be seen that synchroniza-
tion occurs for k ⋍ 0.2. Thus, all the variables of
the coupled chaotic systems converge, namely, x2
converges to x1, y2 to y1, and z2 to z1. Thus, we
can see the generalized synchronization between
the master and slave chaotic systems with the de-
signed controller functions.

Figure 3. Chaotic attractors of the
HR system: x1x2− plane projections.
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Figure 4. Synchronization between
the master-slave HR neurons sys-
tems: plots of x2 according to x1

at various coupling strengths k =
0.05, 0.08, 0.17, 0.19 and 0.2.

5. Conclusion

In this paper, the generalized synchronization of
spatial chaotic identical and nonidentical dynam-
ical systems have been analysed. We have recon-
structed the master system based on the classi-
cal Lyapunov stability theory. The designed con-
trollers enable the state variables of the slave sys-
tem to globally synchronize the state variables of

the master system in both physical and biologi-
cal systems. It should be pointed out that the
present method has effectively been extended to
generalized synchronization. The present method
has also provided the guaranteed stability of the
error dynamics at the origin . All computations
have been carried out in terms of the codes pro-
duced here in SCILAB-6.0. For further the theory
of synchronization stays a challenging problem of
nonlinear behavior.
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