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 In this paper we consider the inverse spectral problem on the interval [0,1]. This 

determines the three-dimensional Schrödinger equation with from singular 

symmetric potential. We show that the two spectrums uniquely identify the 

potential function  𝑞(𝑟)  in a single Sturm-Liouville equation, and we obtain new 

evidence for the difference in the  𝑞(𝑟) − 𝑞(𝑟̃) of the Hochstadt theorem. 
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1. Introduction 

Although the time-independent radial Schrödinger 

equation can not be solved for some simple spherical 

symmetric potentials, it is not possible to obtain a 

complete solution in complex situations. In these 

cases, it must resorted to some approach methods. For 

the calculation of stationary states and energy 

eigenvalues, these are perturbation theory, variational 

method and WKB approximation methods. 

Perturbation theory can be applied if case of 

Hamiltonian differs slightly from a fully soluble 

matter. The method of variation is suitable for 

calculating the ground state energy in the form of 

wave function.After that WKB method can be 

practically applied at the classical boundary. 

Given a Schrödinger operator with a symmetrical 

potential, the separation of variables leads to the 

global Schrödinger operator 

,...2,1,0),(22

2 )1(   lrqL
r

ll

dr

d  

Many results have been obtained considering the 

eigenvalues of this problem which have been of great 

interest in the past. The initial results are studied by 

Guillot and Raltson [1]. They examined the problem 

case of  1l   and  ).1,0(2Lq  Then,  the results were 

extended by Carlson [2] and by Serier [3] for any  

0Nl . However, the assumption )1,0(2Lq   clearly 

excludes the physically interesting case of a Coulomb 

type singularity   )(rq  = ...
r


 (   is the Euler- 

Mascheroni constant).  This corresponds to the work 

of  Savchuk and Shkalikov [4], who considered  

)1,0(2,1Wq  for .0l  It is extended by Albeverio, 

Hryniv and Mykytyuk and the case )1,0(,1 pWq   

p ),,1[  was first discussed for  0l  and then 

in [5] all  0Nl   are expanded using the double 

commutation method. Panakhov and Sat [6], 

examined the inverse problem for the internal spectral 

data of the hydrogen atom equation [7]. The basic 

reference for this study is Zhornitskaya and Serov [8] 

who treat the general case 2
1l  under the 

assumption )1,0(1Lq . Moreover, they show [8] that 

the Dirichlet eigenvalues satisfy  

 2,
2
1 nnln j  


 

where  
 nl

j ,
2
1 )()( 1

2
1  nOn  are the zeros of 

the Bessel function 
2
1l

J  and the error satisfies 

4
||  n  (this is claimed for all n but only proven for 

large n ). We want to extend the results a bit further: 

http://www.ams.org/msc/msc2010.html
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First we change  )1,0()( 1Lrq   by )(rrq )1,0(1L . We 

will show that the error satisfies the following equalit 

.
1

)(1

0















  dy

ny

ygy
On  

In particular, we obtain let ))log(( 1 nnOn

  for a 

Coulomb type singularity be 
r

rq


)(   . 

Based on this information, in addition to the Dirichlet 

spectrum, we will obtain, spectral data that uniquely 

specifies q  and l , which again correspond to the case  

)1,0()( 1Lrrq   [8].  

We can apply this method to some spherically 

symmetric potentials by obtaining a simple method for 

the general solution of time independent radials. We 

will examine this problem for the Schrödinger 

equation with spherical symmetric potential. We will 

now discuss the problem  

                   0)
)1(

)((
2








r

ll
rq  

2

1
    ,  0)1()1(  ,  0)0(  lh  

 

and show that we have identified the potential 

function of the two spectra only and that we are 

dealing with,new evidence for the difference in the 

𝑞(𝑟) − 𝑞(𝑟̃)  of the Hochstadt theorem. 

2. Time independent radial Schrödinger equation 

for spherical symmetric potentials 

The time-independent Schrödinger equation in three 

dimensions is given by 

  0)~()~(
ħ

2
)~(

2
 rrVE

m
r                (1) 

where, m is the mass of particle and  E ,V  are the 

total and potential energies, respectively. Spherical 

polar coordinates,   cossinrx  ,

 sinsinry  , cosrz    are appropriate for the 

symmetry of the problem. The Schrödinger Eq. (1), 

expressed as 

),,(),(
~1

),,(
2 2

22

2

 rL
r

r
rrr

















  

                  0),,(),,(
ħ

2
2

  rrVE
m               (2) 

in these coordinates, where  

.cot),(
~

2

2

22

2

sin

12














 L  The potential 

energy of a particle which moves in a central, 

spherically symmetric field of force depends only 

upon the distance  r   between the particle and the 

centre of force. Thus, the potential energy should be  

)(),,( rVjqrV  . Solution of the Eq. (2) can be found 

by the method of separation of variables. To apply this 

method, we use a solution of the form 

                      ),()() ,,(  YrRr                     (3)  

where  )(rR  is independent of the angles, and 

),( jqY  is independent of r . By substituting Eq. (3) 

into Eq. (2) and rearranging, we obtain, 

  0)()(
ħ

2)(2)(
222

2



















rR

r

C
rVE

m

r

rR

rr

rR (4a) 

            0),(),(),(
~2   CYYL             (4b) 

where  C  is fixed. Eq. (4b) is independent of total 

energy E  and potential energy  )(rV . In this case, the 

angular dependence of wave functions is determined 

by the global symmetry property, and Eq. (4b) are 

valid for every spherical symmetric system, regardless 

of the specific form of the potential function. Eq. (4b) 

are known as spherical harmonic functions,  ),( Y  

where ,..3,2,1,0);1(  lllC  are positive integers. 

Substituting )1(  llC  value and )()( rrRr   to 

Eq. (4a), we obtain the radial wave equation as: 

                 0)()(
ħ

2
22

2














rrUE

m

r
                (5) 

where  2

2 )1(

m2
ħ)()(

r

ll
rVrU


   is the effective 

potential energy. 

The problem of radially symmetric potential 

determination in the three-dimensional Schrödinger 

equation given as follows  

          1 0)(   ,)(  XXXq       (6) 

in the unit ball  
3R with a central potential )(xq . By 

looking for solutions in the separated form  

                    ),(
)(

,, 


 m

ıY
r

r
r                   (7) 

in which    ,,r   are spherical coordinates in  

R3
and Yı

m
 are spherical harmonics, we get the below 

ordinary differential equation  
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 .2,1,0  ,0)1( ,0)
)1(

)((
2







l
r

ll
rq  (8)

, 2,1,0l   supplemented by the regularity 

condition  

                        .0    )(  rrOr                        (9) 

 The problem in Eq.(8), or Eq.(9) has a countable 

sequence of eigenvalues, denote for fixed l , by  

2,1,, nnl ,... 

These are the natural frequencies   nl ,   coming from 

an equation  

  .0
)1(

),,(
)( 22










 








r

ll
lrQ

rc
 

This corresponds to normal acoustic vibration 

modeling [9]. The two principal quantities are the 

propagation velocity for   rc  and density  rp  for 

acoustic waves. The radial part of the wave function 

 and Q  is the function of pc,  only, but   

),,( lrQ = 2

)1(

r

ll 
+    pCcpC 21 ,    are mutually 

dependent on  in the general form. It may be 

reasonable to keep the 1C term equal to zero for 

certain purposes, thus it is giving the form a more 

conventional variant 

     0
)1(

)(
)( 22








 








r

ll
rq

rc
     (10)     

The simplest case is that we have to determine the 

spectral modulus q (or )(rq ) when  c  is known and 

constant (if c is known then a motion-time conversion 

can be used). The effective accuracy of the data 

decreases with the increase of l and at the same time 

for very small l  values. No other spectral information 

is available for sufficient accuracy. For this reason, we 

use more than one value to achieve reconstructions. 

First let us recall some well-known results about Eq. 

(8) with  0l (e.g., [10,11]). If we define the map  

 qq n , the nth  eigenvalue of Eq. (8) subject 

radially symmetric potential reconstruction to the 

Dirichlet boundary conditions   

0)1()0(  , then   qn =  qn
~

 implies that 

            0)(~)()()(~
1

0

 drrrrqrq nn          (11) 

where  n , n~  are eigenfunctions for qq ~, . If 

qq  ~  then in the limit as 0  , we get 

         0)()( 2

1

0

 drrr n                           (12)    

or, what amounts to the same thing, the Frechet 

derivative of   qn  is  with n  now normalized in 

)1,0(2L   

        .)()( 2

1

0

drrrqDq nn                (13) 

[11,Theorem 2.3]. From the following eigenvalue 

asymptotics 

       ,   )()( 2

1

0

2 laadrrqnq nnn   ,  (14) 

we obtain the additional orthogonality relation  

                         0)(

1

0

 drr                               (15) 

where   qn =   qn
 for all n . The well-known 

theorem [11,Theorem 3.3] that a symmetric function q   

is uniquely determined by    
1nn q  may be thought 

of as the fact that the set of functions   2,1 n  is 

complete in the even subspace of )1,0(2L . 

If we add a second spectral sequence   qn , the nth  

eigenvalue of Eq. (8) with boundary conditions  

0)0(  , )1(  0)1(  h  and eigenfunction ,n  we 

get a  second set of orthogonality relation, 

                           0)()(

1

0

 drrr n                      (16) 

then it can be shown that 

                            .,,1
1

22 

nnn                                (17) 

is complete in )1,0(2L ; i.e., a linearized uniqueness 

result holds for the problem of determining q

)1,0(2L from the eigenvalue data           

    
1

,
nnn qq  . 

In [1] a similar fact is derived and used in the singular 

case  1l ; namely, if   qnl ,   denotes the nth  
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eigenvalue of Eq. (8) and Eq. (9), then following 

equality can be written 

          drrrqDq nlnl )()(, 2

,

1

0

   ,              (18)               

where  nl ,  is the nth  normalized eigenfunction. 

Now let    denote some subset of the indices  ),( nl . 

The condition   qnl ,  =  qnl
~

,   for all  ),( nl   

implies, in the limit of small  ,~ qq   that    is 

orthogonal to the subspace of  )1,0(2L  spanned by  

 .2

, nl  In the best case this subspace is all of  

)1,0(2L , in which case we have a uniqueness result 

for the linearized inverse spectral problem. 

Asymptotics of the eigenvalues are , (see [12] for  

1l   or [13]- (9.5.12) for the specific case of  0q )  

 




2

,

1

,

1

0

22

,  ,)1()()
2

( nl

n

nlnl rrlldrrq
l

n 

                                                                                 (19) 

or

 





 





2

,

1

,

1

0
,   

2

)1()(
)

2
( nl

n

nlnl
ln

lldrrql
n 


  . 

                                                                                 (20)                                                                                                    

So, the mean value drrq )(
1

0

   is determined uniquely 

by the eigenvalue sequence for any l . If the spectral 

data contains all of the eigenvalues for any fixed l  

we should really look at the span of   
nlnl ,

2

,,1  

[14]. 

For technical convenience, we will actually work with 

a somewhat different mapping, defined as follows. For 

given q  there exists a solution  1  qx ,,  of Eq. (8) 

satisfying the normalization condition 

               
 

1
,,

lim
1

1

0


 lr r

qx 
.                                 (21)                                                       

Now set 

                   



nl

qqF nlnl
,

,,1, ,1,   .          (22) 

For given spectral data    nlnl ,,,  the inverse 

spectral problem is equivalent to  

         .0, ,  nlqF                             (23) 

The rest of this article is limited to the linearization of 

the small potentials, ie., 
F  at  0q . 

Proposition 1. If  0,,nl   denotes the eigenvalue of 

Eq. (8) and Eq. (9) with  0q   then  

 
  











 
nl

nllnlnlq drrrjrcFD

,

0,,

22

1

0

,0,, )(),0( 

                                                                               (24) 

for some  0, nlc . Here  ,lj ly  are the spherical 

Bessel functions with standard normalizations [13]. 

The exact value of  nlc ,  may be found in the proof. It 

is not hard to check that when  0q  we have  

    .)( 0,,, rCrjr nllnl                         (25) 

So that (not surprisingly) uniqueness holds for  

0),0( 0,,   nlq FD   exactly if it holds for the 

system 

     .,    0)0( ,  nlD nlq               (26) 

 For any nonnegative integers  1l   and  2l   the set of 

functions  

    rr nlnl 0,,10,,1 2211
,,,,1               (27) 

is complete in  )1,0(2L . 
lxjr )(( 1 )).(r   

3. Two spectra for the spherical Schrödinger 

equation 

The spherical Schrödinger operator given by 

         
2

1
  ),1,0(   ,

)1(
22

2







 lr
r

ll

dr

d
L  

where  l  may not be an integer, arbitrary space size  

2n , or  )1( ll  has to be replaced by  

4/)3)(1()2(  nnnll  [15]. With the usual 

boundary conditions at  0r  and  1r    

0))()()1((lim
0




rrrlr l

r
  

for ).,[
2
1

2
1l  It gives rise to a self-adjoint operator 
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in the Hilbert space  )1,0(2L . 

Consider two singular Sturm--Liouville problems 

 
)1,0(    0)

)1(
)((

2







r
r

ll
rq        (28)  

0)1()1(  ,  0)0(   h                  (29) 

   )1,0(    0)
)1(

)(~(
2







r
r

ll
rq        (30)         

0)1( 
~

)1(   ,   0)0(   h              (31) 

where the functions  )(rq , )(~ rq  are assumed to be 

real-valued and square integrable and  h , h
~

 are 

finite real numbers. Let us denote the spectrum of the 

first problem by  


0}{ n  and the spectrum of the 

second by  .}
~

{ 0



n  And  ),(  r  is solution of Eq. 

(28) and ),(~  r   is the solution of Eq. (30) satisfying 

the initial condition  respectively. 
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2
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r
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1
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1
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1
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NRlrJ
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




      (32) 

where  
2
1l

J   and  
2
1l

Y   are the usual Bessel and 

Neumann functions. Note that, all branch cuts are 

selected along the negative real axis. If l is an integer, 

it is of course reduced to spherical Bessel and 

Neumann functions and can be expressed by 

trigonometric functions [16]. 

Using the power series for Bessel and Neumann 

functions, it can be writte uniquely in then form 
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\         , )(
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2
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Nlrr
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l

l

l

r

l

l






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where  )( , )(   are entire functions with  

1)0()0(    and    is the Euler- Mascheroni 

constant. 

It is well known that there exists a function  ),( srK   

such that 

  .),(),(),(),(~
0

dsssrKrr
r

           (33)  

Where  ),( srK   satisfies  
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K
)
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)(~(
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


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K
)
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)((
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2 





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and 

       dttqtqrrK
r

)()(~

2

1
),(

0
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                           0)0,( rK                                  (36) 

This problem can be solved by using Riemann 

method. 

drrcdrrc nnnn )
~

,(~~    , ),( 2
1

0

2
1

0
    

nn cc
nn

~
1

)(~     
1

)(
~
 


 . 

Let set the function )( ( )(~  ) is called the spectral 

function of Eq. (28) and Eq. (29) (Eq. (30) and Eq. 

(31)). Eq. (28) and Eq. (29) is regarded as an 

unperturbed problem, while Eq. (30) and Eq. (31) is 

considered as a perturbation of Eq. (28) and Eq. (29) 

[17-18]. 

It is a well-known method in which two spectra for a 

given Sturm-Liouville equation make it possible to 

recover its spectral  function, that is }{ nc numbers. 

Assume that we know the spectrum }{ n  of the 

problem. Which are given Eq. (28) and Eq. (29). 

      2

( 1)
( ( ) ) 0,     0 1

l l
q r r

r
  

 
             (37)             

1 1 (0) 0   ,     (1) (1) 0,          .h h h       

If we know the spectrums   n  and   n , we can 

calculate the numbers }{ nc . Similarly, for Eq. (28), if 

in addition to  ,~
n  we also know the spectrum   n

~
 

determined by the boundary conditions 

           
1 1(0) 0    ,     (1)  (1) 0,       ,h h h       

thus we can determine the numbers }~{ nc , asymptotics 

of the eigenvalues are Eq. (20). It is also shown that 
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[19],  

               .
1

2

1
)(

2

2

1

0

2









  n

Odrrnn   

Theorem 1. Consider  the  
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        (38) 

subject to the boundary conditions 

       (0) 0,                                        (39)  

  (1) (1) 0,     h                       (40) 

where  q   is square integrable on  ].1,0(   Let }{ n  

be the spectrum of  L  subject to Eq. (39) and Eq. 

(40). If Eq. (40) is replaced by the new boundary 

condition  

1 (1) (1) 0,    h                         (41) 

then it yields a new operator and a new spectrum, as 

},{ n now consider the second operator 

2

( 1)
 ( ( ) ) ,

l l
L q r

r
   

 
             (42) 

where  q~   is square integrable on  ].1,0(   Suppose 

that under the boundary conditions Eq. (39) and 

    (1)  (1) 0.h                                (43) 

L
~

has the spectrum  },
~

{ n  with  nn  
~

 for all  

.n Here, L
~

 with the boundary conditions Eq. (38) 

and 

                       
1(1) (1) 0,h                              (44) 

is assumed to have the spectrum  }~{ n . Denote  the 

finite index set by 0  for which  nn  ~
  and  the 

infinite index set by   for which  nn  ~
. Under 

the above assumptions, it follows that the kernel  

),( srK  is degenerate in the extended sense; 
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where  n
~

 and  n  are suitable solutions of Eq. (35) 

and Eq. (36). 

Proof. It follows from Eq. (33)  
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and 
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By substituting  1r   and  
n    into the last 

equation and using the boundary conditions Eq. (40) 

and Eq. (44), we obtain 
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As  n  and  ( )1(),1 on  , the integral on the 

right-hand side tends to zero. Therefore, we get 
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from Eq. (47). Since the system of functions  

),( ns    is complete, it follows from the last 

equation  
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Now we use the condition imposed on the second-

mentioned spectrum. By using Eq. (40) again, we 

obtain 
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Setting  1r   and  
n   ( n ) and using Eq. 

(41) , Eq. (44), we get 
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In the last equation, as  n , the left-hand side 

tends to zero and then  )1(),1( on  . Therefore, it 

can be written as follows: 
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Comparing Eq. (48) and Eq. (52), we obtain  hh
~

  
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~
hh  . For  0n , relation Eq. (51) (for  1r  

and  n  ) 
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It follows from Eq. (53) and Eq. (54) that 

0

1
1 2

1

(1, )  (1, )
( , ).

( , )

n n
n

r n

hK
h K s

r s

   
 

 





 
  

 


        (55) 

We derive the following equations from Eq. (53) and 

Eq. (55); 

0

1

2

1

(1, )  (1, )1
(1, ) ( , ),

( , )

n n
n

n

h
K s s

h h s

   
 

 











         (56) 

            

hh

h

r

srK

r
~~

~
),(

1
1 








. 

            

0

1

2

(1, )  (1, )
( , ).

( , )

n n
n

n

h
s

s

   
 

 






             (57) 

The function  ),( srK   satisfies Eq. (45). Therefore, it 

follows from the initial conditions Eq. (56) and Eq. 

(57),  
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where  ),(~ rc   and  ),(~ rs  are solutions of Eq. (30) 

satisfying the initial conditions 

 ,1),1(~),1(~    sc   .0),1(~),1(~   sc   

Hence, we obtain Hochstadt's result in a some what 

more general formulation. 

Theorem 2. If the spectras  }{ n  and }
~

{ n  coincide 

and }{ n  and }~{ n  differ in a finite number of their 

terms, i.e.,  μn  = μn   for  n   , then 
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  are suitable solutions of Eq. (28) 

and Eq. (29). 
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from Eq. (45). By differentiating Eq. (58) and setting  
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This completes the proof of Theorem 2. 

4. Conclusion 

Quantum mechanics and atomic structures can be 

explained very well. The theoretical explanations 

made for this purpose fit very well with the 

experimental observations. This new atom model 

covering all the atoms is the Wave Model. hydrogen 

atom is a fundamental and important example of wave 

space. Because the single electron hydrogen atom is 

the simplest atom and the Coulomb potential energy is 

spherically symmetric, the hydrogen atom is the 

simplest application of the wave model. However, 

because of the difficulty of the solutions of atoms with 

more than one electron, the Schrödinger equation can 

be solved using approximation methods. These results 

gave consistent results in experimental errors with the 

literature results. Accordingly, the energy potentials of 

the system, the interaction potentials with small 

contribution, are calculated by some methods. The 

energy shifts for hydrogen atoms can be handled 

independently for degenerate and non-degenerate 

situations. 

In this study, we have applied this method to some 
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spherical symmetric potentials by obtaining a simple 

method for the general solution of time independent 

radials.Also, we have discussed the three-dimensional 

Schrödinger equation with bimetric potential. We 

have obtained new evidence for the difference of  

)()(~ rqrq    in the Hochstadt theorem and that the two 

spectra uniquely identify the potential function )(rq    

in a Sturm-Liouville equation. 
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