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As we know nearly all physical, chemical, and biological processes in nature
can be described or modeled by dint of a differential equation or a system of
differential equations, an integral equation or an integro-differential equation.
The differential equations can be ordinary or partial, linear or nonlinear. So,
we concentrate our attention in problem that can be presented in terms of a
differential equation with fractional derivative. Our research in this work is to
use symmetry transformation method and its analysis to search exact solutions
to nonlinear fractional partial differential equations.
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1. Introduction

The fractional derivatives that are about three
centuries ago were presented [1, 2]. Fractional
differential equations have been used successfully
to describe many complex nonlinear phenomena
and dynamic processes in physics, electromagnet-
ics [3, 4], acoustics, astrophysics [5, 6], viscoelas-
ticity, chemistry, electrochemistry, etc. [1, 2, 7, 8].
As for the methods for solving such equations,
there is no effective general method. But there
have been formulated and applied methods like
Adomian decomposition method [9], differential
transform method [10], modified simple equation
method [11,12], Lie symmetry analysis [13,14] and
so on.

Lie symmetry analysis is powerful and universal
tool for searching solution of linear and nonlin-
ear partial differential equations and it has been
widely applied for studying the invariance prop-
erties of partial differential equation (PDE) [15].
A symmetry of a PDE is any transformation that
each solution surface of the PDE is mapped to an-
other solution surface of the same PDE, i.e. leaves
invariant its solution space. So, by using the Lie

symmetry, the equation can be transformed into
a nonlinear fractional ODE.

For construction a symmetry reductions of a frac-
tional equation we investigated the symmetry
properties by using the group analysis method
and presented the vector fields the equation based
on the point symmetry [13, 14]. It is shown that
our equation could be transformed into a nonlin-
ear fractional ordinary differential equation with
the new independent variable.

In this work by using the Lie group, we investi-
gate the symmetry properties of fractional partial
differential equation (FPDE)

∂αu

∂tα
= (g(u)uxx)x, (1)

and find the correspondence infinitesimal opera-
tors and then construct some exact solution of
these equations, in particulary the solution for
fractional linear KdV equation.

The outline of this paper is as follows: in section
2 we will give general definitions and formulas of
fractional derivative and symmetry analysis, also
we show the application of symmetry group to
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fractional differential Eq. (1). In section 3 pre-
sented some exact solutions by using symmetry
reductions.

2. Preliminaries

2.1. Lie symmetry analysis of fractional

PDE

Consider a time FPDE with two independent vari-
ables and 0 < α ≤ 1 is given as following:

∂αu

∂tα
− (g(u)uxx)x = 0, (2)

here fractional derivative are considered in the
Riemann-Liouville terms.

Suppose f be integrable on [a, b] ∈ R and n− 1 <

α < n, n ∈ N. Then Riemann-Liouville fractional
derivative is defined as

0D
α
t f(t) = ∂αf(t)

∂tα

= 1
Γ(n−α)

∂n

∂tn

∫ t
0 (t− τ)n−α−1f(τ)dτ.

(3)

Let f be integrable on [0,∞), and piecewise con-
tinuous function on (0,∞) and Reα > 0, t > 0.
Then Riemann-Liouville fractional integral is de-
fined by

0I
α
t f(t) =

1

Γ(α)

∫ t

0
(t− x)α−1f(x)dx. (4)

One parameter Lie symmetry transformations are
determined as

t̄ = t+ ετ(x, t, u) +O(ε2),

x̄ = x+ εξ(x, t, u) +O(ε2),

ū = u+ εη(x, t, u) +O(ε2),

(5)

where ǫ > 0 is a infinitesimals parameter with
ξ = dx̄

dǫ |ǫ=0, τ = dt̄
dǫ |ǫ=0 and η = dū

dǫ |ǫ=0 which
will be determined.

After applying transformation (5) to usual partial
derivatives ux, uxx and uxxx it gives the following
extensions [15]:

∂ū
∂x = ∂u

∂x + εηx1 +O(ε2),

∂2ū
∂x2 = ∂2u

∂x2 + εηx2 +O(ε2),

∂3ū
∂x3 = ∂3u

∂x3 + εηx3 +O(ε2).

(6)

Here ηx1 , η
x
2 and ηx3 are defined by formulae

ηx1 = Dxη − uxDxξ − utDxτ,

ηx2 = Dxη
x
1 − uxxDxξ − uxtDxτ,

ηx3 = Dxη
x
2 − uxxxDxξ − uxxtDxτ,

(7)

where Dx is the total derivative

Dx =
∂

∂x
+ ux

∂

∂u
+ uxt

∂

∂ut
+ uxx

∂

∂ux
+ · · · .

And the αth extended infinitesimal related to
Riemann-Liouville fractional time derivative is
[16] as

∂αū

∂tα
=

∂αu

∂tα
+ εηtα +O(ε2). (8)

Here ηtα has following form:

ηtα = Dα
t (η) + ξDα

t (ux)−Dα
t (ξux) +Dα

t (uDtτ)

− Dα+1
t (τu) + τDα+1

t u,

and the operator Dα
t is the total fractional de-

rivative operator. Using the generalized Leibnitz
rule [2]

Dα
t (f(t)g(t)) =

∞
∑

n=0

(

α

n

)

Dα−n
t f(t)Dn

t g(t),
(

α

n

)

= (−1)n−1αΓ(n−α)
Γ(1−α)Γ(n+1) .

Thus infinitesimal ηtα is modified to

ηtα =
∂αη

∂tα
+ (ηu − α(τt + utτu))

∂αu

∂tα
− u

∂αηu

∂tα
+ µ

+
∞
∑

n=1

[(

α

n

)

∂nηu

∂tn
−

(

α

n+ 1

)

Dα+1
t τ

]

Dα−nu

−

∞
∑

n=1

(

α

n

)

(Dn
t ξ)(D

α−n
t ux).

(9)

The corresponding vector field V associated with
transformations (5) can be written as

V = ξ(x, t, u)∂x + τ(x, t, u)∂t + η(x, t, u)∂u. (10)

Applying the third prolongation pr(3)V to Eq.
(2), we will get

pr(3)V (∆) |∆=0= 0, ∆ =
∂αu

∂tα
− (k(u)uxx)x,
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where the operator pr(3)V takes the following
form:

pr(3)V = V + ηtα∂∂α

t
u + ηx1∂ux

+ ηx2∂uxx
+ ηx3∂uxxx

.

Our equation (2) can be written in the form

∂αu

∂tα
− g′(u)uxxux − g(u)uxxx = 0. (11)

Substitution of transformations (5), (6) and (8)
into (11) we get

∂αū

∂t̄α
− g′(ū)ūx̄x̄ūx̄ − g(ū)ūx̄x̄x̄

=
∂αu

∂tα
− g′(u)uxxux − g(u)uxxx

+ ǫ(ηtα − η(g′′uxuxx + g′uxxx)

− g′uxη
x
2 − g′uxxη

x
1 − gηx3 ) +O(ǫ3).

So we find that the functions ξ(x, t, u), τ(x, t, u)
and η(x, t, u) must satisfy the symmetry condition

ηtα − η(g′′uxuxx + g′uxxx)− g′uxη
x
2 − g′uxxη

x
1 − gηx3 = 0.

(12)

Solving the Eq. (12) along with Eq. (2) and sub-
stituting the extended infinitesimal (7), (9) into
the Eq. (12) we get following characteristic sys-
tem:

ξu = ξt = τu = τx = ηuu = 0,

−αg′τt − g′′η + 3g′ξx − g′ηu = 0,

−αgτt − g′η + 3gξx = 0,

−g′ηxx − 3gηxxu = 0,

−2g′ηxu + g′ξxx = 0,

−g′ηx − 3gηxu + 3gξxx = 0,

ηut −
α−1
2 τtt = 0,

∂αη
∂tα − u∂αηu

∂tα − gηxxx = 0.

(13)

Solving these equations we investigate generating
infinitesimal operators as following.

Case 1: For arbitrary g(u) and 0 < α ≤ 1 there
are three infinitesimal operators

X1 =
∂

∂x
, X2 =

∂

∂t
, X3 = x

∂

∂x
+

3t

α

∂

∂t
.

Case 2: For g(u) = 1 and 0 < α ≤ 1 there are
two additional infinitesimal operators

X4 = u
∂

∂u
, X∞ = h(t, x)

∂

∂u
,

where the function h(t, x) satisfies the linear frac-
tional KdV equation Dα

t h = hxxx.

Case 3: For g(u) = ub with b 6= 0 and 0 < α ≤ 1
there are two additional infinitesimal operators

X4 = x
∂

∂x
+

3u

b

∂

∂u
, X5 = t

∂

∂t
−

αu

b

∂

∂u
.

Case 4: For g(u) = ub with b = −3 and 0 < α ≤ 1
there is one additional infinitesimal operator

X6 = x
∂

∂x
−

6t

α− 3

∂

∂t
−

(3α− 3)u

α− 3

∂

∂u
.

Case 5: For g(u) = eu with integer α (α = 1)
there are two additional infinitesimal operators

X4 = x
∂

∂x
+ 3

∂

∂u
, X5 = t

∂

∂t
− α

∂

∂u
.

Theorem 1. The equation Dα
t u = (g(u)uxx)x

with g(u) = eu and 0 < α < 1 has no additional
symmetries.

Proof. For g(u) = eu and 0 < α < 1 the system
(13) transforms to

(1) ξu = ξt = τu = τx = ηuu = 0,
(2) −αeuτt−euη+3euξx−euηu =

0,
(3) −αeuτt − euη + 3euξx = 0,
(4) −euηxx − 3euηxxu = 0,
(5) −2euηxu + euξxx = 0,
(6) −euηx− 3euηxu+3euξxx = 0,
(7) ηut −

α−1
2 τtt = 0,

(8) ∂αη
∂tα − u∂αηu

∂tα − euηxxx = 0.

The first equation gives us that ξ = A(x), τ =
B(t) and η = C(x, t)u +D(x, t). So from 2. and
3. equations we get C = 0, also from 5. and 7.
equations we find A = c1x+ c2 and B = c3t+ c4.
Thus by finding the corresponding derivatives and
putting them to equation 2. we find that D is
constant, but from 8. equation ∂αD

∂tα = 0, which

gives us D = c5t
α−1 thereby we have obtained

a contradiction. It means that for 0 < α < 1
and g(u) = eu there is not any additional symme-
tries. �
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3. Symmetry reductions and some

exact solutions

3.1. The exact solution for g(u) = 1

For g(u) = 1 we have linear fractional KdV equa-
tion Dα

t u = uxxx with infinitesimal operators

X1 =
∂

∂x
, X2 =

∂

∂t
, X3 = x

∂

∂x
+

3t

α

∂

∂t
,

X4 = u
∂

∂u
, X∞ = h(t, x)

∂

∂u
.

By composition of X1 and X4 we get generator

X1 + kX4 =
∂

∂x
+ ku

∂

∂u
,

where k ∈ R. Then solution under the group has
the form u(t, x) = ekxφ(t), where φ(t) satisfies the
equation

Dα
t φ(t) = k3φ(t),

and thus

u(t, x) = ekxtα−1Eα,α(k
3tα).

Here Eα,β(x) is a Mittag-Leffler function

Eα,β(x) =
∞
∑

m=0

xm

Γ(αm+ β)
.

3.2. The exact solution for g(u) = ub

For g(u) = ub we have Dα
t u = bub−1uxxux +

ubuxxx with infinitesimal operators

X1 =
∂

∂x
, X2 =

∂

∂t
, X3 = x

∂

∂x
+

3t

α

∂

∂t
,

X4 = x
∂

∂x
+

3u

b

∂

∂u
, X5 = t

∂

∂t
−

αu

b

∂

∂u
.

With X4 = x ∂
∂x + 3u

b
∂
∂u solution under the group

has the form

u(t, x) = x3/bφ(t),

where φ(t) satisfies the equation

Dα
t φ(t) =

3(9− b2)

b3
φb+1(t).

If b = 3 then we derive Dα
t φ(t) = 0, which gives

φ(t) = Ctα−1, C ∈ R. Therefore

u(x, t) = Cx3/btα−1.

Also if b = −1 then Dα
t φ(t) = −24, which gives

u(t, x) = −
24x−3tα

Γ(α+ 1)
.

4. Conclusion

For construction a symmetry reductions of the
fractional equation (1) we investigated the sym-
metry properties by using the symmetry analysis
method and presented different infinitesimal op-
erators. We obtained solutions for two particular
equations with some generator operators. Also
we showed that the equation Dα

t u = (euuxx)x
for 0 < α < 1 has only general symmetries with
X1 = ∂

∂x , X2 = ∂
∂t , X3 = x ∂

∂x + 3t
α

∂
∂t infini-

tesimal operators. The symmetry analysis or Lie
group analysis is a very powerful method and is
worthy of studying further to searching the solu-
tions and symmetry properties of nonlinear par-
tial differential equations and fractional nonlinear
partial differential equations.
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