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 This study bases attention on new analytical solutions of Phi-four equation. The 

modified exp   Ω ξ -expansion function method (MEFM) has been used to 

obtain analytical solutions of the Phi-four equation. By using this method, dark 

soliton solutions and trigonometric function solution of the Phi-four equation 

have been found.  
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1. Introduction 

Nonlinear evolution equations (NLEEs) are 

considerably used to identify a variety of physical 

circumstances in the areas such as quantum field 

theory, hydrodynamics, chemical kinematics, 

geochemistry, electricity, elastic media and plasma 

physics.  

Recently, many researchers have introduced a lot of 

methods to acquire exact solutions of NLEEs such as 

G'/G-expansion method [1], modified extended tanh-

function method [2], sine-cosine method [3], exp-

function method [4], modified simple equation 

method [4],  extended trial equation method [5], 

generalized Kudryashov method [6] . In this study, 

MEFM [7] will be implemented to find new analytical 

solutions of Phi-four equation.  

We consider Phi-four equation [8-11], 

             

3 0, 0,tt xxu au u u a    
                

(1) 

where a  is real constant. This equation can be 

investigated as a special form of the Klein-Gordon 

equation that patterns the phenomenon in particle 

physics where kink and anti-kink solitary waves 

interact [12].  

Many scientists have used exact and numerical 

solutions of Phi-four equation to research some 

methods such as the sine-cosine method [8], the 

auxiliary equation method [9], the modified simple 

equation method [10], homotopy perturbation method 

[11], homotopy analysis method [11] and Adomian 

decomposition method [11]. 

In this article, the basic  interest is to construct new 

exact solutions of Phi-four equation via MEFM. In 

Sec. 2, we clarify basic facts of MEFM.  In Sec. 3, we 

find new exact solutions of the Phi-four equation via 

MEFM. 

 

2. Basic facts of method 

The fundamental properties of MEFM are introduced 

in this section. MEFM is predicated on the exp

  Ω ξ -expansion function method [13-16]. In order 

to implement this method to the nonlinear partial 

differential equations, we handle it as follows: 

                                      , , , , , 0,t x tt xxP u u u u u                          (2)  

where  ,u u x t  is an unknown function, P  is a 

polynomial in  ,u x t and its derivatives, in which the 

highest order derivatives and nonlinear terms are 

included and the subscripts demonstrate the partial 

derivatives. The fundamental stages of the method are 

defined as follows: 

Step 1: Let us investigate the following traveling 

transformation identified by 
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                , , .u x t U k x ct                (3)  

Using Eq. (3), we can turn Eq. (2) into a nonlinear 

ordinary differential equation (NODE) described by: 

              , , , , 0,NODE U U U U                     (4)    

where NODE  is a polynomial of U  and its 

derivatives and the superscripts demonstrate the 

ordinary derivatives according to  . 

Step 2: Assume the traveling wave solution of Eq. (4) 

can be shown as follows: 

                            
 

  

  

    
    
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0

0 1

0 1

exp Ω ξ

exp Ω ξ

exp Ω exp N Ω
,

exp Ω exp M Ω

iN

i
i

jM

j
j

N

M

A
U

B

A A A

B B B

 



   


   

    


    

            (5) 
 

where  , , 0 ,0i jA B i N j M     are constants to 

be described later, such that 0, 0,N MA B  and 

 Ω Ω ξ  is solution of the following ordinary 

differential equation: 

           ξ exp ξ exp ξ .               (6)  

There are the following solution families of Eq. (6): 

Family1: When 
20, 4 0,      

                                
2 24 4

tanh .
2 2 2

ln E
    

 
 

    
    

  
  

  (7)  

Family2: When 20, 4 0,      

   
2 24 4

tan .
2 2 2

ln E
    

 
 

     
    

  
  

   (8)  

Family3: When 0, 0,   and 2 4 0,    

         
  

ln .
exp 1E




 
 

 
  

   

                    (9)    

Family4: When 0, 0,   and 2 4 0,    

                 
 

 2
ln

2 4
.

E

E

 


 


  
    

                   (10)  

Family5: When 0, 0,   and 
2 4 0,    

                              ln .E                               (11)  

such that
0 1 2 0 1 2, , , , , , , , , ,N MA A A A B B B B E    

are constants to be described later. The positive 

integers N and M  can be identified by taking into 

consideration the homogeneous balance between the 

highest order derivatives and the nonlinear terms 

arising in Eq. (5). 

Step 3: Embedding Eqs. (6) and (7–11) into Eq. (5), 

we attain a polynomial of   exp .  We 

compensate all the coefficients of same power of 

  exp  to zero. This process provides a system of 

equations which can be solved to obtain 

0 1 2 0 1 2, , , , , , , , , ,N MA A A A B B B B E    by using 

Wolfram Mathematica 9. Putting the values of

0 1 2 0 1 2, , , , , , , , , ,N MA A A A B B B B E    into Eq. (5), 

the general solutions of Eq. (5) fulfil the determination 

of the solution of Eq. (1). 

 

3. MEFM for Phi-Four Equation 

In this section, we look for the exact solutions of Eq. 

(1) by using MEFM. 

We find the travelling wave solutions of Eq. (1) by 

using the wave variables

                                            

         

     , , ,u x t u k x ct                (12) 

where k  and c  are arbitrary constants.   

Putting Eq. (13) into Eq. (1), 

              
2 2 2, ,tt xxu k c u u k u                         (13)                                            

we obtain following equation 

                2 2 3 0,k c a u u u                          (14) 

where the prime indicates the derivative with regard to 

 . 

Using balance principle in Eq. (14), we obtain 

             
1.N M                                   (15) 

If we take 1M   so 2N  , we can acquire 

                                     
 

0 1 2

0 1

exp -Ω exp 2 -Ω
,

exp -Ω

A A A
U

B B

  
 

 
   (16)                 (16) 

and

                                                            

                  

2
,U

    
 


                            

(17)

            

   
23 2 2

4

2
,U

                 
 



                                                                            (18) 

where 
2 0A  and 

1 0B  . When we use Eq.(16) and 

Eq.(18) in Eq.(14) we get a system of algebraic 

equations from the coefficients of polynomial of 

  exp .  By solving this system of algebraic 

equations by using Wolfram Mathematica 9, it yields 

us the following coefficients: 
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Case 1: 

                                        
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Case 2: 
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Case 4: 
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                          (22)  

 

Embedding Eq. (19) together with Eqs. (3) and (7) in 

Eq. (16), we obtain dark soliton solution for Eq. (1) as 

follows: 

                         
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where
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2 41
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and 20, 4 0.       

Substituting Eq. (20) together with Eqs. (3) and (7) in 

Eq. (16), we find dark soliton solution for Eq. (1) as 

follows: 

         
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1 1
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1 1

tanh , 2
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where
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Putting Eq. (21) together with Eqs. (3) and (7) in Eq. 

(16), we find dark soliton solution for Eq. (1) as 

follows: 

                             

 
  

  

2 2

1 1 1 1
3

1 1 1 1 1

2 2

1 1

1 1 1

1
,

2 tanh ,

1
,

2 tanh ,

A B A B
u x t

B A A B A h x t

A B

B A B h x t

 
   
     

  
 
     

    (25) 

where 

 

2
2 21

0
0

1 0

4
2, ,

2

A
ak B

B
h x t E kx t

A B

 
  

   
 
 
 

              

and 
2

2 0
0 2 2 2

1 1 1

41 1
4 0.

B
B

A B B

 
     

 

  

Embedding Eq. (22) together with Eqs. (3) and (7) in 

Eq. (16), we obtain trigonometric function solution for 

Eq. (1) as follows: 
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Figure 1. The 3D and 2D surfaces of Eq. (23) for   0.3, 0.2, 4, 2, 0.5, 15 15, 5 5k a E x t                                        

and 0.01t   for 2D surface.   

 

 

 

 

 

 
Figure 2. The 3D and 2D surfaces of Eq. (24) for   

1 0 13, 1, 2, 1, 4, 0.3, 25 25, 10 10k a A B B E x t                                    

and 0.002t   for 2D surface.   

 

 

 

 
Figure 3. The 3D and 2D surfaces of Eq. (25) for   

1 0 11, 4, 1, 2, 3, 0.6, 20 20, 15 15k a A B B E x t                                    

and 0.005t   for 2D surface.   
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Figure 4. The 3D and 2D surfaces of Eq. (26) for   

1 0 11, 3, 4, 1, 5, 0.3, 10 10, 25 25k a A B B E x t                                     

and 0.003t   for 2D surface.   

 

Remark The exact solutions of Eq. (1) were obtained 

via MEFM and were controlled by use of 

Mathematica Release 9. As far as we know, the 

solutions of Eq. (1) that we found in this study are 

new and are not indicated before. 

 

4. Conclusion 

In this paper, we use MEFM to find exact solutions of 

Phi-four equation. Then, in Figures 1-4, we plot 2D 

and 3D surfaces of dark soliton solutions and 

trigonometric function solution of Phi-four equation 

by using Mathematica Release 9.  

According to these data and observation, it has been 

deduced that this method has been influential for the 

exact solutions of these NLEEs and this method is 

highly effective and dependable in the sense that 

reaching analytical solutions. Thus, we can say that 

this method has a substantial position to attain exact 

solutions of NLEEs. 
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