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 In this study, a new approach that assumes   cosu f u   and 

  sinhu f u  is applied to construct the traveling wave solutions of the (N + 

1)-dimensional double sine-Gordon and (N + 1)-dimensional double sinh-cosh-

Gordon equations. Some new elliptic integral function solutions are respectively 

obtained by this method, and then these solutions are converted into the Jacobi 

elliptic function solutions. According these results, one can easily see that this 

method is very effective mathematical tool for the (N+1)-dimensional nonlinear 

physical problems. 
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1. Introduction 

The nonlinear evolution equations have become of 

ever greater interest in the modelling of real life 

problems. Thus, many methods are constructed and 

applied for these problems. Some of them can be 

respectively given as the trial equation method [1], the 

extended trial equation method [2,3], the Weierstrass 

transform method [4], the tanh function method [5], 

the Kudryashovs method [6], and so on. In this paper, 

the investigation of various traveling wave solutions 

to (N+1)-dimensional double sine-Gordon and (N+1)-

dimensional double sinh-cosh-Gordon equations have 

been widely studied by many authors [7-9] 
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The sine-cosine-Gordon and the sinh-cosh-Gordon 

equations have importance in the fields of integrable 

quantum field theory, kink dynamics, and fluid 

dynamics. On the other hand, a variety of effective 

methods have been defined to construct the traveling 

wave solutions of nonlinear partial differential 

equations. It is given the new function method as one 

of most important methods and its applications [10-

14]. In this paper, we apply the new function method, 

based on sine, sinh functions, to (N+1)-dimensional 

double sine-Gordon and (N+1)-dimensional double 

sinh-cosh-Gordon equations. Thus, some new Jacobi 
elliptic function solutions are obtained by the using of 

this method. The obtained results reveal that the new 

function method is powerful mathematical tool for 

solving the (N+1)-dimensional sine-Gordon and sinh-

cosh-Gordon equations. 

2. New function method 

The new function methods have been proposed by 

using the exponential function, trigonometric function 

[10,11]. In this paper, we apply the new function 

method by depending on the hyperbolic and 

trigonometric functions. Firstly, we take the general 

form of the generalized (N+1)-dimensional sine-

cosine-Gordon or sinh-cosh-Gordon equations, 
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Then use the wave transformation 
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where 0c  . Thus, we have a nonlinear ordinary 

differential equation 

 , , , 0.N u u u                             (4) 

The new function method assumes that the function u  

provides 

    ,F u G g u                            (5) 

where ,F G  and g  are any functions. Here, we use 

the equations 

  ,u f g u                            

       .u f g u g u f g u                           (6) 

Substituting Eq. (6) into Eq. (5), we have 

           g .F f g u u f g u G g u           (7) 

If we take ( )g u  , then we can write 

      .F f f G                              (8) 

Solving Eq. (8), is sometimes a variable separated 

ordinary differential equation, yields the function f . 

By integration, we can obtain the solutions as follows: 

     
,

du du
d d P

f g u f g u
          (9) 

where P is an integration constant. The explicit 

solutions can be derived by the inverse function. 

Otherwise, the implicit solutions can be retrieved if 

the above integration is much complex. 

3. Applications 

3.1.Solutions for (N+1)-dimensional double sine-

gordon equation  

By the travelling wave transformation to Eq. (1), we 

find 

      2 2
sin sin 2 0.k N c u u u      (10) 

We assume that the equation 

  cos ,u f u                            (11) 

defined by  u   and  cos u  satisfies Eq. (10). 

From Eq. (11), we can write 

       sin cos cos .u u f u f u           (12) 

By substituting Eq. (12) into Eq. (10), we derive 
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Let u  is a function of  cos u  and  cos ,u   

then f  is a function of  . Therefore we can easily 

write 
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Now, we can try to have the form of the function f : 

     2 2
2 .k c N f f                  (15) 

Eq. (15) is an ordinary differential equation of variable 

separated: 
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where P  is a constant of integration. From Eq. (16), 

we can easily compute 
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Using the equation  
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By using of the symbolic computation software 

program Mathematica, Eq. (18) that is a variable 

separated ordinary differential equation is solved. 

So, the following elliptic integral function F  solution 

to Eq. (1) is obtained as 
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where Q  is a constant of integration. 

 1, ,4i i   are roots of equation 



236                              T. Akturk, Y. Gurefe, H. Bulut / IJOCTA, Vol.7, No.3, pp.234-239 (2017) 

  2 21 0P       

1, 1,
1 2

2
4

3 2

2
4

4 2

.
P

P

 

  




  




  

  


  


                          (20) 

Then, we find 
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Replace   with cos ,u   with 

1
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solutions for Eq. (1) can be obtained as follows: 
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3.2. Solutions for (N+1)-dimensional sinh-cosh-

gordon equation  

By the travelling wave transformation to Eq. (2), 

we get 
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We assume that the equation 

  sinh ,u f u         (24) 

defined by  u   and  sinh u  satisfies Eq. (23). 

From Eq. (24), we can compute 
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By substituting Eq. (25) into Eq. (23), we derive 
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Let u  is a function of  sinh u  and  sinh u  , 

then f  is a function of  . Therefore we can easily 

write 
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Now, we can try to have the form of the function f : 
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Eq. (27) is an ordinary differential equation of variable 

separated: 
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where P  is a constant of integration. From Eq. (28), 

we can easily compute 
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By using of the symbolic computation software 

program Mathematica, Eq. (30) that is a variable 

separated ordinary differential equation is solved. So, 

the following elliptic integral function F  solution to 

Eq. (2) is obtained as 
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where Q  is a constant of integration. 

 1, ,4i i   are roots of equation 
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Then, we find 
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Replace   with sinh ,u   with 
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solutions for Eq. (2) can be obtained as follows: 
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4. 2D and 3D graphics of solution 

4.1. 2D graphic of solution 

 
Figure 1. 2D graphic represents the solution (22) at 1t  . 

 

 

 

 

 

Figure 2. The solution (35) is shown real part at 1t  . 

 
Figure 3. The solution (35) is shown imaginary part at 

1t  . 

4.2. 3D graphic of solution 

 

Figure 4. The solution (22) is shown at 4  , 0P  , 

3  , 1N  , 0Q  , 3c  , and 1k   

 

 

Figure 5. The solution (35) is shown real part at 6  , 

1P  , 8  , 1n  , 0Q  , 1c  , and 3k   

 

 
Figure 6. The solution (35) is shown imaginary part at 

6  , 1P  , 8  , 1n  , 0Q  , 1c  , and 

3k   
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5. Conclusion 

We consider the (N+1)-dimensional double sine-

Gordon and sinh-cosh-Gordon equations to construct 

new traveling wave solutions by using of the new 

function method. By these applications, we get some 

new elliptic integral function solutions. Using simple 

mathematical transformations, we obtain some new 

exact solutions based on the Jacobi elliptic function 

sn. The obtained results show that the new function 

method is very effective mathematical tool for solving 

the (N+1)-dimensional nonlinear evolution equations. 
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