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1. Introduction

Dynamic scheduling problems arise in diverse
fields such as manufacturing, transportation,
project management, and healthcare. In these
problems, unlike static scheduling problems, jobs
arrive randomly at the system. Depending on the
field, jobs could be orders, patients, and tasks.
Arriving jobs are allocated to resources such as
machines, operating rooms, and surgery rooms.
Dynamic scheduling problems have received con-
siderable attention in the operations research field
in the last decade.

One of the recent variations of dynamic sched-
uling problems considers jobs with target dates
and time windows. In these problems, jobs arriv-
ing randomly at a facility are ideally scheduled
to specific target dates; if this is not possible,
they are scheduled to days within a time win-
dow. Scheduling jobs outside their time windows
results in penalty. These problems typically arise
in chemotherapy appointment booking where jobs
are considered as patients. Patients from each
type have specific target dates and tolerance lim-
its. In such settings, inefficient patient sched-
uling causes excessive wait listing, late patient

appointment notifications, pharmacy congestion,
unbalanced workload between nurses and consid-
erable clerical work [1].Similar problems also arise
in manufacturing where jobs from different types
are scheduled for production considering target
dates. In such settings, early scheduling causes
inventory cost, whereas late scheduling results in
penalty cost.

Chemotherapy appointment booking takes into
account treatment protocols which are designed
to maximize the efficacy of a chemotherapy treat-
ment. Treatment protocols specify things such
as the drugs to be administered, the dosage, ap-
pointment duration, the number of days between
treatments, and tolerance limits [1].

In chemotherapy settings, appointments may be
cancelled due to the fact that patients’ proto-
cols may change. It is fair to say that cancel-
lations were generally ignored in the earlier work
on chemotherapy appointment booking since the
inclusion of cancellations makes the respective
mathematical model significantly complex. How-
ever, cancellations should be among important
features of realistic models.

Towards that end, we consider the chemotherapy
appointment booking problem with cancellations.
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In line with the literature, we model the problem
as a discounted infinite horizon Markov Decision
Process (MDP). Owing to intractability in state
and action spaces, we resort to direct-search based
approximate dynamic programming (ADP) to ap-
proximately solve the problem.

In this paper, we make the following contribu-
tions:

• We consider chemotherapy patient ap-
pointment booking problem with cancel-
lations of treatments.

• We formulate the problem as an MDP.
• We employ a direct-search based ADP
technique for approximately solving the
underlying MDP model.

• We compare the performance of the
direct-search based ADP technique
against a myopic policy.

• Our computational results reveal that the
direct-search based ADP improves the so-
lution of the myopic policy on majority of
problem sets we generated.

The paper is structured as follows. Section 2
reviews the relevant literature. In Section 3,
the chemotherapy appointment booking problem
with cancellations is described and its MDP for-
mulation is provided. Section 4 includes the de-
scription of the Direct search-based ADP. Numer-
ical results are provided in Section 5. Section 6
includes concluding remarks.

2. Literature review

Patient scheduling has been widely studied in the
literature [2–4]. Green et al. [2] studied the issue
of designing the outpatient appointment schedule
and establishing dynamic priority rules for ad-
mitting patients into service. They formulated
the problem as a finite-horizon dynamic program
and identified the properties of the optimal pol-
icy. Cardoen et al. [3] reviewed operations re-
search papers that discuss operating planning and
scheduling. Hulshof et al. [4] reviewed research on
resource capacity planning and control in health
care.

Based on how patients are scheduled, patient
scheduling can be divided into allocation sched-
uling and advance scheduling. Allocation sched-
uling requires that arriving patient requests be
served or rejected immediately, whereas in ad-
vance scheduling, they are scheduled to specific
slots/days in a booking horizon. Examples of
research on allocation scheduling can be found
in [2, 5–7]. Since the focus of this research is on

advance scheduling, we review work on advance
scheduling below.

Patrick et al. [8] studied problems where patients
of different types are scheduled to future days in
a diagnostic facility. They provided a Markov De-
cision Process (MDP) formulation of these prob-
lems; owing to intractability in state and ac-
tion spaces, they employed a linear-programming
based approximate dynamic programming (ADP)
to obtain an approximate solution to underlying
MDP.

Lamiri et al. [9] studied an operating room
planning problem, considering two types of de-
mand for surgery: elective surgery and emergency
surgery. The planning problem is assigning elec-
tive cases to different periods over a planning hori-
zon. The authors proposed a stochastic mathe-
matical programming model to solve their prob-
lem.

Liu et al. [10] proposed a model for dynamic ap-
pointment scheduling problems, taking into ac-
count no-shows, cancellation, patient preferences,
and overtime. Their results indicate that heuris-
tic dynamic policies they proposed outperform
benchmark policies.

Saure et al. [11] studied a dynamic patient
scheduling problem in radiation therapy units.
The authors provided an MDP formulation of
their problem and employed linear programming-
based ADP for obtaining an approximate solu-
tion. Their results reveal that the ADP technique
outperforms the myopic policy in diverse problem
sets.

Geng et al. [12] studied dynamic outpatient sched-
uling for a diagnostic facility with two waiting-
time targets. The authors developed a finite-
horizon MDP model for this problem, and charac-
terized the optimal scheduling policy by proving
the monotonicity and concavity properties of the
components of the MDP model.

Tsai and Teng [13] proposed a stochastic appoint-
ment system for patients with a dynamic call-in
sequence to outpatient clinics with multiple re-
sources. In their model, the schedule for a single-
service period includes a fixed number of blocks of
equal length. Their results indicate that their sto-
chastic model was able to schedule patients more
efficiently as compared to traditional appointment
systems.

There are several studies about patient schedul-
ing on chemotherapy in the literature. These are
summarized below.

Turkcan et al. [14] developed operations plan-
ning and scheduling methods for chemotherapy
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patients, aiming to minimize deviation from op-
timal treatment plans due to limited availabil-
ity of clinic resources. Their model differs from
our model in that they used integer programming
methods for solving their problem since they ig-
nored random and dynamic arrival of patients.

Hahn-Goldberg et al. [15] studied dynamic opti-
mization of chemotherapy outpatient scheduling
with uncertainty. The authors developed dynamic
template scheduling, combining proactive and on-
line optimization.

Hahn-Goldberg et al. [16] modeled a determin-
istic chemotherapy outpatient scheduling prob-
lem using constraint programming. They com-
pared the performance of their best constraint
model against that of a mixed-integer program-
ming (MIP) model. Their results revealed that
constraint programming outperforms the MIP
model.

In a recent study, Alvarado and Ntaimo [17]
studied the problem of scheduling individual
chemotherapy patient appointments and re-
sources. The authors developed mean-risk sto-
chastic integer programming models for solving
their problem.

Our work differs from the abovementioned stud-
ies in that we consider dynamic scheduling with
specific target dates and tolerance limits.

Gocgun and Puterman [1] extended the work in
[8] by considering patients of different types with
specific target dates and tolerance limits. They
studied a chemotherapy patient appointment
booking problem and formulated the problem as
an MDP and employed linear-programming based
ADP for approximately solving the MDP model.
Their model differs from our model in that we
consider cancellations of treatments.

3. Problem description and Markov

decision process model

We consider the following dynamic patient sched-
uling problem (see [1] for a similar description).

• We consider an infinite time horizon and a
finite rolling booking horizon. The book-
ing horizon is a rolling period of N days.

• Patients are classified on the basis of their
appointment tolerances.

• Each day patients of each type with spe-
cific target dates arrive at the facility ran-
domly. Arrival distributions are assumed
to be stationary, and arrivals across pa-
tient types and target dates are assumed
to be independent.

• In line with the literature [1], we assume
that each appointment requires one ap-
pointment slot.

• At the end of each day, scheduling to fu-
ture days over a booking horizon is per-
formed for arriving patients or those pa-
tients are diverted (i.e., they are sent to
another hospital or served through over-
time). (As stated in [1], diversion can be
thought as overtime in chemotherapy set-
tings or outsourcing in the manufactur-
ing setting). Diversion/overtime capac-
ity is assumed to be significantly higher
than the maximum number of patients
that need to be diverted on any day.

• There is no cost incurred for scheduling
patients to days within their tolerance
limits, whereas scheduling a patient to a
day outside the tolerance limit results in
a type-dependent scheduling cost per day.

• Diverting patients or serving them
through overtime results in diversion cost,
which is the same for patients of each
type.

• We consider cancellation of appointments.
In line with the related literature [18]
we assumed that once an appointment is
cancelled, it is not rescheduled to a fu-
ture date. This is due to the fact that
rescheduling cancelled appointments to a
future day would further complicate the
problem.

• The objective is to perform scheduling of
arriving patients to available days (or di-
vert them) in a booking horizon so as to
minimize total discounted expected cost.

In line with the literature [1, 2, 19], we
assume that scheduling costs for patients
of each type are linear in the number of
days outside their time window. The func-
tion of these costs is to penalize the sys-
tem for violating time windows. As stated
in [1], higher scheduling costs are incurred
for patients with lower tolerances. The
function of diversion costs is to penalize
the system for not scheduling a patient [1].

It is worth noting that in our problem,
the diversion is not necessarily considered
as overtime. Utilizing overtime means the
appointment can be dealt with through
overtime on the day the decision is given.
Hence, in line with the literature [1], we do
not consider scheduling an appointment
to a future day and at the same time per-
forming it through overtime.
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3.1. Markov decision process model

3.1.1. State Space

The state space s ∈ S takes the following form:

s = (xikn, y11, y12, . . . , yIN ),

where I is the number of patient types, xikn for
i = 1, . . . , I, k = 1, . . . , N , n = 1, . . . , N is num-
ber of type-i patients with target date k scheduled
to day n, yik for i = 1, . . . , I, k = 1, . . . , N is num-
ber of type-i patients with target date k waiting
to be scheduled.

3.1.2. Action sets

The decision to be made at the end of each day
is to determine patients to book on specific days
and diverted patients with specific target dates.
Ax;y denotes the set of available actions in state
s = (x; y). Any action in Axy is represented by:
a = (aikn, zik),
where aikn is the number of type-i patients with
target date k to book on day n, zik is the number
of diverted type-i patients with target date k.

The set of feasible actions must satisfy the fol-
lowing constraints:

I
∑

i=1

N
∑

k=1

xikn +
I

∑

i=1

N
∑

k=1

aikn ≤ C1, n = 1, . . . , N (1)

I
∑

i=i

N
∑

k=1

zik ≤ C2 (2)

N
∑

k=1

N
∑

n=1

aikn +
N
∑

k=1

zik =
N
∑

k=1

yik, i = 1, . . . , I (3)

where C1 is daily resource capacity and C2 is
maximum number of patients diverted or served
through overtime each day. Constraint 1 ensures
that total number of patients scheduled on each
day is limited by daily capacity. Constraint 2 dic-
tates that total number of patients diverted (or
served through overtime) is limited by diversion
capacity. Constraint 3 ensures that all of the ar-
riving patients must be either scheduled or di-
verted.

3.1.3. Transition probabilities

After all scheduling actions are taken, the num-
ber of new requests for each type of patient and
number of treatments of each type that are can-
celled affect the transition to the next state of the
system.

Let dikn be the number of type-i patients with
target date k booked on day n that are cancelled,
and Pr(qik) be the probability that qik new re-
quests for type-i patients arrived. The probabil-
ity that dikn treatments for type-i patients with
target date k scheduled to day n are cancelled is
represented by the term Qikn(dikn), which is ex-
pressed as follows:

Qikn(dikn) =

(

xikn
dikn

)

pdiknikn (1− pikn)
xikn−dikn ,

where pikn is the probability that a treatment of
type i with target date k booked to day n is can-
celled. On selecting decision a in state s, one
component of the next state equals

(x
′

ikn, y
′

ik) = (xi,k,n+1 + ai,k,n+1 − di,k,n+1, yik

−(
I

∑

i=1

N
∑

n=1

aikn +
I

∑

i=1

N
∑

k=1

zik) + qik))

with probability

Pr(qik)Qikn(dikn)

Hence the state changes according to

P (s
′

|s, a) =
I
∏

i=1

N
∏

k=1

Pr(qik)
I
∏

i=1

N
∏

n=1

N
∏

k=1

Qikn(dikn),

if s
′

satisfies Eqs. (4),(5), and (6).

x
′

i,k,n = xi,k,n+1 + ai,k,n+1 − di,k,n+1, (4)

i = 1, . . . , I; k = 1, . . . , N ;n = 1, . . . , N − 1

x
′

i,k,N = 0; i = 1, . . . , I; k = 1, . . . , N (5)

y
′

i,k = yik − (

I
∑

i=1

N
∑

n=1

aikn +

I
∑

i=1

N
∑

k=1

zik) + qik,

(6)

i = 1, . . . , I; k = 1, . . . , N

Equations (4) and (5) show the new number of
type-i patients with target date k booked on day
n. Equation (6) defines the new number of type-i
patients with target date k waiting to be sched-
uled.

3.1.4. Costs

As stated in [1], the cost of scheduling a type-i
patient with target date k to day n is denoted
b(i, k, n). It is given by
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b(i, k, n) =







0, if Li ≤ n ≤ Ui

(Li − n)ci1 if Li ≥ n
(n− Ui)c

i
2 if n > Ui,

(7)

where Li for i = 1, . . . , I and Ui for i = 1, . . . , I
are lower and upper tolerance limits for type-i pa-
tients, respectively. ci1 for i = 1, . . . , I and ci2 for
i = 1, . . . , I are unit early and unit late costs for
type-i patients, respectively. The immediate cost
is expressed as

c(a, z) =
∑

i,k,n

b(i, k, n)aikn +
I

∑

i=1

d(i)
N
∑

k=1

zik (8)

where d(i) for i = 1, . . . , I is a per unit penalty
cost for diverting a type-i patient.

3.1.5. Bellman’s equations

Discounting with discount factor λ is assumed in
our model. Bellman’s equations for finding a pol-
icy that minimizes the expected infinite horizon
discounted cost are expressed as follows:

v(x, y) = min
(a,z)∈Ax,y

{

c(a, z) + λ
∑

y
′
∈D(y

′

)v(x
′

, y
′

)
}

, (9)

where D is the set of all possible demand vec-
tors. However, our MDP model is intractable ow-
ing to the fact that state and action spaces grow
exponentially with the number of patient types
and the length of the booking horizon. Therefore
we resort to approximate dynamic programming
(ADP) for approximately solving our model. The
ADP technique we utilized in this research is de-
scribed next.

4. Direct-search based approximate

dynamic programming

ADP has been extensively used for solving in-
tractable MDPs in diverse fields such as manufac-
turing, healthcare, and revenue management [20].
ADP techniques are mainly classified as linear
programming (LP)-based ADPs and simulation-
based ADPs. In the LP-based ADP approach,
the underlying MDP model is transformed into
the equivalent LP version of Bellman’s equations,
and then approximate value function is used to
make the LP model tractable [21–23]. Whereas
simulation-based ADP techniques find an approx-
imate solution to the Bellman’s equations by sim-
ulating the evolution of the system over a num-
ber of initial states in order to tune the parame-
ters [24,25]. They employ simulation models such
as statistical sampling and reinforcement learning
methods for estimating the value functions [26].

In ADP, the value function is approximated
through a combination of basis functions, which
represent some important features of the state of
the system. There are certain ways for doing so,
and one of them is linear approximation, which
takes the following form:

V (s) ≈
K
∑

k=1

rkΦk(s),

where rk for k = 1, . . . ,K are tuning parameters
and Φk(s) for k = 1, . . . ,K are basis functions.
After the value function is approximated, an ADP
policy is obtained by tuning the approximation
parameters iteratively. In particular, the goal of
ADP techniques is to find the optimal parame-
ter vector that minimizes a certain performance
metric such as the sum of squared differences be-
tween the approximate cost-to-go function and
the estimated cost-to-go function over sampled
states [27]. The resulting optimization problem
is generally solved using regression-based tech-
niques [20, 24]. However, we utilize an approach
that solves an optimization problem for tuning
the ADP parameters to achieve the best policy
resulting from those parameters. We then obtain
the ADP policy using the approximate value func-
tions.

4.1. Retrieving the ADP Policy from the

Approximate Value Function

After the end of the parameter tuning phase
which makes the approximate value of a given
state available, the ADP policy is retrieved by
computing a decision vector for any desired state
of the system. As stated in [27], that decision vec-
tor is myopic with respect to the value function
approximation of our MDP. The decision retrieval
problem for a particular state s of our MDPmodel
is given by

min
(a,z)∈Ax,y







c(a, z) + λ
∑

y
′
∈D

(y
′

)ṽ(x
′

, y
′

)







, (10)

where Ṽ (x
′

, y
′

) is the approximate value of state

(x
′

, y
′

).

Details about basis functions for the ADP imple-
mentation are discussed next.

4.2. Basis Functions

The basis function we chose for the ADP tech-
nique are as follows:
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Φ(s) =
∑

k,n:n=k

(C1 −
I

∑

i=1

N
∑

kk=1

xi,kk,n − a1kn)
2/2

+
N
∑

k=2

N
∑

n=1:n=k−1

(C1 −
I

∑

i=1

N
∑

kk=1

xi,kk,n − a2kn)
2/8

+
N
∑

k=1

N
∑

n=1:n=k

(C1 −
I

∑

i=1

N
∑

kk=1

xi,kk,n − a2kn)
2/8

+
N−1
∑

k=1

N
∑

n=1:n=k+1

(C1 −
I

∑

i=1

N
∑

kk=1

xi,kk,n − a2kn)
2/8

+
N
∑

k=3

N
∑

n=1:n=k−2

(C1 −
I

∑

i=1

N
∑

kk=1

xi,kk,n − a3kn)
2/32

+
N
∑

k=2

N
∑

n=1:n=k−1

(C1 −
I

∑

i=1

N
∑

kk=1

xi,kk,n − a3kn)
2/32

+
N
∑

k=1

N
∑

n=1:n=k

(C1 −
I

∑

i=1

N
∑

kk=1

xi,kk,n − a3kn)
2/32

+
N−1
∑

k=1

N
∑

n=1:n=k+1

(C1 −
I

∑

i=1

N
∑

kk=1

xi,kk,n − a3kn)
2/32

+
N−2
∑

k=1

N
∑

n=1:n=k+2

(C1 −
I

∑

i=1

N
∑

kk=1

xi,kk,n − a3kn)
2/32.

Our basis function utilizes available capacity for
each day in retrieving the ADP policy and dic-
tates that patients with lower tolerance lim-
its have higher priority when scheduling is per-
formed. The first term corresponds to avail-
able capacity for tolerance (0, 0), the next three
terms correspond to available capacity for toler-
ance (1, 1), and the next five terms correspond to
available capacity for tolerance (2, 2).

4.3. Direct Search

We tune parameters using direct search (see [27]
and [28] for the implementation of direct search).
Unlike regression-based techniques, direct search
considers the ultimate goal of finding good poli-
cies. In particular, direct search deals with an
optimization problem where the variables consist
of feasible r’s and the objective function value is
the expected cost of the policy induced by the cor-
responding parameter vector [27]. The resulting
optimization problem is expressed as follows:

min
r∈RN

E
[

T
∑

t=0

c(st, πr(st))
]

, (11)

where T is a random variable denoting the final
step of the search, st is the state at step t of the
search, πr is the policy obtained by the parame-
ter vector r, πr(st) is the action dictated by the
policy πr in the state at stage t, and c(st, πr(st))

is immediate cost incurred at step t as a result of
choosing πr(st). Here, πr is obtained by solving
the aforementioned decision retrieval problem via
the parameter vector r used to approximate the
value function for each possible state visited dur-
ing the search. The objective function in Eq. (11)
is the expected cost of the policy πr [27].

During the implementation of the direct search-
based ADP, we let r range from 0 to 10000 in
increments of 500. We choose the value based on
the best policy performance when decisions are
made by solving Equation 10.

5. Numerical results

This section focuses on the comparison of the
performance of the direct search-based ADP pol-
icy with that of the myopic policy. The my-
opic policy is obtained by solving the problem

min
(a,z)∈Ax,y

c(a, z) for any state s ∈ S. We used

AMPL with CPLEX 12 for solving all integer pro-
grams.

5.1. Experimental design

We consider a chemotherapy center where the
length of the booking horizon is 10 (for larger
problems the length of the booking horizon is set
to 20). In line with the literature [1], we set the
number of patient types to 3 and tolerance limits
to (0,0), (1,1), and (2,2). We assume that arrival
distribution is independent Poisson with mean 1
for each type for each day over the booking hori-
zon. Probability that a scheduled treatment is
cancelled has three levels: 0.01, 0.05, and 0.1. We
assume capacity levels of 25 and 30; the former
level corresponds to the low capacity case whereas
the latter represents the medium capacity case
owing to the fact that the total mean daily de-
mand nearly equals 30 (for larger problems, those
levels are set to 55 and 60.). In line with the lit-
erature [1], we set ci1, the unit early scheduling
costs per day to 100, 75, and 50, whereas ci2, the
unit late scheduling costs per day, is set to 125,
100, and 75.

We set diversion cost per patient for each patient
type to 50 and 250. The case when the diver-
sion cost equals 50 is referred by [1] as ”rigid tol-
erance case”, whereas other choices for the di-
version costs are referred as ”relaxed tolerance
cases”. We also consider the cases where early
(late) scheduling costs are much higher than late
(early) scheduling cost for the relaxed tolerance
case. In line with the literature [1], we set the
unit early scheduling cost per day for each pa-
tient type to 300, 225, and 150, respectively for
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the high early scheduling cost case whereas the
unit late scheduling cost per day for each patient
type was set to 250, 200, and 150, respectively
for the high late scheduling cost case. Discount
factor is set to 0.99.

By changing the length of the booking horizon,
cancellation probability, levels of capacity, diver-
sion cost, and scheduling cost, we generated 32
problem sets. Simulation run lengths are set to
50. For each problem set, we ran 50 independent
simulations.

5.2. Results

We present our results in Tables 1-8. Each row
of the below tables represents a different prob-
lem set. For each problem, we utilized Paired− t
test to statistically identify whether the ADP pol-
icy or the myopic policy performs better. Total
costs obtained by the ADP policy and the myopic
policy are listed in the second and third column
of each table, respectively. The percentage im-
provement obtained by the ADP policy over the
myopic policy is given in the fourth column of
each table. The final column of each table re-
veals whether there is a statistically significant
improvement over the myopic policy.

We begin with the analysis of results for the rigid
tolerance cases. As mentioned earlier, in the
rigid tolerance case diversion cost per patient is
50. The results indicate that in reasonable-sized
problems (i.e., N = 10), the ADP policy statisti-
cally performs better than the myopic policy ex-
cept for the case where the level of capacity is 30
and cancellation probability is 0.5 (see Table 1).
Additionally, the ADP policy generally performs
better in low capacity situations as compared to
medium capacity situations. It is also worth not-
ing that the percentage difference between the two
policies is significantly high in the case where the
level of capacity is medium and cancellation prob-
ability is high. Finally, the superiority of the ADP
policy over the myopic policy in the rigid toler-
ance case diminishes in large-sized problems (i.e.,
N = 20) (see Table 3).

In the relaxed tolerance case, the ADP policy sig-
nificantly performs better than the myopic policy
for reasonable-sized problems (see Table 2). The
corresponding percentage improvement over the
myopic policy is higher than that in the rigid tol-
erance case. Further, unlike in the rigid tolerance
case, the performance of ADP increases when the
level of capacity is increased from low to medium
level. Yet, for large-sized problems, using ADP
results in very small improvement when cancel-
lation probability is small; if this probability is

high, the performance of ADP and the myopic
policy turns out to be the same (see Table 4).

The results for the high early scheduling cost case
indicate that the performance of the ADP policy
is significantly higher than that of the myopic pol-
icy for reasonable-sized problems (see Table 5).
The corresponding percentage improvement over
the myopic policy is higher as compared to that
for the rigid tolerance case. However, the perfor-
mance of the ADP policy for this case decreases
when the problem size increases (see Table 6). We
have similar observations for the high late sched-
uling cost case (see Tables 7 and 8).

Table 1. Results for the rigid toler-
ance case with N = 10.

(C1, pikn) ADP Myopic % impr. Sign.?

(25,0.01) 4141 4434 6.6 YES
(25,0.05) 2137 2266 5.7 YES
(25,0.1) 938 956 1.8 YES
(30,0.01) 1584 1655 4.3 YES
(30,0.05) 326 327 0.2 NO
(30,0.1) 5 17 72 YES

Table 2. Results for the relaxed tol-
erance case with N = 10.

(C1, pikn) ADP Myopic % impr. Sign.?

(25,0.01) 22911 25348 9.6 YES
(25,0.05) 9852 10625 7.3 YES
(25,0.1) 3719 3796 2 YES
(30,0.01) 6892 8141 15.3 YES
(30,0.05) 1110 1356 18.1 YES
(30,0.1) 10 36 72 YES

Table 3. Results for the rigid toler-
ance case with N = 20.

(C1, pikn) ADP Myopic % impr. Sign.?

(55,0.01) 16737 17110 2.2 YES
(55,0.05) 3064 3064 0 NO
(55,0.1) 1621 1621 0 NO
(60,0.01) 11936 12010 0.6 NO
(60,0.05) 214 214 0 NO
(60,0.1) 0.9 0.9 0 NO

Table 4. Results for the relaxed tol-
erance case with N = 20.

(C1, pikn) ADP Myopic % impr. Sign.?

(55,0.01) 86732 90672 4.3 YES
(55,0.05) 13310 13310 0 NO
(55,0.1) 7499 7499 0 NO
(60,0.01) 59620 62248 4.2 YES
(60,0.05) 856 856 0 NO
(60,0.1) 2 2 0 NO
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Table 5. Results for the relaxed tol-
erance high early scheduling case with
N = 10.

(C1, pikn) ADP Myopic % impr. Sign.?

(25,0.01) 22995 25360 9.3 YES
(25,0.05) 9947 10693 7.0 YES
(25,0.1) 3824 3899 1.9 YES
(30,0.01) 6969 8019 13.1 YES
(30,0.05) 1289 1365 5.6 YES
(30,0.1) 12 45 73 YES

Table 6. Results for the relaxed tol-
erance high early scheduling case with
N = 20.

(C1, pikn) ADP Myopic % impr. Sign.?

(55,0.01) 87078 91287 4.6 YES
(55,0.05) 13976 13976 0 NO
(55,0.1) 7526 7526 0 NO
(60,0.01) 59976 62650 4.3 YES
(60,0.05) 1087 1087 0 NO
(60,0.1) 0.9 0.9 0 NO

Table 7. Results for the relaxed tol-
erance high late scheduling case with
N = 10.

(C1, pikn) ADP Myopic % impr. Sign.?

(25,0.01) 21797 23610 7.7 YES
(25,0.05) 10436 11621 10.2 YES
(25,0.1) 4288 4394 2.4 YES
(30,0.01) 7672 8477 9.5 YES
(30,0.05) 1401 1782 21.4 YES
(30,0.1) 12 38 67 YES

Table 8. Results for the relaxed tol-
erance high late scheduling case with
N = 20.

(C1, pikn) ADP Myopic % impr. Sign.?

(55,0.01) 84263 87521 3.7 YES
(55,0.05) 14320 14320 0 NO
(55,0.1) 7866 7866 0 NO
(60,0.01) 59242 61145 3.1 YES
(60,0.05) 990 990 0 NO
(60,0.1) 0.9 0.9 0 NO

6. Conclusion

We studied a chemotherapy appointment booking
problem where patients have specific target dates,
are classified based on their tolerance limits, and
are scheduled to days in advance. Unlike the rel-
evant literature, we considered cancellations of
treatments. We provided an MDP formulation

of this problem and because of huge state and ac-
tion spaces, we approximately solved the problem
using a direct search-based ADP.

Direct search-based ADP can be considered as a
relatively new technique among other ADP tech-
niques. In this research, we demonstrated that it
can be a viable method for solving chemotherapy
appointment booking problems. In particular,
our work revealed that the performance of the my-
opic policy can be significantly improved through
the implementation of direct search-based ADP.
It is worth noting that further improvements may
be achieved by trying various basis functions as
part of direct search-based ADP.

Cancellation of the treatments in the chemother-
apy appointment booking problem with target
dates and tolerance limits were not considered in
the relevant literature because of resulting com-
putational challenges. By including cancellations
into our model, we filled this gap in this area. As
a future research, overbooking and no-shows can
be incorporated into our model and direct search-
based ADP can be utilized for solving other dy-
namic scheduling problems.
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