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 This paper concerns with the optimal state derivative feedback LQR controller 

design for vibration control of an offshore steel jacket platform having active tuned 

mass damper against the wave induced disturbances. Considering that the state 

derivative signals such as acceleration and velocity are easier to measure rather 

than the state variables such as displacement, state derivative feedback control 

strategy is proposed to obtain practically applicable and easily realizable synthesis 

method. On the basis of convex optimization approach, state derivative feedback 

LQR controller design is formulated in Linear Matrix Inequalities (LMIs) form to 

get an optimal feasible solution set. Finally, an offshore steel jacket platform 

subject to nonlinear self excited wave force is used to illustrate the effectiveness 

of the proposed approach through simulations. The results show that proposed 

state derivative LQR controller is very effective in reducing vibration amplitudes 

of each floor of modeled offshore steel jacket platform and achieves compitable 

control performance to classical LQR controller design.  
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1. Introduction 

The offshore steel jacket platforms play an important 

role in the oil exploration and drilling operation in the 

oceans [1]. As it is well known that offshore steel jacket 

paltforms are exposed to the various disturbances such 

as strong winds, ocean waves, earthquakes which are 

caused the structural vibrations and makes them very 

vulnerable and unsafe [2], [3]. Therefore, vibration 

control of offshore steel jacket platforms subject to 

environmental disturbances and working conditions 

has been receving a great deal of interest for the last two 

decades, and a lot of research effort has been devoted 

to the development of advanced control algorithms.  

Abdel-Rohman has modeled a realistic offshore steal 

jacket platform using finite elements method to control 

the structural vibrations against wave loads [1]. Multi-

loop feedback controller design has been developed in 

Terro [2] et al., for nonlinear wave excited steel jacket 

platforms. Wu et al. have dealt with the non-fragile 

state feedback H∞ control problem to attenuate 

vibrations of steel-jacket platform subject to regular 

wave disturbance [4]. Mei et al. have proposed the 

design of a fuzzy H∞ controller for active vibration 

control of an offshore platform with parameter 

uncertainties [5]. Sliding mode H∞ vibration control 

problem has been considered in Zhang et al [6], for 

offshore steal jacket platform having nonlinear self 

excited wave forces and external disturbances. Li et al., 

have applied state feedback H2 controller in reducing 

the effect of wave laoding on offshore platform [7]. 

State feedback stabilization control problem for 

offshore steel jacket platforms having actuator delay 

has been considered in Zhang et al [8]. They have 

assumed that all the state variables of the offshore 

platform are available for measurement. Zhang and 

Han have applied network based modelling and active 

vibration control for offshore steel jacket platform 

having tuned mass damper. 

As it can be observed from the summarised literature, 

papers that address the state feedback vibration control 

problem of offshore steel jacket platforms are quite a 

few. As it is well known that state feedback controller 

assumes that all the state variables are available for 

measurement which are displacement and velocities in 

active structural control problem. However, 

displacement signals are not possible to be obtained 

accurately by integration, since the accelerometers are 

noisy and contain dc offset in low frequency region.

http://www.ams.org/msc/msc2010.html
http://orcid.org/0000-0001-6859-9548
http://orcid.org/0000-0002-8372-0593


Design of an optimal state derivative feedback LQR controller and its application…                     85 

 

 Therefore, a pure integrator is not practical and should 

be combined with a high-pass-filter (HPF) to remove 

the integrator drift. An HPF with sufficiently large time 

constant, results  in a phase error. It is apparently seen 

that considerable amount of effort is required to 

accurately integrate acceleration signals. In addition, 

computation accuracy will gradually decrease by 

getting displacement from acceleration with double 

step integration process [10]. In the light of 

aforementioned considerations, state derivative 

feedback controller design strategy is a promising 

active structural controller approach in the following 

aspects. Firstly, only a single step integration is needed 

to obtain velocity for accelerometer outputs. Note that 

accelerometers are one of the most common sensors in 

active structural control problems. Secondly, closed 

loop system order has not been increased, since the 

state derivative feedback controllers are static and 

memoryless with no additional state variables. This 

situation motivates us with the fact that there exist still 

more room obtaining practically applicable optimal 

state derivative feedback LQR controller synthesis to 

attenuate the vibrations of offshore platforms. 

Moreover, to the best of authors’ knowledge it can be 

seen that there is no result has been given in the 

literature on the active vibration control of offshore 

steel jacket platform by the use of state derivative 

feedback approach, so far.   

In this study, because of the state derivative signals are 

easier to measure, an LMI based optimal state 

derivative LQR controller is developed to control of the 

offshore steel jacket platform having nonlinear wave 

disturbances. In controller design, first, stability and 

solvability conditions of an optimal state derivative 

feedback LQR controller is presented in LMI form and 

minimization of quadratic cost function is ensured by 

the use of convex optimization techniques. Then, in 

order to compare the proposed method, well known 

classical LQR controller is designed. Last, numerical 

simulations studies have been conducted to illustrate 

the effectiveness of the propsed control staregy. The 

main importance of this study is to develop an easily 

realizable synthesis method to obtain practically 

applicable optimal state derivative LQR controller 

achieves comparable performance improvement with 

the conventional state feedback LQR controller. 

Rest of papers organized as follows. Mathematical 

model of the realistic offshore steel jacket platform and 

formulations of nonlinear Morison Equations based 

wave force are given in Section 2. The design of 

proposed state derivative feedback LQR controller are 

presented in Section 3. Simulation resulst with 

discussions are given in Section 4. Finally, Section 5 

concludes the paper.  

Notation: The notation to be used in the paper is fairly 

standard.   stands for the set of real numbers, 
nn

is the set of n×n dimensional real matrices. ‘diag’ 

denotes the diagonal matrices. The identity and null 

matrices are denoted by I and 0, respectively. 

)0,(0 X denotes that X  is a positive definite 

(positive semi-definite, negative definite) matrix. The 

notation ‘*’ denotes off-diagonal block completion of a 

symmetric matrix. Finally, diag{M1,…,Mn} stands for 

a diagonal matrix with elements M1,…,Mnappearing on 

its diagonal. 

2. Mathematical modeling of offshore steel jacket 

platform 

In this section, a realistic offshore steel jacket platform 

model that includes an Active Tuned Mass Damper 

(ATMD) is used for controller design as shown in 

Figure 1 [2]. In this model, ATMD is used as an active 

control mechanism to supress structural vibrations, 

which is installed on the top floor of the offshore steel 

jacket platform. 

The equations of the motion of the considered offshore 

steel jacket platform have been formulated in [2], [8], 

by the use of first two dominant vibration modes of the 

system as, 
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Here, z1(t) and  z2(t) are the generalized coordinates, 

which represent the first and second vibration modes of 

modeled offshore steel jacket platform, respectively. ω1 

and ω2are the natural frequencies of the first and second 

modes of vibration, repectively. ξ1 and ξ2 are damping 

ratios of the first and second modes of vibration, 

respectively; ϕ1 andϕ2 are the first and second mode 

shapes, respectively. zT(t) represents the horizontal 

displacement of ATMD, ξT and ωT are the damping 

ratio and natural frequency of ATMD, respectively. mT, 
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CT and KT are mass, damping and stiffness of ATMD, 

respectively. f1, f2, f3 and f4 are the nonlinear wave force 

and u(t) represents the active control force. 

 

Figure 1. A simplified offshore steel jacket platform having 

ATMD [2]. 

 

The state variables and exogenous input can be defined 

as follow: 
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By the use of (4) and (5), the equaitionsc of motion (1), 

(2) and (3) can be rewritten into state space form as, 

),()()()( txwBtuBtAxtx wu           (6) 

where 
nnA  is the state matrix which is given by, 
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and pn
wB  is the disturbance input matrix 

which is given by 
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2.1. Disturbance model 

As it is well known that offshore platforms are exposed 

to the nonlinear self-excited wave forces. In this study, 

a nonlinear Morison equation is used to calculate 

horizontal wave force [2]. Let us consider a joint point 

p on the platform. Unidirectional plane wave forces 

exerted on this point can be obtained as 
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Here, Fp is the wave force vector, Ap is the lumped area 

at point p, Upx is horizontal velocity of water, Uˈpx is 

horizontal velocity of point p, the difference Uˈpx=Upx-

U̇px is the relative velocity of water with respect to point 

p. CD and CI are drag and inertia coefficients, relatively, 

apx is horizontal acceleration of wave on point p, Bp is 

lumped volume on p, ρ water density, and Üpx is 

horizantal acceleration of point p. Velocity and 

acceleration of a horizontal advancing wave are related 

to wave characteristics and properties of motion area of 

the wave.  

At point p, the horizontal velocity is given as, 

.)cos( px

p
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h

Y
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The horizontal acceleration is expressed as, 
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xp and Yp are the location of point p with respect to a 

fixed coordinate axes reference, hence Yp is the height 

of point p from seabed, h is water depth, Ω is the 

frequency of the water, H is the height of water, λ is the 

wavelength, k=2π/λ is wave number and Uow is the 

current velocity of the water surface. The 

aforementioned self excited hydrodynamic forces f1, f2, 

f3 and f4 can be computed by the use of Equations (10)-

(13). 
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3. Optimal state derivative feedback LQR 

controller design 

In the last decade, the state derivative feedback has 

been extensively studied. Design of a full state 

derivative feedback control with state derivative 

estimator for acceleration feedback has been presented 

by Kwak et al. [9]. Abdelaziz and Valasek have 

developed a procedure to design state derivative 

feedback controller for pole placement of single input 

single output linear systems [10]. Then, design of 

robust pole placement and optimal regulator problems 

with state derivative feedback has been presented in 

[11], [12]. Linear Matrix Inequalities (LMIs) based 

solvability conditions for state derivative feedback has 

been firstly designed by Assunçao et al. [13]. Faria et 

al. have extended the problem with regional pole 

placement [14]. L2 gain state derivative feedback 

controller design has been formulated via LMIs by 

Sever and Yazici [15].The proposed L2 gain state 

derivative feedback control approach has been 

extended with robustness against polytopic type 

uncertainties [16]. Despite the fact that LMI based 

solutions of classical LQR approach is widely used in 

the literature [17], [18], [19], design of a state 

derivative feedback LQR via LMIs has not been 

considered so far as provided in this paper. 

In this section, first an optimal state derivative feedback 

LQR controller synthesis is presented. Then, to 

compare the proposed state derivative feedback LQR 

controller, design of a classical LQR controller 

synthesis is provided. 

Consider the linear time-invariant system described by 

)()()( tButAxtx                   (14) 

where ntx )(  is the state vector and 
mtu )( is 

thecontrol input vector. Our goal is to find an optimal 

state derivative feedback control in the form of 

)()( txKtu                        (15) 

where 
nmK  is a controller gain matrix. The 

closed-loop system is written in the reciprocal state 

space framework [9] by replacing the (15) into (14) as 

follows. 
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The quadratic cost function is given by 
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here, 
nnQ  and 

mmR   are the performance 

weight matrices. The following theorem presents a LMI 

based method to design optimal state derivative 

feedback LQR controller. 

Theorem. For a given values of Q and R, asymptotic 

stability of the reciprocal state space closed-loop 

system (16) is ensured with a minimum value of the 

quadratic cost function (17), if there exists a solution 

for the following optimization problem 

min tr(M), s.t. (18) and (19) 
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Then, the optimal control law can be calculated as 
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Proof. By substituting the (15) into (17), the cost 

function is turned into 
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Suppose that a positive definite matrix P exists which 

satisfies the equation (21) [20] 
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By integrating the (21) 
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is obtained. Under the assumption of the closed-loop 

system (16) is asymptotically stable, the cost function 

converges to the 

).0()0( PxxJ T                        (23) 

Hence, the equation (21) can be rewritten as follows 
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By using the closed-loop system (16) in reciprocal state 

space framework, (24) is converted to 
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Design of an optimal state derivative feedback 

controller problem can be cast to the matrix inequality 

constraint problem by change of variables. Let us 

define a new variable Y=YT>P. Then, substituting Y 

into (25) allows us to write 
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By applying the Schur complement formula [21], (26) 

is congruent to 
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(27) is not in the LMI form yet due to the multiplication 

of decision variables Y and K. Pre and post multiply the 

(27) by ),,( IISdiag  where 
1 YSS T
 and (18) 

is obtained. Here, W=KS is a modest variable change 

operation. Recall that the quadratic cost function (23) 

has to be minimized by optimal state derivative 

feedback control law (15). Then, a new decision 

variable 
ccM   is introduced to set an upper bound 

on the cost as follows: 
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In the light of the results obtained above, the proof is 

completed.  

3.1. Classical LQR controller design 

In order to compare the effectiveness of the proposed 

state derivative feedback LQR controller, a classical 

LQR controller has been designed in this subsection. 

As it is well known that LQR control problem is to find 

an optimal state feedback control law that minimized 

the quadratic cost function with the solution of 

following Algebraic Riccati Equation [22], 

0T1T   SBSBRQSASA .             (29) 

Then, the classical state feedback control law can be 

obtained as 

)()()( T1 tSxBRtxKtu
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 .            (30) 

4. Numerical examples 

In this section, extensive numbers of simulations are 

carried out to verify the effectiveness and applicability 

of the proposed controller to a offshore steel jacket 

platform subject to nonlinear wave disturbance. The 

parameters of the considered offshore steel jacket 

platform having ATMD are taken from [2], [23] and 

listed in Table 1. In addition, non-linear self excited 

wave force w(x,t) have been computed as Appendix A 

in [2]. All the simulations and computations are 

employed using Matlab with Simulink. 

The matrices Aand Bu of the modeled offshore steel 

jacket platform can be written by the use of these 

system parameters as 









































5454.03051.30019.0

100

8822.03465.51118.0

001

8819.03449.50030.0

000

0114.00019.00114.0

000

135.1180030.00184.0

000

0184.00212.03235.3

010

A

 



 .00213.0000344628.0

0003445.00

T


uB
 

 

Table 1. Parameter values of considered offshore steel 

jacket platform. 

Parameter Value 

Wave Height  (H) 12.19 m 

Wave Length (λ)
 

182.88 m 

Depth of Water (h) 76.2 m 

Current Velocity (Uow) 0.122m/s 

Wave Frequency (ω) 1.8 rad/s 

Natural Frequency (ω1) 1.818 rad/s 

Natural Frequency (ω2) 10.8683 rad/s 

Damping Ratio (ξ1) 0.005 

First Mode Shape(ϕ1) -0.003445 

Second Mode Shape (ϕ2) 0.00344628 

Damping Ratio (ξ2) 0.005 

Natural Frequency of 

ATMD (ωT) 

1.8180 rad/s 

Mass of ATMD (mT) 469.4836 kg 

Stiffness of ATMD (KT) 1551.5 

Damping of ATMD (CT) 256 

Damping Ratio (ξT) 0.15 

 

The performance weight matrices which are used in 

controller design are 

.001.0

),500,500,500,500,500,500(





R

diagQ
  (31) 

In the light of Theorem, in order to minimize the 

quadratic cost given by (31), proposed controller is 

designed. For the solution of the resulting 

LMIs,Yalmip parser and Sedumi solver are used [24], 

[25].Thus, the optimal state derivative feedback LQR 

control law is computed as 


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  (32) 

For brevity from this point onwards we will henceforth 

denote this controller as SDFLQR. 
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In addition to compare the performance of the proposed 

controller, the classical LQR controller has been 

designed for given system (14) with the performance 

weighting matrices (31). The resulted classical LQR 

control law can be obtained as 


 ).(5248.11532.06227.0

9085.22053.03936.110

)()(

3

tx

txKtu cc


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    (33) 

For brevity from this point onwards we will henceforth 

denote this controller as LQR. The displacement 

responses of the first, second and third floors of the 

offshore steel jacket platform are shown in Figure 2, 

Figure 3 and Figure 4, repectively for the controlled and 

uncontrolled cases against the nonlinear wave forces. 

 

Figure 2. Controlled and uncontrolled displacemet time 

responses of first floor of offshore steel jacket platform. 

 

 
Figure 3. Controlled and uncontrolled displacemet time 

responses of second floor of offshore steel jacket platform. 

 

As shown in Figure 2, Figure3 and Figure 4, vibration 

amplitudes of each floor of the offshore steel jacket 

platform are suppressed successfully by the use of 

SDFLQR and classical LQR. On the other hand Figure 

5 demonstrates the cahange in control inputs for 

SDFLQR and classical LQR. 

When the response plots of the offshore steel jacket 

platform with uncontrolled and controlled cases are 

compared,SDFLQR and classical LQR have very close 

vibration suppression performance. On the other hand, 

by taking into account that the state derivative signals 

are much available to obtain good accuracy, proposed 

SDFLQR is very promising solution for active 

vibration control of offshore steel jacket platform 

having nonlinear self excited wave induced 

disturbances. 

 
Figure 4. Controlled and uncontrolled displacemet time 

responses of the third floor of offshore steel jacket platform. 

 

 

Figure 5. Time history of the applied control force for 

SDFLQR and LQR. 

 

In this section, the root mean square (RMS) value, 

which is statistic measure of the magnitude of varying 

quantity, is employed to investigate the active vibration 

control performance. RMS analysis method is very 

useful to evaluate active control performance when the 

variants are positive and negative [26]. The 

corresponding RMS values of displacement responses 

of each floor of the considered offshore steel jacket 

platform and applied control forces are compared for 

the both controlled and uncontrolled cases in Table 2 

for nonlinear wave disturbance input. 

Remark: As can be observed from Table 2, proposed 

SDFLQR achieves compitable control performance to 

classical LQR control method. Note that the system 

response and the control effort is not equally invloved 

in the quadratic cost functions of both LQR and 

SDFLQR. The control input is weighted with a state 

derivative vector as ẋ(t) for SDFLQR and weighted 
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with a state vector as x(t) for LQR. Therefore, similar 

choice of Q and R, results dissimilar performance 

objectives for SDFLQR and LQR. In the light of 

aforementioned discussions, it is natural to have 

slighlty different vibration attenuation levels. It is 

noteworthy that previously applied control approaches 

in the literature are applied state feedback to actively 

control the steel jacket platform vibrations [4], [5], [6], 

[7] and [8]. Accessing the displacement information 

from accelerometer outputs by a double integration, is 

required to realize state feedback control law.  

Considering that state derivative signals are much 

available to obtain good accuracy, proposed SDFLQR 

design process provides more practically applicable 

and easily realizable synthesis method and has a great 

potential for active vibration control of offshore steel 

jacket platform. 

 

Table 2. Comparison of RMS values of displacement 

responses of each floor of the offshore steel jacket platform 

and applied control forces for the both controlled and 

uncontrolled cases. 

 

5. Conclusion 

This paper presents an approach for designing state 

derivative feedback LQR controller to attenuate the 

vibration occurred in offshore steel jacket platform 

against the nonlinear wave forces. In controller design, 

the solvability conditions of the proposed control 

strategy is presented as LMI constraints on the basis of 

convex optimization approach. The main importance of 

this study is to devoloped an easily realizable synthesis 

method to obtain practically applicable optimal state 

derivative LQR controller which provides satisfactory 

control performance. In order to demonstare the 

effectiveness of the approach, performance of the 

proposed controller is examined in disturbance 

attenuation of nonlinear wave force excitations, in an 

offshore steel jacket paltform having ATMD. 

Simulation results indicate that the proposed control 

technique is all effective in reducing vibration 

amplitudes of each floor and guarantees the closed-loop 

stability. Vibration attenuation performance of the 

proposed controller can be improved by employing 

pole location constraints via LMI regions and H2/H∞ 

norm conditions. Finally, to cope with the practical 

problems such as parametric uncertainties and actuator 

imperfections, expanding the proposed method with the 

robustness against actuator delay and uncertain 

parameters might be a significant direction for future 

work. 
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