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1. Introduction

Dynamic economic theory has been developed via
the use of optimal control problems, especially in
the context of optimal growth models with infi-
nite planning horizons. On one hand, from the
pure economic perspective, optimal growth mod-
els serve as one of the best tools in explaining
the capital accumulation. On the other hand,
from the mathematical viewpoint, optimal growth
problem itself can be identified as an interesting
dynamic optimization problem. Therefore, while
the assumptions of the model describe and shape
the economic framework, they also determine the
layers of the mathematical difficulty of the prob-
lem. Several approaches have been developed in
the literature to solve the optimal growth prob-
lem. In some of these approaches, one needs to
make several strong assumptions in order to ad-
dress seemingly technically difficult problems. In
other approaches, in order to understand the eco-
nomic implications if a certain assumption fails
to hold, one looks for a new mathematical frame-
work.

This paper provides a comprehensive review of
four distinct approaches in solving discrete time
infinite horizon optimal growth problem: (i) pass-
ing to the limit approach; (ii) dynamic program-
ming, (iii) Lagrange multiplier method for infinite
horizon and (iv) Pontryagin’s approach. It is im-
portant to note that these distinct approaches in-
volve different mathematical arguments. In each
approach covered in this paper, we attempt to
provide the difficulties in obtaining the solution
and outline the possible ways to avoid these dif-
ficulties. We also provide a comparative discus-
sion about the assumptions of the optimal growth
model. Furthermore, we review the different tech-
niques through some relevant examples.

In this paper, we consider an economy that faces a
resource allocation problem. The main elements
of the given economic model are initial endow-
ment, production function and the preferences.
In this economy, we suppose that there are in-
finite periods and there exists a single household
(or consumer) who consumes a single good at each
period. A simple production function is assumed
where the good is produced from one input, that
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is capital. The output is either consumed or saved
as capital to the next period. The consumption or
saving decision with respect to budget constraint
is the only allocation decision that the economy
must make. The output is consumed with respect
to the preferences of the consumer which are rep-
resented by a utility function. The intertemporal
utility is defined as the discounted sum of the sin-
gle period utilities where the discount factor is
between 0 and 1 which reflects the property of
additive separability. We then suppose that the
discrete time infinite horizon additively separable
optimal growth model involves a benevolent social
planner who maximizes the intertemporal utility
subject to the constraints of production possibil-
ities and consumption-saving activity.

Based upon the earlier literature, the approach of
passing to the limit has been the first one that
is utilized in solving the above mentioned prob-
lem. It is natural to start with the finite horizon
leading to a finite dimensional constrained opti-
mization problem. Here, we should first address
the following question: is the limit of the finite
horizon problem the unique solution to the in-
finite horizon problem? To this end, one should
note in such a case that we typically face the diffi-
culty in establishing the legitimacy of interchang-
ing the maximum operator and the limit operator.
Therefore, for the most of the relevant cases, the
answer is negative to the above question.

Dynamic programming has been another impor-
tant approach that is widely used in solving this
type of economic optimization problem. It basi-
cally reformulates the actual problem by break-
ing into sub-decision problems. In doing this,
optimum decisions are derived sequentially which
leads to a sequence of value functions. This well
known method was first studied by R. Bellman
in 1957, in [1]. Later, this technique has been
applied to dynamic models in economics with
a principal reference being Stokey, Lucas and
Prescott (1989) ( [2]). Dating from Lucas and
Stokey (1984) ( [3]) and [2], important contribu-
tions have been made in the literature to apply
dynamic programming techniques to analyze infi-
nite horizon optimal growth problems in different
models generating more general results. Le Van
and Morhaim (2002) ( [4]) provides a unified ap-
proach covering bounded and unbounded returns,
and Kamihigashi (2014) ( [5]) is a resource for a
summary of the results in the literature for deal-
ing with unbounded cases, to be a generalization
of [2] without making topological assumptions in

the additive separable case. For a generalization
to models with non-additive and recursive prefer-
ences via aggregating function (aggregator) (that
include additive separable models), one can refer
to [2], for dynamics to [3] and for recent general
settings and results dealing with bounded and un-
bounded returns to Bich et al.(2017) ( [6]).

Although, dynamic programming is a very effi-
cient way in order to solve the infinite horizon
optimal growth problem, there has been a ten-
dency in the literature to return back to Lagrange
multipliers method. However, under such a case,
Lagrange multipliers would belong to an infinite
dimensional decision space. Thus, the question
becomes whether it is possible to derive the suf-
ficient conditions for a Karush-Kuhn-Tucker type
theorem to hold in the infinite case. This question
has been studied in the literature since Bewley
(1972) ( [7]) for the general case. Dechert (1982)
( [8]) provides an explanation of the structure of
the problem in details for the Banach spaces in
general. To this end, he uses the functional anal-
ysis not only to tackle this problem, but also to
demonstrate the sources of the difficulty in switch-
ing from a finite problem to an infinite dimen-
sional problem. Multiplier sequence has a nice
representation if the space is reflexive and the gen-
eralization can be done without facing any prob-
lem. The question becomes: what if the space is
non-reflexive such as ℓ1? In fact, multipliers lie in
ℓ1 in the optimal growth problem.1 [8] shows that
the existence of these multipliers is guaranteed
only by the Axiom of Choice. There may be no
other constructive way to calculate these multipli-
ers. Le Van and Saglam (2004) ( [9]) extends the
work [8] to the set-up where objective and con-
straint functions do not need to be real-valued in
order to cover the cases where Inada type con-
ditions are assumed. [9] also discusses some other
interesting applications of this method in econom-
ics.

In the classical optimal growth model, when writ-
ten as an equivalent minimization program, the
objective and the constraint functions are scalar
valued and supposed to be convex. There have
been some works in the existing literature relax-
ing the assumption of convexity in order to ob-
tain results in non-convex cases. As an example,
Rustichini (1998) ( [10]) studied the general opti-
mization problem using non-convex models. The
questions of whether the separating vectors do ex-
ist and they can be represented by a sequence of
real numbers in infinite dimensional spaces have

1Here, we denote by ℓ1 the space of real sequences a = (at)t such that
∑

∞

t=0
|at| is convergent in R. Note that endowed

with the norm ||a||1 =
∑

∞

t=0
|at|, ℓ

1 is Banach but not reflexive since (ℓ1)′ = ℓ∞ but (ℓ∞)
′

6= ℓ1. Here, we denote by ℓ∞

the space of bounded sequences a = (at) such that supt |at| ≤ ∞.
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been addressed in [10]. Moreover, vector opti-
mization problems on Banach spaces without con-
vexity assumptions have also been considered in
Dutta and Tammer (2006) ( [11]). Here, it is
important to note that an additional assumption
stating that the objective function is locally Lips-
chitz was necessary in [11]. However, in this con-
text, using the approach of Pontryagin’s principle,
Blot and Chebbi (2000) ( [12]), Blot and Hayek
(2008) ( [13]), Blot and Hayek (2014) ( [14]) and
Blot et al. (2015) ( [?]) give useful results without
restrictive assumptions. [13], [14] and [?] consider
dynamic systems which are governed by differ-
ence equations and difference inequations respec-
tively. In all of these cited works, a vector val-
ued problem is considered, that is, the states and
the controls are vector valued. Moreover, these
works use weaker convexity assumptions than the
usual ones to obtain strong Pontryagin’s princi-
ples and they provide weak Pontryagin’s princi-
ples without convexity conditions. The solution
approach in [12] is based on using reductions to
finite horizon problems. However in [13], [14]
and [?], the authors consider the problem in the
space of bounded sequences, which allows them to
use functional analyctic approach which is based
on the use of abstract results of the optimization
theory and optimal control problems in ordered
Banach spaces. In the spirit of the Karush-Kuhn-
Tucker theorem, they establish the necessary and
sufficient conditions in the form of weak Pontrya-
gin’s principles. This result can be used for differ-
ent kinds of optimal control problems that can be
found in economics, optimal management of re-
newable resources, sustainable development the-
ory and game theory.

In this paper, besides studying the two classical
approaches (passing to limit approach and dy-
namic programming) including very recent exten-
sions and developments, we aim to apply the most
recent two functional analytic approaches for solv-
ing optimal growth problem: Lagrange multiplier
method for infinite horizon and the approach of
weak Pontryagin’s principle. Lagrange multiplier
method for infinite horizon is due to [8] and based
on extending Lagrange multiplier method to in-
finite dimensional space. In some sense, this ap-
proach can be seen as an extension of the passing
to the limit approach and also serves as an alter-
native method to the dynamic programming. We
give sufficient conditions on the objective and con-
straint functions under which the Lagrange mul-
tiplier can be represented by a ℓ1 sequence. We
assume Inada conditions as in [9]. In economics,

Lagrange multiplier method has been the key tool
for obtaining the solution in optimization prob-
lems in economics and Lagrange multipliers pro-
vide meaningful insights in the economic models.
Therefore, it is useful not only for providing solu-
tion to the problem but also analyzing the nature
of the solution. The idea of the approach of weak
Pontryagin’s principle is to transform the optimal
control problem into a dynamical system. A solu-
tion to the discrete time optimal growth problem
is given as a special case of the results obtained
in [14]. The result is useful as the assumptions
are easy to check. To compare these two func-
tional analytic approaches, we have to note that
in Lagrange multiplier method we need the con-
cavity assumptions of one period utility and the
production functions but one can avoid convex-
ity conditions to obtain weak Pontryagin’s prin-
ciple. Furthermore, in the approach of Pontrya-
gin’s principle vector states and vector controls
are used hence encompasses in this sense also the
Lagrange multiplier method.

The rest of the paper is organized as follows. In
Section 2, we describe the set-up of the optimal
growth problem. Section 3 gives the mathemati-
cal background of the classical approaches for the
optimal growth problem together with the recent
developments. Then, in Section 4, the functional
analytic approach is studied. Section 5 concludes.

2. One-sector optimal growth model:

set-up

This section presents the set-up of deterministic
discrete time infinite horizon one-sector optimal
growth model. We consider an economy as a prob-
lem of resource allocation. The primitives of the
model are initial endowment, production function
and the preferences.

We consider an economy E of infinite periods from
time t = 0 to t = ∞. We suppose that there
is 1 unit of time each period. There is a single
household2 who consumes a single good at each
period. This good (output) is produced from one
input, capital. At time t = 0, the amount of cap-
ital is supposed to be k0 units. The output is
produced from capital by a production function
f : R+ → R+.

In each period t, we suppose the single good (out-
put) with quantity yt ∈ R+ which is produced
from one input: kt by a production function f
where yt = f(kt). The output is either consumed
as ct ≥ 0 or saved as capital to the next period

2The model assumes a representative household. It is justified if for example all the households are supposed to be
identical in the economy E .
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as kt+1 satisfying the following process being re-
peated until infinity:

ct + kt+1 ≤ yt = f(kt) with kt ≥ 0

The consumption level is determined according
to the unique consumer’s preferences which is de-
fined by a one period non-decreasing utility (re-
ward) function u : R+ → R. The intertemporal
utility is then defined as follows:

∞∑

t=0

βtu(ct)

where 0 < β < 1 is the discount factor.

2.1. Social planner’s problem

We first give some definitions in order to describe
the problem.

Definition 1. For any k0 > 0, when k =
(k1, k2, . . . kt, . . .) is such that 0 ≤ kt+1 ≤ f(kt)
for all t, we say that it is a feasible accumulation
path from k0.

Definition 2. A consumption sequence c =
(c0, c1, c2, . . . ct, . . .) is feasible from k0 > 0 if
there exists a sequence k ∈ Π(k0) that satisfies
0 ≤ ct ≤ f(kt)− kt+1 for all t.

Definition 3. The set of feasible allocation from
k0 is denoted by Π(k0). That is, Π(k0) :=
{(k, c) = (kt, ct)

∞
t=0 : ct + kt+1 − f(kt) ≤

0 for all t = 0 . . .}.

The objective of a benevolent social planner is to
maximize the utility of household by choosing the
feasible allocation (k, c), that is, subject to the
feasibility constraints with a given positive initial
capital. The problem can be written as follows:

(P )





max
∑∞

t=0 β
tu(ct)

s.t.
ct + kt+1 − f(kt) ≤ 0, ∀t ≥ 0
ct ≥ 0, ∀t ≥ 0
kt ≥ 0, ∀t ≥ 1
k0 > 0, given

The objective function states that social plan-
ner must only decide the consumption level at
each period in order to maximize the utility. The
constraints reflect that non-consumed, i.e., saved
amount of output will be added to the capital
of the next period and hence will determine the
future production levels. Furthermore, since the
temporal utility function ut is non-decreasing,
at optimum, output will not be wasted so that

the consumption at t will be equal to the dif-
ference of output and quantity saved, that is
ct = f(kt) − kt+1. Eliminating ct from the prob-

lem (P ) gives us a new formulation (P̃ ) :

(P̃ )





max{kt+1}∞t=0

∑∞
t=0 β

tu[f(kt)− kt+1]

s.t.
0 ≤ kt+1 ≤ f(kt), ∀t ≥ 0
k0 > 0, given

3. Classical approaches of solution

In this section, we discuss the two classical ap-
proaches of solution to the optimal growth prob-
lem, namely passing to the limit and dynamic
programming. We give their mathematical ar-
guments with respect to the assumptions of the
model and provide some examples.

3.1. Assumptions

In the following, we give a list of assumptions of
the model. In Section 3.2, the entire list will prove
to be useful, in Section 3.3, one may assume the
weaker versions of the ones in this list.

(EA) (Endowment Assumption) k0 > 0, given.

(Prod) (Production Assumption)

(1) f is stricly concave in R+,
(2) f is continuously differentiable in R+,
(3) f is strictly increasing,
(4) f(0) = 0, limk→0 f

′(k) = +∞ and
f ′(∞) < 1 (Inada conditions).

(Pref) (Preferences Assumption)

(1) u is bounded,
(2) u is stricly concave in R+,
(3) u is continuously differentiable in R+,
(4) u is strictly increasing,
(5) limc→0 u

′(c) = +∞ and limc→+∞ u′(c) =
0 (Inada conditions)

(6) u(c0, c1, . . .) =
∑∞

t=0 β
tu(ct) where 0 <

β < 1.

Remark 1. (1) Assumption (EA) is quite
standard. We assume that, at the begin-
ning, we have some positive capital.

(2) By the assumption Prod (1-3), we suppose
that the production function is strictly
concave, continuously differentiable in R+

and strictly increasing. These assump-
tions can be weakened to the degree that
one can overcome the mathematical dif-
ficulty. In assumption Prod (4), we as-
sume that the production function satis-
fies the asymptotic conditions, called also
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Inada conditions, which will guarantee the
existence of interior solutions for the op-
timization problem. Since limk→0 f

′(k) =
+∞ and f ′(∞) < 1, there is a maximum
feasible level of capital, which we can call
kmax. This condition is satisfied when for
example the production function is of so-
called Cobb-Douglas type, i.e. f(k) = Akα

with A constant in R+ and 0 < α < 1.
(3) By assumption Pref(1) , we assume that

the one period utility function is bounded.
Pref (2-4) are the analogous versions of
Prod (2-4). According to Pref (5)-Inada
conditions, the marginal utility of con-
sumption for a starving agent would be so
high and the marginal utility for a sati-
ated consumer would be so low. We as-
sume by Pref (6) that the preferences over
intertemporal consumption sequence take
the additively separable form.

3.2. Passing to the limit

We are interested in the infinite horizon case.
Nevertheless, it was logic to start with the finite
horizon. The approach of passing to the limit
has naturally been the first one for solving this
problem. The problem was then a finite dimen-
sional constrained optimization problem. In eco-
nomics, the method of Lagrange has been widely
applied for solving finite dimensional constrained
optimization problems. That is, under the as-
sumption of the model that we cited in Section
3.1, namely (EA), Prod(1-4) and Pref(1-6), there
exist Lagrange multipliers so that the solution to
the constrained maximization problem is also an
extreme value of the objective function of the so-
cial planner without constraints.

The set of sequences {kt+1}
T
t=0 satisfying the con-

straints of the problem is a closed, bounded3 and
convex subset of RT+1 and the objective func-
tion is continuous (as the sum of the continuous
functions) and strictly concave by the assump-
tions Pref(2) and Pref(3). Hence, there is exactly
one solution which is characterized by Karush-
Kuhn-Tucker conditions. By the Assumptions
f(0) = 0 in Prod(4) and u′(0) = ∞ in Pref(5),
it is clear that the constraints do not bind ex-
cept for kT+1 = 0. Thus, the solution satis-
fies the first order and the boundary conditions
for all t = 1, . . . T :

βf ′(kt)u
′[f(kt)− kt+1] = u′[f(kt−1)− kt] (1)

kT+1 = 0, k0 given. (2)

These conditions give us a 2nd order difference
equation in kt which has a 2-parameter family of
solutions but the one which satisfies the boundary
conditions is the unique solution.

Here, the question turns out to be whether the
limit of the finite horizon problem is the unique
solution to the infinite horizon problem. The an-
swer is positive for some parametric examples in
economics, for instance, as in the following exam-
ple. However, this method involves in general one
difficulty that to establish the legitimacy of in-
terchanging the operators max with limT→∞, to
guarantee that

max lim
T→∞

T∑

t=0

βtu(ct) = lim
T→∞

max
T∑

t=0

βtu(ct)

This difficulty is overcome if the uniform con-
vergence of the solution path is satisfied. How-
ever, this will bring restrictive assumptions on the
model. Instead, different approaches are devel-
oped by which not only the problem is solved but
also with weaker assumptions of the model.

Example 1. Consider a logarithmic utility func-
tion u(ct) = ln ct and Cobb-Douglas production
function: f(kt) = (kt)

α with 0 < α < 1. Thus,
the optimal growth problem will be:

(P̃ )





max{kt+1}∞t=0

∑∞
t=0 β

t ln[(kt)
α − kt+1]

s.t.
0 ≤ kt+1 ≤ (kt)

α, ∀t ≥ 0
k0 > 0, given

By the help of the above equations (1) and (2),
one can check that the unique solution to the cor-

responding problem (P̃ ) is:

kt+1 = αβ
1− (αβ)T−t

1− (αβ)T−t+1
kαt for all t = 0, 1 . . . T

Passing to the limit, we find that kt+1 = αβkαt is
the unique solution for the infinite horizon prob-
lem.

Remark 2. Note that the assumption of bound-
edness of the utility function is not satisfied in the
previous example. Boundedness is needed in or-
der to guarantee the existence of optimal solution
though a solution can exist without it as in the
previous example.

3Showing that it is closed is straightforward as ct ∈ [0, f(kt)]. To show that it is bounded, we note that by the assumption,
Prod(4), there is a maximum feasible level of capital kmax.
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3.3. Dynamic programming

Dynamic programming has been another useful
approach for solving the optimal growth prob-
lem. [2] is the principal reference for the use of this
method in optimal growth problem. In this sec-
tion, after giving the idea of the approach and the
Principle of Optimality, we will give an overview
of the results in the literature according to the
assumptions of the model. The first three sub-
sections deal with the additively separable opti-
mal growth problem. Section 3.3.4 discusses non-
additive model.

The idea of dynamic programming is to divide
the problem up into separate sub-problems. The
first step is to define and solve the problem of the
initial period and then to proceed forward.

The problem at the initial period that the social
planner faces is to choose current period’s con-
sumption c0 and capital to begin with for the next
period k1. If we knew the preferences of planner
over (k1, c0), we could simply maximize the ap-
propriate function of (k1, c0) over the opportunity
set defined by the constraint:

ct + kt+1 − f(kt) ≤ 0, for all t ≥ 0.

Suppose that the above problem is solved for all
possible values of k0. Then, we could define a
function v : R+ → R by taking v(k0) to be the
value of the maximized objective function, for
each k0 ≥ 0:

max
{kt+1}∞t=0

∞∑

t=0

βtu[f(kt)− kt+1] (3)

such that

0 ≤ kt+1 ≤ f(kt), ∀t ≥ 0

k0 > 0, given

A function of this type is called a value function.

With v so defined, v(k1) would give the utility
from period 1 and that could be obtained with
k1. βv(k1) would be then the value of this utility
discounted back to period 0.

In terms of this value function v, the planner’s
problem in period t = 0 would be the following
optimal growth program:





maxk1,c0 [u(c0) + βv(k1)]
s.t.
c0 + k1 ≤ f(k0),
c0, k1 ≥ 0, k0 > 0 given.

v is unknown at this point. Thus, solving the
above program provides also v. That is, v must
satisfy:

v(k0) = max
0≤k1≤f(k0)

{u[f(k0)− k1] + βv(k1)}

Irrespective of the date, we can rewrite the prob-
lem of planner with current capital stock denoted
by z, y ∈ R+ as a functional equation (equation in
the unknown function of v):

v(z) = max
0≤y≤f(z)

{u[f(z)− y] + βv(y)} (4)

The study of dynamic optimization problems
through the analysis of such functional equation
is called dynamic programming.

We can view the above equation (4) (called also
Bellman equation) through a functional operator
(Bellman operator) :

(Tw)(z) = max
0≤y≤f(z)

{u[f(k)− y] + βw(y)}

solutions of (4) being fixed points of T .

The idea is then to study the link between the
value function of the optimal growth program
with the solutions of Bellman equation. That is,
to study the link between the value function of the
optimal growth program with the fixed points of
the Bellman operator. Thus, one has to verify the
following issues:

(i) (Existence) Existence of a fixed point of Bell-
man operator is obtained as the value function of
the optimal growth program is a fixed point of T .
v(z) (which is the unknown of the Bellman equa-
tion) satisfies (Tv)(z) = v(z). Existence is guar-
anteed by some sufficient conditions via a Banach-
type Fixed Point Theorem and Berge’s Maximum
Theorem.

(ii) (Uniqueness) Studying a fixed point of T al-
lows us to reach the value function of the opti-
mal growth program, if uniqueness of such a fixed
point is obtained, then the (unique) fixed point is
the value function.

(iii) (Reachability) Bellman operator gives an al-
gorithm to reach (under appropriate conditions)
the value function of the optimal growth program.
As in some problems the suitable starting points
to reach the value function must be restricted.
By means of iterating on the Bellman operator
will provide the convergence to this value func-
tion from any “initial suitable feasible guess”.

The following theorem gives the details of the
Bellman’s Principle of Optimality whose idea is
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given above and show that the dynamic program-
ming technique allows to recover the value func-
tion of the optimal growth problem.

Theorem 1. (Principle of Optimality) The so-
lution v to the Bellman equation (4) evaluated at
z = k0 gives the maximum in optimal growth pro-
gram (3) when the initial state is k0. Moreover a
sequence {kt+1}

∞
t=0 attains the maximum in (3) if

and only if it satisfies for all t ≥ 0:

v(kt) = u[f(kt)− kt+1] + βv(kt+1) (5)

The Principle of Optimality is verified under a se-
ries of topological assumptions for the bounded
case as well as for two important particular cases:
with bounded returns and with unbounded re-
turns (see Chapter 4 of [2]). The following sec-
tions give the versions of these results for our set-
ting.

3.3.1. Optimal growth with bounded utility

In this section, we consider the optimal growth
problem under the assumptions of the model
given in Section 3.1.

Theorem 2. Under the assumptions (EA),
Prod(1 − 4 ) and Pref (1 − 6 ),

(1) solutions to the functional equation (3)
and sequence plans (4) coincide exactly,

(2) the Bellman operator has a unique fixed
point in the space of bounded contionous
functions and this fixed point is the value
function v,

(3) value iteration converges uniformly to the
value function starting from any bounded
continuous function.

Proof. (3) As u is supposed to be bounded by the
assumption Pref(1) and 0 < β < 1 by Pref(6),
then Π(k0) 6= ∅ and limn→∞

∑n
t=0 β

tu[f(kt) −
kt+1] exists for all k0 ∈ R+. The maximum func-
tion v∗ is then bounded and satisfies:

v∗(k0) = max
k0∈Π(k0)

lim
n→∞

n∑

t=0

βtu[f(kt)− kt+1]

Thus, v∗(k0) is the maximum in (3). It is natural
to seek the solutions to (4) in bounded continu-
ous functions. Any bounded continuous solution
to (4) satisfies limn→∞ βnv(kn) = 0 then v = v∗.
Moreover, given a solution to (4), for any k0, a
sequence {k∗t } attains the maximum in (3) if and
only if it is generated by the following mechanism
where 0 ≤ kt+1 ≤ f(kt):

v(kt) = u(f(kt)− kt+1) + βv(kt)

(2) If we define,

(Tv)(z) = max
0≤y≤f(z)

{u[f(z)− y] + βv(y)},

instead of (4), we can write v = Tv. As the
feasibility condition is given as a closed interval
[0, f(z)] together with the convexity of R+ and
the boundedness and the continuity assumptions
given in Prod(1) and Pref(1-3), T has a unique
fixed point in the space of bounded continuous
functions. This fixed point is the value function
v∗.

(3) By the assumptions Prod(1-3), Pref(2-4), v
is stricly increasing, strictly concave and contin-
uously differentiable. If {vn} is a sequence of ap-
proximations defined by vn = Tnv0 with an ap-
propriate choice of bounded contionous starting
function v0, then this value iteration converges
uniformly to the value function v∗.

�

3.3.2. Optimal growth with bounded returns

This section deals with the optimal growth prob-
lem with bounded returns under the following list
of assumptions which is slightly weaker than the
list given in Section 3.1:

(EA) (Endowment Assumption) k0 > 0, given.

(P̃ rod) (Production Assumption)

(1) f is continuous,
(2) f is concave in R+,
(3) f is continuously differentiable in R+,
(4) f is strictly increasing,
(5) f(0) = 0, for some k̄ > 0: for all

0 ≤ k ≤ k̄ we have k ≤ f(k) ≤ k̄ and
for k > k̄ we have f(k) < k̄.

(P̃ ref) (Preferences Assumption)

(1) u is continuous,
(2) u is stricly concave in R+,
(3) u is continuously differentiable in R+,
(4) u is strictly increasing,
(5) limc→0 u

′(c) = +∞ and limc→+∞ u′(c) =
0 (Inada conditions)

(6) u(c0, c1, . . .) =
∑∞

t=0 β
tu(ct) where 0 <

β < 1.

Remark 3. We have to mention especially that
u is not supposed to be bounded. However, note

that under the assumptions P̃ ref(1 − 3) and

P̃ rod(1 − 3) the function G which is defined as
G(kt, kt+1) := u[f(kt) − kt+1] is bounded. Thus,
the case is called optimal growth with bounded re-
turns.
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Theorem 3. Under the assumptions (EA),

P̃rod(1 − 4 ) and P̃ref (1 − 6 ),

(1) solutions to the functional equation (3)
and sequence plans (4) coincide exactly,

(2) the Bellman operator has a unique fixed
point in the space of bounded contionous
functions and this fixed point is the value
function v,

(3) value iteration converges uniformly to the
value function starting from any bounded
continuous function.

Proof. (1) By Remark 3, G is bounded. Thus,
if B is a bound for G(z, y), then the maximum
function v∗ satisfies |v∗(z)| ≤ B

1−β
as

v∗(k0) = max
k0∈Π(k0)

lim
n→∞

n∑

t=0

βtu[f(kt)− kt+1]

Thus, v∗(k0) is the maximum in (3). Any
bounded continuous solution to (4) satisfies
limn→∞ βnv(kn) = 0 then v = v∗. Moreover,
given a solution to (4), for any k0, a sequence
{k∗t } attains the maximum in (3) if and only
if it is generated by the following mechanism
where 0 ≤ kt+1 ≤ f(kt):

v(kt) = u(f(kt)− kt+1) + βv(kt)

(2) and (3) here are essentially analogous ver-
sions of (2) and (3) in Theorem 2. It suffices to
remark that v is stricly increasing, strictly con-
cave and continuously differentiable as G(., y) is

so by means of the assumptions P̃ rod(2− 4) and

P̃ ref(2− 4).
�

3.3.3. Optimal growth with unbounded

returns

In economics, the utility function are often un-
bounded from above and/or below. In [2], this
case is partly considered and called optimal
growth with unbounded returns. That is, it is
the case where the maximum function v∗ satis-
fies the Bellman equation (4) but the following
boundedness assumption is not satisfied:

If limn→∞ βnv(kn) = 0 for all (k0, k1, . . .) ∈
Π(k0) then v = v∗.

In this case, the problem is that the functional
equation (4) would give many solutions. The suf-
ficient conditions for a solution to equation (4) to
be the maximum function v∗ are given in Theo-
rem 4.14 in [2]. The idea is to guess a solution
to the equation (4) and start with an appropriate
function v̂ that is an upper bound for v∗ and then

iterarate down to the fixed point of T . We will
discuss these sufficient conditions in the following
two examples which are used quite often in eco-
nomics. These examples will prove to be useful
for our comparative study. Nevertheless, in the
literature, there has been an extensive research
in order to give a general setting for dealing with
the unbounded case. One can refer to Le Van and
Morhaim (2002) ( [4]) which provides a unified ap-
proach covering bounded and unbounded utilities.
The recent reference Kamihigashi (2014) ( [5]) is
intended to be a resource for a summary of the
results in the literature for dealing with such un-
bounded cases, to be a generalization of [2] with-
out making topological assumptions. Unlike the
former ones, in [5], instead of a Banach-type Fixed
Point Theorem, Knaster-Tarski Fixed Point The-
orem is used to show the existence of a fixed point
of the Bellman operator.

Example 2. We consider the same problem of
Example 1 and we solve it by dynamic program-
ming. One can overcome the difficulty due to the
unboundedness of the utility by choosing a specific
functional form as an upper bound.

The problem corresponding to(4) is then:

v(z) = max
0≤y≤(zα)

{ln[(zα)− y] + βv(y)}

The sufficient condition of having a unique solu-
tion is to find a bound function v̂(z) for the max-
imum function v∗:

v∗(z) ≤
α ln k

(1− αβ)
, ∀z > 0

We may take v̂(z) = α ln z
(1−αβ)

With T defined as follows:

(Tw)(z) = max
0≤y≤zα

{ln[f(z)− y] + βw(y)}

By some calculations, one can show that the fol-
lowing v(z) is the fixed point of T :

v(z) =
1

β
[ln(1−αβ)+

αβ

1− αβ
ln(αβ)]+

αβ

1− αβ
ln z

so that the optimal sequence is generated as fol-
lows:

kt+1 = αβkαt for all t = 0, 1 . . .

Example 3. (Cake Eating Problem ) In this ex-
ample, suppose that one consumer has a cake of
a given initial size of k0. In each period, the con-
sumer eats some part of the cake with respect to
its preferences and save the remainder satisfying
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kt+1 = kt − ct for all t = 0, 1 . . .. Suppose that
the consumer’s preferences are represented by the
utility function u(ct) = ln ct. Hence, finding the
optimal path of consumption of the cake can be in-
terpreted as solving the following optimal growth
problem with linear production function f(z) = z
for all z ∈ R+:

(̃P )





max{kt+1}∞t=0

∑∞
t=0 β

t ln[kt − kt+1]

s.t.
0 ≤ kt+1 ≤ kt, ∀t ≥ 0
k0 > 0, given

We can solve (̃P ) by dynamic programming. We
choose here again a specific functional form as an
upper bound. We proceed as follows:

Since ln kt ≤ ln k0 for all t = 1, 2 . . ., we will have:

ln[kt − kt+1] ≤ ln kt ≤ ln k0 and

∞∑

t=0

βt ln[kt − kt+1] ≤
1

1− β
ln k0

Hence v∗(z) ≤ 1
1−β

ln k0 where v∗ is the supre-

mum function. Define v̂(z) = 1
1−β

ln k0.

With T defined by:

(Twn)(z) = max
0≤y≤z

{ln[z − y] + βwn(y)}

one has:

T v̂(z) = max
0≤y≤z

{ln[z − y] +
β

1− β
ln y}

The first order conditions of the right hand side of
the above equation gives us y = βz and therefore
we have:

T v̂(z) =
1

1− β
ln z + ln(1− β) + [

β

1− β
lnβ]

By the iteration, we will have:

Tnv̂(z) =
1

1− β
ln z+[ln(1−β)−

β

1− β
lnβ]

n∑

j=0

βj

Defining v(z) = limn T
nv̂(z), and taking the limit

of above equation will give us the fixed point of T ,
that is:

v(z) =
1

1− β
ln z +

1

1− β
[ln(1− β)−

β

1− β
lnβ]

Since Tv(z) = v(z) = max0≤y≤z{ln[z − y] +
βv(y)}, first order condition of the right hand side
of this equation gives us the following optimal se-
quence:

kt+1 = βkt for all t = 0, 1 . . .

3.3.4. Non-additive optimal growth problem

In this paper, we have so far considered an ad-
ditively separable model which is in fact satisfied

by the assumptions Pref(6) and P̃ ref(6). In this
section we will consider the non-additive model
via recursive preferences and aggregating func-
tions which are due to Lucas and Stokey (1984)
( [3]).

Definition 4. The utility function u is recur-
sive if u(c) = u(c0, c1, . . . , cn, . . .) is a function
A(c0, u(c1, . . . , cn, . . .)) of today’s consumption c0
and the intertemporal utility from tomorrow. The
function A aggregates the today’s consumption c0
and future utility into the current utility and is
called an aggregating function (aggregator).

Definition 5. The aggregating function A : R+×
R+ → R has the following properties:

(1) (AI) A is continuous,
(2) (AII) A(0, 0) = 0,
(3) (AIII) For any z ∈ R+, A(., z) is bounded,
(4) (AIV) |A(x, z) − A(x, z′)| ≤ β|z − z′| for

x, z, z′ ∈ R+ and 0 < β < 1,

The class of utility functions that are considered
are then defined by uA(c) = A[c0, u(c1, c2 . . .)].
The following theorem describes the source and
the properties of this class according to the aggre-
gating function. In such a model, dynamic pro-
gramming approach can be applied with recursive
preferences that have a contraction property.

Theorem 4. Let S be the vector space of all
bounded (with the norm ||u||∞ = supc∈ℓ∞

+
|u(c)|)

and continuous functions such that u : ℓ∞+ →
R. Let A satisfy AI,AII, AIII and AIV and
let TA be an operator defined as TA : S → S
and (TAu)(c)) = A[c0, u(c1, c2 . . .)] where c =
(c0, c1, c2 . . .) ∈ ℓ∞+ . Then, TA has a unique fixed
point uA in S. Moreover, if A is increasing and
concave then uA is increasing and concave.

Proof. By the definition of TA and by the prop-
erty (AIV ), TA is a contraction. Hence existence
of a unique fixed point holds by Banach Fixed
Point Theorem as S is complete. Moreover, A is
increasing as TA takes increasing functions to in-
creasing functions. TA is a contraction then TAu
is concave if u ∈ S is concave. Thus, the unique
fixed point uA is concave. �
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Remark 4. The above setting encompasses the
additive seperable model. That is, additive case
is a special case if we consider the aggregating
function A[c0, u(c1, c2 . . .)] = u(c0)+βu(c1, c2, . . .)
where 0 < β < 1.

Corollary 1. (Additive Recursive Preferences)
Let TA be an operator defined by T : S →
S and (Tu)(c) = A[c0, u(c1, c2 . . .)] = u(c0) +
βu(c1, c2, . . .) where c = (c0, c1, c2 . . .) ∈ ℓ∞+ .
Then,

(1) Any function u : ℓ∞+ → R satisfying
u(c) =

∑∞
t=0 β

tu(ct) where 0 < β < 1 is
bounded and continuous if u : R+ → R is
bounded and continuous.

(2) The function u ∈ S defined by u(c) =∑∞
t=0 β

tu(ct) is the unique fixed point of
TA.

4. Functional analytic approach

In this section, we give two different functional an-
alytic approaches to solve our particular problem
defined in Section 2. In Section 4.1, we apply the
main result of [8] tracking the lines of [9] which is
indeed the Lagrange multiplier method for opti-
mal growth. In Section 4.3 we apply the approach
of weak Pontryagin’s principle due to [14] to our
problem. We then compare these results with re-
spect to the assumptions of the model.

4.1. Lagrange multiplier method for

infinite dimensional space

The aim of this section is to set the optimal
growth problem (P ) given in Section 2 as a min-

imization problem (
˜̃
P ) and showing that all the

conditions of the Main Theorem in [8] are fulfilled

for the optimal growth problem (
˜̃
P ).

Set x = (k, c) ∈ ℓ∞×ℓ∞, F : ℓ∞×ℓ∞ → R∪{+∞}
and

F (x) = −
∞∑

t=0

βtu(ct)

Φt = (Φ1
t ,Φ

2
t ,Φ

3
t ) where

Φ1
t (x) = ct + kt+1 − f(kt), ∀t ≥ 0,

Φ2
t (x) = −ct, ∀t ≥ 0,

Φ3
t (x) = −kt+1, ∀t ≥ 0.

together with C = dom(F ) = ℓ∞+ × ℓ∞ and
Γ = dom(Φ) = ℓ∞ × ℓ∞+ and
C ∩ Γ = ℓ∞+ × ℓ∞+ .

Then (
˜̃
P ) will be:

(
˜̃
P )





minF (x)
s.t.
Φ(x) ≤ 0
x ∈ ℓ∞ × ℓ∞

Remark that with the above settings the problem

(
˜̃
P ) is equivalent to the optimal growth problem
(P ).

4.2. Assumptions

(
˜̃
(EA) (Endowment Assumption)

(1) k0 > 0, given,
(2) The allocations are denoted by x and x :=

(k, c) = ((kt)t, (ct)t) ∈ ℓ∞+ × ℓ∞+ .

(
˜̃
Prod) (Production Assumption)

(1) f is concave in R+,
(2) f is differentiable in R+,
(3) f is strictly increasing,
(4) f(0) = 0, 1 < f ′(0) ≤ +∞, f ′(∞) < 1.

And f(k) = −∞ if k < 0.

(
˜̃
Pref) (Preferences Assumption)

(1) u is concave in R+,
(2) u is strictly increasing in R+,
(3) u is differentiable in R+,
(4) u′(0) ≤ +∞ and u(c) = −∞ if c < 0,
(5) u(c0, c1, . . .) =

∑∞
t=0 β

tu(ct).

Remark 5. (1) We suppose bounded se-

quences of allocations by
˜̃

(AE)(2).
(2) One can mention that the above list is in-

deed weaker than the list in Section 3.1:
The boundedness of the utility function is
dropped. Neither utility nor the produc-
tion function are supposed to be stricly
concave. Instead, concavity and differen-
tiability will be adequate. However, we
make an asymptotic assumption of pro-
duction function which satisfies f ′(0) > 1.
This assumption will be essential for this
technique of Lagrange multipliers method
(see Example 5 in the following) while it
was not essential in the approach of dy-
namic programming (see also Example 2).

(3) By
˜̃

(Pref)(4) we assume additive separa-
ble utility, however we refer to [9] for the
extension to the recursive preferences.

Proposition 1. Under the Assumptions
˜̃
(EA),

˜̃
Prod and

˜̃
Pref , if the sequence x = (k∗, c∗) ∈

ℓ∞ × ℓ∞ is optimal, then there exists λ ∈ ℓ1+ such
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that the following conditions hold:

∞∑

t=0

βtu(c∗t )−
∞∑

t=0

λ1
t (c

∗
t + k∗t+1 − f(k∗t )) +

∞∑

t=0

λ2
t c

∗
t

+
∑∞

t=0 λ
3
tk

∗
t

≥∑∞
t=0 β

tu(ct) −
∑∞

t=0 λ
1
t (ct + kt+1 − f(kt)) +∑∞

t=0 λ
2
t ct +

∑∞
t=0 λ

3
tkt (6)

λ1
t (c

∗
t + k∗t+1 − f(k∗t )) = 0, ∀t. (7)

λ2
t c

∗
t = 0, ∀t. (8)

λ3
tk

∗
t = 0, ∀t. (9)

Proof. Under the assumptions since u and f
are concave then F and Φ are convex. Since
f ′(0) > 1, for any k0 > 0, there exists k′ such that
0 < k′ + ǫ < f(k0) and 0 < k′ + ǫ < f(k′) with
ǫ > 0. Let k0 = (k0, k

′, k′, . . .), c0 = (ǫ, ǫ, ǫ, . . .)
and x0 = (k0, c0).. Note that suptΦt(c

0) < 0.
Thus Slater’s condition4 is satisfied. Under the
assumptions made above, in order to be able to
apply the result argued in [8] to the space ℓ1 one
needs a key result which is the following identifi-
cation:

(ℓ∞)
′

= ℓ1 ⊕ ℓs (Rudin (1973) in [16])

For each λ ∈ (ℓ∞)
′

+ we adopt the notation λ =
λ1+λs where λ1 ∈ ℓ1+ and λs ∈ ℓs+. The sufficient
conditions so that λs = 0 are given by two addi-
tional assumptions in [8]. These assumptions are
verified with above setting under the assumptions
˜̃
(EA),

˜̃
Prod and

˜̃
Pref for our problem (see [9]).

Hence, the conditions of the Main Theorem in
[8] are fulfilled for the optimal growth problem.
There exists thus λ ∈ ℓ1+ such that for all x =
(k, c) ∈ ℓ∞ × ℓ∞, if x∗ = (k∗, c∗) is optimal, then

F (x) + λΦ(x) ≥ F (x∗) + λΦ(x∗)

and

λΦ(x∗) = 0

This leads us to the final result with the above set-
tings of Φ, F which establishes the extension of
Lagrange Multiplier Method with Karush-Kuhn-
Tucker conditions. �

Corollary 2. The Lagrange multipliers sequence
associated to this optimal growth problem is the
sequence {βtu′(c∗t )} and satisfies the so-called Eu-
ler equation:

u′(c∗t ) = βu′(c∗t+1)f
′(k∗t+1) for all t = 0, 1, . . .

Corollary 3. Let the assumptions of the Proposi-
tion 1 be satisfied for an optimal growth problem.
Moreover, suppose that u is strictly concave and
continuously differentiable with u′(0) = +∞. If
x∗ = (c∗, k∗) is an optimal solution, then the se-
quence {βtu′(c∗t )} is in ℓ1+/{0}.

Let us consider the optimal growth problem with
logarithmic utility and Cobb-Douglas production
solved in Example 1 and in Example 2 by two dif-
ferent methods. The following example will be the
third way of having the solution and will directly
generate the Lagrange multipliers:

Example 4. The assumptions of the Corollary
3 are all satisfied, that is, u(ct) = ln ct, there-
fore it is strictly increasing, continuously differ-
entiable and u′(0) = +∞, we obtain the sequence
{βtu′(c∗t )} in ℓ1+/{0}:

As u′(0) = +∞, c∗t > 0 and k∗t > 0, by the equa-
tions (8) and (9), we have λ2

t = λ3
t = 0 for every

t. Let us define, ct = c∗t for every t, kt = k∗t for
every t 6= T and cT = c∗T + ǫ such that c∗T + ǫ > 0.

By means of equation (1), we will have:

βTu(c∗T )− λ1
T (c

∗
T ) ≥ βTu(c∗T + ǫ)− λ1

T (c
∗
T + ǫ)

For all ǫ sufficiently small, we have thus:

βTu′(c∗T )− λ1
T = 0

However, by Proposition 1, λ ∈ ℓ1+ which implies
{βtu′(c∗t )} ∈ ℓ1+/{0}.

For the particular case of this example λ1
T =

{βT

c∗
T
} ∈ ℓ1+.

Remark 6. An alternative proof of obtaining
the sequence of {βtu′(c∗t )} in ℓ1+/{0} is due to
Dana and Le Van (2003) ( [17]). Under the as-

sumptions
˜̃
(EA),

˜̃
Prod and

˜̃
Pref , it is shown

in [17] that there exists a unique optimal sequence
x∗ = (c∗, k∗) verifying that c∗ > 0 and k∗ > 0.
Moreover the sequence k∗ is monotonic and x∗ =
(c∗, k∗) satisfies Euler equation which is used to
prove the existence of the sequence {βtu′(c∗t )} in
ℓ1+/{0}. This sequence is interpreted as the prices

4Slater’s condition which is a specific example of a constraint qualification states that the feasible region must have an
interior point.
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p∗ of the corresponding competitive equilibrium
(x∗, p∗) = (c∗, k∗, p∗) ∈ ℓ∞+ × ℓ∞+ × ℓ1+/{0}. The
assumption of f ′(0) > 1 (which is called as In-
teriority Assumption in [17]) is essential to have
multipliers in ℓ1+. Without this assumption, that
is if f ′(0) ≤ 1, the multipliers are not necessarily
in ℓ1+ as in the following example.

Example 5. Let us reconsider the Cake Eating
Problem. Remember that we consider a linear
production function f(z) = z for all z ∈ R+.
Hence f ′(0) = 1 and the condition f ′(0) > 1 is
not satisfied. Suppose that we have multipliers in
ℓ1+. By the help of the Inada conditions and Euler
equation we will have:

u′(c∗t ) = βu′(c∗t+1)f
′(k∗t+1) for all t = 0, 1, . . .

equivalently

λt = βλt+1f
′(k∗t+1) for all t = 0, 1, . . .

Since f ′(k∗t+1) = f ′(0) = 1, λt+1 > λt for every t
which implies λt > λ0 = u′(c∗0) > 0 proving that
λt /∈ ℓ1+. A contradiction.

Hence, a solution cannot be given to the Cake Eat-
ing Problem by means of this approach.

4.3. Approach of Pontryagin’s principle

In this section, we apply Theorem 3.1 and The-
orem 5.1 of [15] 5 to our optimal growth prob-
lem defined by scalar state and control variables.
These theorems establish weak Pontryagin’s prin-
ciples as necessary and sufficient conditions of op-
timality. The idea of this approach is to trans-
form the optimal growth problem to a dynamical
system by the help of weak Pontryagin’s princi-
ples. This approach is also functional analytic
and based on the use of abstract results of opti-
mization theory in the space ℓ∞ in the spirit of
the Karush-Kuhn-Tucker theorem.

The aim of this section is to set the optimal
growth problem (P ) as an optimal control prob-

lem (̂P ) and to show that the necessary conditions
given by Theorem 3.1 of [15] and sufficient condi-
tions given by Theorem 5.1 of [15] are fulfilled for

(P̂ ).

Set x = (k, c) ∈ ℓ∞×ℓ∞ and g(kt, ct) := f(kt)−ct
for all t = 0, 1, . . . where kt ∈ R+ is the scalar
state variable and ct ∈ R+ is the scalar control
variable. The dynamic system is governed by the
following difference inequation (DI):

(DI) kt+1 ≤ g(kt, ct) for all t = 0, 1, . . .

Then (̂P ) will be:

(̂P )





max J(x) = J(k, c) :=
∑∞

t=0 β
tu(ct)

s.t.
kt+1 ≤ g(kt, ct)
k0 > 0 given, ct ≥ 0, kt ≥ 0

Remark that with the above settings two prob-

lems (̂P ) and (P ) are equivalent.

Note that the Pontryagin’s Hamiltonian function

associated to (̂P ) and the multipliers 1 and λ is
defined by Ht : R× R× R× R → R such that

Ht(kt, ct, 1, λ) := βtu(ct) + λg(kt, ct)

Proposition 2. Let the following assumptions be
satisfied:

(P̂ rod) (Production Assumption) f : R → R is
continuously differentiable,

(P̂ ref) (Preferences Assumption) u : R → R is
continuously differentiable.

If the feasible accumulation sequence x∗ = (k∗, c∗)

in intℓ∞+ ×intℓ∞+ is an optimal solution of (̂P ) then
it is a solution of the following system:

u′(ct) = βu′(ct+1)f
′(kt+1) for all t = 1, 2 . . .

(10)

f(kt) = ct + kt+1 for all t = 0, 1, 2 . . . . (11)

Conversly, under P̂ rod and P̂ ref , let the above
equations (10) and (11) be fulfilled for a feasi-
ble allocation x∗ = (k∗, c∗) in intℓ∞+ × intℓ∞+ .
Let there exist (λ∗

t ) ∈ ℓ1+ such that the Pontrya-

gin’s Hamiltonian function, associated to (P̂ ) and
the multipliers 1 and λ, Ht(kt, ct, 1, λ) is concave
with respect to (kt, ct) for all t = 0, . . .. Then

x∗ = (k∗, c∗) is an optimal solution of (P̂ ).

Proof. Since u is independent of kt and sup-
posed to be continuously differentiable and
since f is continuously differentiable then so is

g : R×R → R. Under the assumptions P̂ rod and

P̂ ref , the assumptions6 of Theorem 3.1 in [15] are
verifed, therefore, we can directly use its conclu-
sion. There exists then a sequence of multipliers
λ∗ ∈ ℓ1+ such that the following conditions, which

5These are also Theorem 3.3 and Theorem 3.8 of [14].
6Essentially the Assumption (H1) in [15]. Note that Assumption (H4) is always satisfied in our case since ∂g

∂c
(kt, ct) =

−1 6= 0 for all t = 0, 1 . . .
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are so-called Adjoint Equation (AE) , Weak Max-
imum Principle (WMP ) and Complementary
Slackness (CS), hold:

(AE) λ∗
t = ∇kHt(k

∗
t , c

∗
t , 1, λ

∗
t+1)

(WMP ) ∇∗
cHt(k

∗
t , c

∗
t , 1, λ

∗
t+1) = 0

(CS) λ∗
t+1(g(k

∗
t , c

∗
t )− k∗t+1) = 0

which imply respectively:

λ∗
t = λ∗

t+1.
∂g

∂k∗t
(k∗t , c

∗
t ) + βt.0 for all t = 1, 2, . . .

(12)

λ∗
t+1.

∂g

∂c∗t
(k∗t , c

∗
t ) + βtu′(c∗t ) = 0 for all t = 0, 1, . . .

(13)

λ∗
t+1(g(k

∗
t , c

∗
t )− k∗t+1) = 0 for all t = 0, 1, . . .

(14)

that give us the following system:

λ∗
t = λ∗

t+1f
′(k∗t ) for all t = 1, 2, . . . (15)

λ∗
t+1(−1)+ βtu′(c∗t ) = 0 for all t = 0, 1, . . . (16)

λ∗
t+1(f(k

∗
t )− c∗t − k∗t+1) = 0 for all t = 0, 1, . . .

(17)

From the equations (15) and (16), the system re-
duces to:

u′(c∗t ) = βu′(c∗t+1)f
′(k∗t+1) for all t = 0, 1, . . .

(18)

λ∗
t+1(f(k

∗
t )− c∗t − k∗t+1) = 0 for all t = 0, 1, . . .

(19)

Remark that the multipliers associated to this
problem are defined by λ∗

t+1 = βtu′(c∗t ) and sat-
isfy (18) which is Euler equation together with
(19).

Conversly, if the equations (18) and (19) are sat-
isfied, then setting λ∗

t+1 = βtu′(c∗t ), the assump-
tions of Theorem 5.1 of [15] are fulfilled. That is,
as λ∗

t+1(f(k
∗
t )− c∗t − k∗t+1) = 0 for all t = 0, 1, . . .,

f(k∗t ) − c∗t > k∗t+1 implies λ∗
t+1 = 0. Moreover,

since (λ∗
t ) ∈ ℓ1+ we have necessarily limt→∞ λ∗

t = 0
which is so-called Transversality Condition at in-
finity. Moreover, if the Pontryagin’s Hamiltonian
function Ht(k, c, 1, λt+1) = βtu(ct)+λt+1(f(kt)−

ct) is concave with respect to (kt, ct) then opti-
mality holds.

�

Remark 7. (1) Endowment Assumption and
Inada conditions are fulfilled by the state-
ment of the Proposition 2 as the sequence
x∗ = (k∗, c∗) is supposed to be a feasible
allocation sequence in intℓ∞+ × intℓ∞+ .

(2) The result is useful as the assumptions are
easy to check and one may avoid the con-
cavity assumptions of u and f . However
the concavity of the Hamiltonian is needed
for the sufficient conditions of the opti-
mality.

Example 6. A solution to the problem in Exam-
ple 1 can be given by the approach of Pontrya-
gin’s principle. u(ct) = ln ct, f(kt) = (kt)

α with
0 < α < 1 are continuously differentiable on R+.
A solution x∗ = (k∗, c∗) to this problem is then
equivalent to the solution of the following system
which holds by (18) and (19):

1

ct
= βα

1

ct+1
(kt+1)

α−1 for all t = 0, 1, . . .

(kt)
α − ct − kt+1 = 0 for all t = 0, 1, . . .

which generates the optimal sequence: k∗t+1 =
αβ(k∗t )

α for all t = 0, 1 . . . as in Example 1, Ex-
ample 2 and Example 4.

5. Conclusion

The optimal growth problem and its solution re-
quire advanced dynamic optimization techniques.
In this paper, we analyze four of them in a dis-
crete time infinite horizon framework. Besides
the two classical approaches, namely passing to
the limit approach and dynamic programming,
we study two functional analytic approaches. The
first of them serves as the extension of Lagrangian
method to infinite dimensional spaces by empha-
sizing the works [8] and [9]. The second one trans-
forms the optimal growth problem to a dynamical
system by the help of weak Pontryagin’s princi-
ples. While studying each of these approaches,
we discuss the potential difficulties in obtaining
the solution and point out possible ways to avoid
these difficulties. Under each case, we provide
a discussion about the assumptions of the model
and review the techniques through some relevant
examples.

Optimal growth model typically involves several
assumptions on both the production and con-
sumption sides (mainly on preferences). In gen-
eral, the analysis of the specific assumptions of
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a model in economic theory is crucial in order to
encompass the most interesting cases in the appli-
cations of the theoretical models. Some of these
assumptions are needed purely for the mathemat-
ical reasons, that is, in order to be able to solve
the optimization problem. Specifically, we always
need some restrictive assumptions on the objec-
tive and constraint functions such as concavity,
differentiability, monotonocity, boundedness and
asymptotic assumptions. Once these assumptions
are made and the mathematical framework is es-
tablished, the solution can be given. Then, from
the economic viewpoint, additional efforts are put
forward in weakening some of the restrictive as-
sumptions.

This paper provides a comparative analysis of dif-
ferent mathematical approaches based on a spe-
cific list of assumptions within the given economic
model. First, for the passing to the limit approach
to work in optimal growth model, we point out
that it is necessary to be able to interchange the
limit and maximum operators. This is satisfied
only if the solution path sequence is uniformly
convergent. Therefore, its economic applicabil-
ity is limited. Then, we study the dynamic pro-
gramming technique in the same context and find
that it leads to a solution that enables us to con-
sider a larger set of economic examples. To make
this point more clear, note that utility functions
are often assumed to be unbounded in economics
and thus the boundedness assumption needed in
the passing to the limit approach is too restrictive
while this assumption can be avoided in dynamic
programming. We overview important contribu-
tions in the literature to apply dynamic program-
ming techniques to analyze infinite horizon op-
timal growth problems with unbounded returns
and with non-additive and recursive preferences
via aggregating functions.

We finally show that a solution to the optimal
growth problem can be obtained under weaker as-
sumptions on production and preferences by the
two functional analytic approaches relative to the
previous two techniques. To be more specific, in
Lagrange multiplier method, unlike the classical
approaches, neither the utility nor the produc-
tion function is supposed to be stricly concave
and continuously differentiable. Instead, concav-
ity and differentiability are adequate. Here, we
should emphasize that an additional assumption
is made on the asymptotic behavior of the pro-
duction function which satisfies f ′(0) > 1. We
show that this assumption here is essential while
it is not essential in the approach of dynamic
programming. The approach of weak Pontrya-
gin’s principle is useful as the assumptions are

fewer and easy to check. To compare these two
functional analytic approaches, we have to note
that in Lagrange multiplier method we need the
concavity assumptions of u and f but in the ap-
proach of weak Pontryagin’s principle we do not
need. However, note that the concavity of the
Hamiltonian is needed for the sufficient condi-
tions of the optimality.

This paper, by its comparative set-up, can be seen
as a source for the researchers who intend to use
these approaches in similar types of accumulation
and growth problems.
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