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 In this paper, a new hybrid approach based on sixth-order finite difference and 

seventh-order weighted essentially non-oscillatory finite difference scheme is 

proposed to capture numerical simulation of the regularized long wave-Burgers 

equation which represents a balance relation among dissipation, dispersion and 

nonlinearity. The corresponding approach is implemented to the spatial 

derivatives and then MacCormack method is used for the resulting system. Some 

test problems discussed by different researchers are considered to apply the 

suggested method. The produced results are compared with some earlier studies, 

and to validate the accuracy and efficiency of the method, some error norms are 

computed. The obtained solutions are in good agreement with the literature. 

Furthermore, the accuracy of the method is higher than some previous works 

when some error norms are taken into consideration.   
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1. Introduction 

In describing many models in a great deal of fields of 

science, nonlinear partial differential equations 

(PDEs) play a significant role. Hence, reaching exact 

or well approximate solutions of nonlinear PDEs is 

still important. These kinds of partial differential 

equations may not have an exact solution by reason of 

their nonlinearity.  So, it is of interest to introduce a 

new method or develop an existing technique to obtain 

accurate numerical results. One of the popular 

nonlinear partial differential equations studied for its 

numerical solutions is the regularized long wave-

Burgers (RLW-Burgers) equation also known as 

Benjamin-Bona-Mahony-Burgers (BBMB) equation. 

This equation describes the propagation of surface 

water waves in a channel [1]. The RLW-Burgers 

equation is considered as follows with physical 

boundary conditions 0u   as  x : 

 

 

0, , 0

,0 ( ) 0 , .

t xxt xx x x
u u u u g u x t

u x x x

 



         

   
 (1) 

The subscripts t  and x  are time and space 

derivatives, and denote the horizontal coordinate along 

the channel and the elapsed time, respectively. ( )x  is 

a known function as initial condition,   is a positive 

constant,    and  g u  is a  2C  smooth nonlinear 

function. Eq. (1) represents a balance relation among 

dissipation, dispersion and nonlinearity [2]. Due to the 

fact that this equation is important for understanding 

the nonlinear wave phenomena, many researchers [2-

9] have studied on it for many years.  

Since the numerical methods are good means of 

understanding these types of equations, the effort of 

finding a more accurate numerical approach is still in 

progress. Investigating an effective and accurate 

numerical method encourages us to produce a new 

hybrid approach based on some high order finite 

difference (FD) schemes for analyzing the behavior of 

the RLW-Burgers equation. One of these FD schemes 

is a seventh-order weighted essentially non-oscillatory 

(WENO7) [10, 11, 16] method. It can be clear from 

the literature that the WENO method based on ENO 

schemes is one of the popular numerical methods for 

PDEs in conservative form   0t x
u f u  . High 

order accuracy can be achieved in the smooth regions 

and discontinuities can be computed without spurious 

oscillations [12]. Some studies in recent years have 

introduced several versions of the WENO scheme 

derived for improving ENO properties [10-16]. 

However, some researchers have combined the 

WENO schemes with a high order method to 

overcome some drawbacks [17-19]. Inspired by these 

drawbacks in the corresponding studies, we prefer to 

http://www.ams.org/msc/msc2010.html
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combine the corresponding WENO scheme with the 

sixth-order finite difference (FD6) scheme [20, 21] 

because the FD6 gives convergent approximations as 

well as being effective, reliable and easy to 

implement. To validate the accuracy and efficiency of 

the proposed method, some error norms are presented 

and the obtained results are compared with the 

previous works in the literature. 

The arrangement of this paper is as follows: The 

suggested scheme in both space and time are 

introduced in Section 2. Five test problems including 

different  ,  parameters and  g u , ( )x  functions 

are solved to show the efficiency and accuracy of the 

proposed method, and the computed results are 

compared with others selected from the available 

literature in Section 3. Finally, the last section 

includes the summary of findings in the paper. 

2. Construction of the method 

One can rewrite problem (1) with the following form: 

      ,tu v                           (2) 

 xx xxx
v v f u u    ,      .

x x
f u u g u    (3)       

As  ,   and  g u change,  Eq. (3) changes for each 

test problem.  It can also be seen from the above 

system, there is no time derivative term in Eq. (3). The 

proposed approach is involved the FD6 and WENO7 

finite difference formulations to the spatial 

derivatives, and the MacCormack discretization is 

taken into account for the time derivative. Details of 

the implementation of the present method are 

introduced in the following subsections. 

2.1. Space discretization with the hybrid scheme 

First of all, we divide the domain of problem         

 ,a b  into N  subintervals such as 

1 2 1... N Na x x x x b       with the spatial step 

size 
1i ih x x x     for 1,2...,i N . Also,  1n  -

th time level is defined by 1n nt t t    where nt  is 

the initial time for 0n  . Thus, the numerical solution 

of u  is represented by n

iu  at grid point   , .n

ix t  We 

use the FD6 scheme derived for the second order 

derivatives to discretize the terms 
xxv  and 

xxu  in Eq. 

(3). The FD6 scheme can briefly be introduced as 

follows: 

v  and v  in space, can be approximated by the 

following FD6 formulae used 7-point stencil 

2

1 1
,   

 

   
R R

i j L i j i j L i j

j L j L

v a v v a v
h h

    (4) 

for 1 1.  i N  

In Equations (4),  1N   denotes the number of grid 

points, 
ka  and 

ka  0,...,k R L   are unknown 

constants, R and L denote the number of grid points in 

the right and left hand side for the taken stencil, 

respectively. At internal points, R and L is equal while 

they are different for the boundary nodes. The 

coefficients  
ka  and 

ka  can be determined with 

Taylor series expansions about the related point and 

they are given in Table 1. 

 

Table 1. The coefficients 
ka  and 

ka  

i  Coefficients* 
k  

0k   1k   2k   3k   4k   5k   6k   

1 
ka  -147 360 -450 400 -225 72 -10 

ka  812 -3132 5265 -5080 2970 -972 137 

2 
ka  -10 -77 150 -100 50 -15 2 

ka  137 -147 -255 470 -285 93 -13 

3 
ka  2 -24 -35 80 -30 8 -1 

ka  -13 228 -420 200 15 -12 2 

Internal 

Nodes 

ka  -1 9 -45 0 45 -9 1 

ka  2 -27 270 -490 270 -27 2 

1N  
ka  1 -8 30 -80 35 24 -2 

ka  2 -12 15 200 -420 228 -13 

N  
ka  -2 15 -50 100 -150 77 10 

ka  -13 93 -285 470 -255 -147 137 

1N  
ka  10 -72 225 -400 450 -360 147 

ka  137 -972 2970 -5080 5265 -3132 812 

*Each given values of 
ka  and 

ka  in the table must be divided by 60 and 180, respectively 
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For the term  
x

f u  in Eq. (3), the WENO7 scheme is 

implemented together with the FD6 scheme. The 

WENO schemes are based on ENO schemes and it 

was first suggested by Liu et al [22]. They provide 

high order accurate solutions in smooth regions and 

have a good convergence since they use a convex 

combination of all candidate stencils against the ENO 

schemes. In the literature, many researchers have 

focused on the WENO schemes in order to improve 

them. Taking inspiration from those studies, the 

present work discusses a combination of the WENO7 

finite difference scheme with the FD6 scheme in 

computing highly accurate results. The mentioned 

WENO scheme is applied to internal nodes and the 

FD6 formulae given in above are implemented for 

near the boundaries. We can then introduce the 

WENO7 procedure with its main points herein below 

[10, 11, 16]: 

The WENO schemes for discretization of the spatial 

derivatives in the following hyperbolic conservation 

law 

  0t x
u f u                              (5) 

are successful in terms of the numerical 

approximation. A reconstruction procedure based on 

the local smoothness of numerical solution is used as 

the main point of the WENO finite difference scheme 

in order to produce high order accurate solutions. The 

term  
x

f u  is approximated by 

  1 1

2 2

1 ˆ ˆ ,
j

x x x j j
f u f f

x  

 
  
  

              (6) 

where 
1

2

ˆ
j

f


 represents the numerical flux. The 

WENO7 scheme uses 7 candidate stencils written as a 

set  3 3,...,j jS x x   for these numerical fluxes. It is 

divided into four subset as  3 ,...,m

j m j mS x x   , 

0,1,2,3m  . The numerical flux 
1

2

ˆ
j

f


 is written using 

stencil sets mS  as 

   

1 1

2 2

3 3

1

0 02

ˆ ˆ ˆ,
j j

m m

m mi j m i
j

m i

f f f b f
 

 


 

          (7) 

for 0,1,2,3m  . In Eq. (7), 
m  are called non-linear 

weights defined by  

3

0


 


m

m

kk

,  
 

71


  
          

q

m m

m

d   

with 7 0 3     and the linear weights 

0 1 35,d 1 12 35 ,d 2 18 35,d 3 4 35d . The 

coefficients 
mib  can be calculated with the approach 

inspired by Xie [23] using a fourth order polynomial  

     

 

2 3

1 2 1 2 1 2

4

1 2

( )   



      

 

j j j

j

h x A B x x C x x D x x

E x x

with the four candidate stencils above and are 

presented in Table 2. The coefficients required for 

1

2

ˆ
j

f can be found using the same stencils in a similar 

way.  In calculations, 2q  , and   is used to avoid 

the division by zero and it is selected to be quite small,  
1010  . The smoothness indicators, 

m , are given 

by 

                 

         

0 3 3 2 1 2 2 1

1 1

547 3882 4642 1854 7043 17246 7042

11003 9402 2107 ,

       

 

         
   

     
   

j j j j j j j j j

j j j j j

f u f u f u f u f u f u f u f u f u

f u f u f u f u f u

                 

         

1 2 2 1 1 1 1 1

1 1 1

267 1642 1602 494 2843 5966 1922

3443 2522 547 ,

       

  

         
   

     
   

j j j j j j j j j

j j j j j

f u f u f u f u f u f u f u f u f u

f u f u f u f u f u
 

                 

         

2 1 1 1 2 1 2

1 1 2 2 2

547 2522 1922 494 3443 5966 1602

2843 1642 267 ,

      

    

         
   

     
   

j j j j j j j j j

j j j j j

f u f u f u f u f u f u f u f u f u

f u f u f u f u f u
 

                 

         

3 1 2 3 1 1 2 3

2 2 3 3 3

2107 9402 7042 1854 11003 17246 4642

7043 3882 547 .

       

    

         
   

     
   

j j j j j j j j j

j j j j j

f u f u f u f u f u f u f u f u f u

f u f u f u f u f u

 

Table 2. The coefficients 
mib  for the WENO7 scheme 

mib  0i   1i   2i   3i   

0m   25 12  23 12  13 12  1 4  

1m   1 4  13 12  5 12  1 12  

2m   1 12  7 12  7 12  1 12  

3m   1 12  5 12  13 12  1 4  
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For more details of the WENO finite difference 

scheme, interested readers are referred to as the 

literature such as [10-13, 16]. 

 

2.2. Time discretization with MacCormack 

method 

After the implementation of the aforementioned main 

schemes to Eq. (3), the values of variable v  are found 

and then the MacCormack method is used to find new 

values of u  at the next time level from Eq. (2). This 

method is widely used for solving nonlinear PDEs 

representing fluid flows and provides accurate results 

[24]. Let us consider the following general form of 

governing equation 

i

i

du
Pu

dt
 . 

In this form, P represents a spatial differential 

operator, and each values on the right hand side of the 

above equation are already known through the method 

described in the previous subsection. In order to solve 

this semi-discrete equation, the MacCormack 

approach is then implemented via the following 

process: 

 

Pre. Step: 1 ,  n n n

i i iu u tPu  

Cor. Step: 
1 1 2 1,

2

  
 n n n

i i i

t
u u Pu

1
1 2

2


 


n n

n i i
i

u u
u . 

 

 

3. Numerical Illustrations 

In this section, we implement the previous procedure 

to five test problems for producing numerical 

solutions of the RLW-Burgers equation. The accuracy 

of the numerical solutions is observed by using 

absolute error and the following error norms 

2

2

1

N
analytical numerical

j j

j

L h u u


  ,    

max analytical numerical

j jL u u   . 

which measure the mean and maximum differences 

between the numerical and analytical solutions.  To 

show the behaviors of corresponding problems, some 

figures are also plotted. 

 

Example 1. As the first test problem, Eq. (1) with 

1  , 1   and   2 2g u u  is considered by the 

following initial condition   

 2( ,0) sech 4u x x . 

Table 3 gives the obtained results using 0.25h  and 

0.01t   in the interval 12 12x   . It can be 

clearly seen that the produced results are compatible 

with the results of Zarebnia and Parvaz [8]. Also, the 

solutions at various times are qualitatively presented 

in Figure 1. As is the case in the study of Zarebnia and 

Parvaz [8] and as naturally expected, the amplitude of 

wave slightly decreases as the time goes on (see 

Figure 1). 

Table 3. Numerical results with the parameters 0.25h   and 0.01t   for Example 1 

x  

Present method 
t  

0.2 0.5 0.7 1 1.5 2 

-10 0.024700 0.022144 0.020606 0.018518 0.015529 0.013038 

-5 0.256292 0.224794 0.206475 0.182379 0.149529 0.123687 

0 0.978142 0.933383 0.897619 0.838349 0.733532 0.631524 

5 0.319370 0.380986 0.423415 0.487534 0.589834 0.676862 

10 0.032031 0.041918 0.049799 0.063792 0.093622 0.132550 

 [8] 

-10 0.022951 0.019822 0.017950 0.015435 0.011934 0.009165 

-5 0.256278 0.224742 0.206391 0.182231 0.149239 0.123215 

0 0.978102 0.933352 0.897596 0.83834 0.733537 0.631526 

5 0.319376 0.380993 0.42342 0.487532 0.589817 0.676809 

10 0.030420 0.039796 0.047263 0.060502 0.088659 0.12528 

 

 

-10 -5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u
(x

,t
)

 

 

t=0.2

t=0.5

t=0.7

t=1

t=1.5

t=2

  
Figure 1. The behavior of the wave in Example 1.  

 

Example 2. Consider Eq. (1) with the initial condition 

29 6 3
( ,0) tanh tanh

5 5 2 5 2

x x
u x

   
      

   
 

using 1  , 1   and   2 2g u u . The analytical 

solution is given by 

29 6 5 3 5
( , ) tanh tanh

5 5 10 5 10

x t x t
u x t

    
      

   
. 

For this problem the parameters are chosen as 0.2h   

and 0.01t   in the interval 32 32x   . In Table 4, 



12                                            A. Zeytinoglu et al. / IJOCTA, Vol.8, No.1, pp.8-16 (2018) 

 

the produced
2L , L

 errors are given. The obtained 

error values are quite good even for the larger time 

10t  . Furthermore, absolute errors at various points 

in the corresponding domain are presented and 

compared with the study of Alquran and Al-Khaled 

[4] for some time values in Table 5. It can be said that 

our results are at least three decimal digits better than 

the results of Alquran and Al-Khaled [4]. The 

qualitative behavior of solutions at 10t   and at 

various times are exhibited in Figure 2(a)-2(b), 

respectively. 

 
 

Table 4. 
2L  and L

 error norms for Example 2 

t  
2L  L

 

0.2 1.826363E-07 1.678531E-07 

0.4 3.371454E-07 3.068812E-07 

1 6.734666E-07 6.326276E-07 

3 1.096361E-06 9.812815E-07 

10 1.754436E-05 1.546722E-05 

 

 

-40 -30 -20 -10 0 10 20 30 40
-2.5

-2

-1.5

-1

-0.5

0

0.5

x

u
(x

,t
)

 

 

t=10

 
(a) 

-40 -30 -20 -10 0 10 20 30 40
0.41

3

10

-2.5

-2

-1.5

-1

-0.5

0

0.5

t

x

u
(x

,t
)

 
(b) 

Figure 2. Numerical solutions for Example 2 using 0.2h    

and 0.01t   for (a) 10t  and (b) various times. 

 

 

Table 5. Absolute errors at various times for Example 2 

 

 

Present 

Method 
[4] 

Present 

Method 
[4] 

Present 

Method 

Present 

Method 

Present 

Method 

x \ t  0.2 0.2 0.4 0.4 1 3 10 

0.2 1.28E-07 6.76E-04 2.22E-07 5.02E-04 3.39E-07 7.71E-08 1.92E-07 

0.4 6.42E-08 5.05E-04 1.00E-07 4.52E-04 9.16E-08 2.84E-07 2.11E-07 

0.6 1.63E-09 4.82E-04 1.16E-08 6.02E-04 1.02E-07 3.27E-07 1.97E-07 

0.8 4.01E-08 4.14E-04 8.19E-08 6.02E-04 1.97E-07 2.47E-07 1.65E-07 

1 5.50E-08 3.21E-04 1.03E-07 2.02E-04 1.98E-07 1.12E-07 1.26E-07 

1.2 4.85E-08 6.05E-05 8.56E-08 7.51E-05 1.39E-07 1.90E-08 8.94E-08 

1.4 3.07E-08 5.85E-05 5.05E-08 5.98E-05 6.02E-08 1.14E-07 5.81E-08 

1.8 4.73E-09 1.36E-05 1.39E-08 2.37E-05 5.65E-08 1.76E-07 1.66E-08 

2.4 1.96E-08 1.25E-05 3.75E-08 1.01E-05 7.90E-08 1.08E-07 5.72E-09 

3 1.20E-08 6.23E-06 2.19E-08 7.78E-06 4.08E-08 3.76E-08 7.24E-09 

5 3.92E-10 4.82E-06 6.01E-10 6.42E-06 4.69E-10 2.01E-09 6.30E-10 

 

 

Example 3. We now consider Eq. (1) with the 

parameters 1  , 1   and   2 2g u u  with the 

initial condition  

 2( ,0) exp .u x x   

In this example, the domain is taken to be 

30 30x    and the behavior of the problem is 

examined up to time 10t  . We use 0.2h   and 

0.1t   in the proposed scheme and the recorded 

values are presented in Table 6. Furthermore, the 

profile of the wave is plotted in Figure 3 from 0t   to 

10t  . It can be seen from the figure that the 

amplitude of wave and the position of that   amplitude 

changes in time. The amplitude of wave is equal to 1 

located at 0x   for initial time, while that value 

decreases as the times goes on and it becomes about 

0.2 located close by 10x  . 

 

 

Table 6. Numerical results for Example 3 with 0.2h   and 

0.1t   

x \ t  1 2 5 10 

-30    -5.100E-13 -3.027E-12 -6.602E-11 -1.174E-09 

-15     -4.952E-08 -4.754E-08 -1.567E-08 -1.462E-09 

0      5.726E-01   2.871E-01  2.032E-02 -2.175E-03 

15     2.199E-05   2.396E-04  8.813E-03  9.039E-02 

30     1.653E-10   5.346E-09  2.186E-06  4.348E-04 
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Figure 3. The behavior of the wave in Example 3 from 

0t   to 10t   using 0.2h    and 0.1t  . 

 

 

Example 4. As the fourth test problem, Eq. (1) under 

the consideration of parameters 1  , 1  and 

  26g u u  is studied using the following initial 

condition 

223 1 1
( ,0) tanh tanh

120 5 10
u x x x     

extracted from the exact solution 

223 1 1
( , ) tanh tanh

120 5 10 10 10

t t
u x t x x

   
        

   
. 

For comparison with an early work by Zhao et al. [2], 

L
 errors are calculated for various times over the 

domain 50 50x   . The parameter h  is taken to be 

0.2  with both 0.01t   and 0.1t  , and the results 

are presented up to time 10t   in Table 7. It is seen 

that the obtained L
errors are less than the compared 

results. Furthermore, the presented errors still decrease 

when 0.01t  . The behavior of the problem for three 

different times are given in Figure 4. 

 
Table 7. 

L errors at various times for Example 4 using  

 L
 

Present Method [2] 
t  0.2h  , 

0.01 t  

0.2h  , 

0.1t   

0.2h  , 

0.1t   

0.2 6.048E-06 6.553E-06 7.650E-05 

0.3 9.310E-06 1.003E-05 6.954E-05 

0.4 1.274E-05 1.365E-05 1.490E-04 

0.5 1.632E-05 1.739E-05 1.334E-04 

0.6 2.001E-05 2.123E-05 2.160E-04 

0.7 2.377E-05 2.510E-05 1.918E-04 

0.8 2.752E-05 2.895E-05 2.774E-04 

0.9 3.119E-05 3.270E-05 2.474E-04 

1 3.472E-05 3.629E-05 3.385E-04 

2 5.823E-05 6.143E-05 - 

3 9.216E-05 9.493E-05 - 

5 1.481E-04 1.511E-04 - 

10 2.871E-04 2.889E-04 - 

 
Example 5. For the last problem, the nonlinear 

function  g u  is chosen as 
3 53 , 5u u  and 

9 9u , 

respectively, for Eq. (1) with 1 2, 1.    

-60 -40 -20 0 20 40 60
-0.3

-0.2

-0.1

0

0.1

0.2

x

u
(x

,t
)

 

 

t=0.2

t=10

t=15

 
Figure 4. Numerical solutions for Example 4 at different 

times.  

The initial condition is taken to be 

 4( ,0) 1 1u x x  . 

In this example, the solutions with considering various 

nonlinear function  g u  are investigated up to time 

10t  . In Figure 5, the solutions are plotted at 

different times using 0.2h   and 0.1t  . To show 

the effect of parameter h , the solutions at 10t   are 

also displayed in Figure 6 using 0.1t   and various 

h  values. It is observed from the corresponding 

figures that due to the value of   parameter, a slight 

oscillation occurs at the beginning of the wave, and 

the amplitude of both wave and oscillation decreases 

as the time goes on. To see the effect of   parameter 

on the behavior of the wave, Figure 7 is presented for 

various values of  . In the calculations, the 

parameters are taken to be 0.2h  , 0.1t  , 

  3 3g u u . Figure 7 shows that as the value of   

decreases, the amplitude of the wave slightly 

increases. However, any oscillation does not appear in 

the wave motion if   value is taken larger. It can be 

also seen that as the  value decreases, some 

oscillations occur. The results in the above examples 

revealed that the proposed method has been seen to be 

usually more convergent and easier than its rival 

methods from the literature. 

4. Conclusion 

A hybrid approach based on two different types of 

finite difference scheme has been introduced and 

applied for the solutions of some physical problems 

constructed with the RLW-Burgers equation. To 

reveal the accuracy of the proposed scheme, five test 

problems are considered for various values of 

parameters taken part in the RLW-Burgers equation, 

and some error norms, such as absolute, 2L  and L , 

are presented. The computed results revealed that the 

suggested method highly accurate, computationally 

powerful and user-friendly. The present approach is 

also believed to be easier in producing computer codes 

for applications. Therefore, it is seen to be a strongly 

advisable alternative to discover both qualitative and 

quantitative behaviors of similar processes for further 

studies. 
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(a)   3 3g u u  
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(b)   5 5g u u  
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(c)   9 9g u u  

Figure 5. The behaviors of the wave in Example 5 using 

0.2,h   0.1t   for various  g u  
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(a)   3 3g u u  
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(b)   5 5g u u  
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(c)   9 9g u u  

Figure 6. Numerical solutions for Example 5 at 10t   

using 0.1t   and various values of h  with various  g u  
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