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1. Introduction Various versions of finite element methods have

Consider the following advection-di1‘fusi0n-reactionPrOf()un(JIIy been analyzed in the literature. For

equation with given initial and boundary conditions instance; ~ Least-squares  B-spline  finite element
q 9 y method was used by Dag et al. [6], a cubic B-spline

Cc=DCy —VC,—0C, t20,a<x<bh (1)  collocation method was introduced by Goh [7], an

C(x,0) = fo(x) (2)  upwind finite element method was organized by

C(a,t) = go(t) orZ—C =hy(t)at x=a (3) Ramakrishman [8], the quartic and quintic B-spline
X

ac methods were used by Korkmaz and Dag [9] for their
C(b,t) = g1 () or == hy (t) at x = b. 4)  own problems. In the study of Irk et al. [3], an
Many quantities are encountered in various field aéxtended cubic B-spline collocation method was also
science such as mass, heat, energy, velocity, ap@nsidered. In addition to finite element-based
concentration represented in the advection-diffusio methods, some other numerical methods were also
reaction (ADR) equation as the dependent variéble taken into consideration in dealing with the ADR
The ADR equation has great importance in differergrocesses [1,10].

%ggs' esp?‘c'a”y tgolse myolvmghﬂu!d fllow C[il'zhhe . This study discovers some finite element basedithybr
equation models various physical and ¢ emICéEéchniques to analyze the model problems encouhtere
Processes, as stqted In the I_|teratqre 31, sucheas. in broad range of science. To integrate the redulte
transfer in _dralnlng film, -dispersion Of. tracers Ir‘system of ordinary differential equationsfamily of
porous mt:]dla,d'_[he spread ?f g_ollutlantg, n rlve_rdl AMime approximation is performed and fully discrete
stream, the dispersion of dissolved material II&Igebraic equations are obtained in terms of the
estuaries and coastal sea, etc. When the advdstio arameters. Note that the strong form of the ADR
doml_nant to the dl_ffu5|on in th_e equation, the exa%quation (1) is accepted, as opposed to the weak fo
solutions mostly fail and thus diverge. In thessesa commonly used in the literature, since the stramgnf

the effecgve Sur_nencal meth(éds brlleed U’;[tge bfsads to computationally more economic and more
constructed to obtain accurate and stable restittseo oo o ite

model equation. ) _

. . . o All produced results are compared with the litematu
Nowadays, B-spline baS|s_ functions are main Intereg 4 ayact solutions. Various test problems invgvin
of many researchers to find out effective numericaj .o aqvection, pure diffusion, advection-diffusion
solutions of partial differential equations [4.,5].504  advection-diffusion-reaction are demonstrated
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with quantitatively and qualitatively produced risu

_ continuity of the approximate solution and the tfirs
2. Numerical methods and second order-derivatives at all region.

. The interval [a,b] is partitioned into N finite
2.1 Galerkin method elements. Each element has equal lengthand
To solve equation (1) with given boundary condisionelement nodes are discretizedaas x, < x; < -+ <
(3)-(4) and initial condition (2), the Galerkin dalB- xy =b where x,, =x,+h ((=01...,N—1).
spline finite element method is used for spatiadlet ¢, be the cubic B-spline basis functions [11] as
approximation. The selection of these types of asfollows
functions is very suitable and advantageous. THe we
known advantages of using cubic B-splines are the
(x—2x,_,)8 [x1-2,%1-1]
h® + 3R (x — x;-4) + 3h(x — x;-1)%* — 3(x — x,1)° I [x1-1, %]

1
P1(X) =351 h% + 312 (41 — 1) + 3h(xp4q — 1)% = 3Cxpas — 2)° 0% € 1 [y x144] )
(X142 — %)? k[xl+1'xz+z]
0 otherwise.

The corresponding cubic B-spline basis functionapproximation.

include the set of splinep_1, 9o, ., ¢n+1} @nd the  To compute element matrices, it is required to use
global approximation functionCy(x,t) can be |ocal coordinate system considering (5) anek x —
expressed as x; where 0<o<h , the basis functions are

Cy(x,t) = XN B (D)o (x) (6) expressed in the following form

wherep; (t) is the time part of approximation function
éy(x,t) and is to be determined from the time

Xj_o, Xj_
(] (h— 0)3 [[; 2 ; ]1]
(J} _ 1 h3 + 3h2(h _ O') + 3h(h _ 0.)2 _ 3(h _ 0_)3 -1
s X E 1, 2144] (7)
Prer R h3® + 3h%0¢ + 3ho? — 303 | Do xs]
P42 3 1+1 X142
' ’ k otherwise.

Each finite elementxf, x;,,] is covered by the set of Cy (x;, t)= B,_1+4B8,+ 141

four cubic B-spline$,_1, ¢, 9141, 0112} Table 1

shows the values af, ,¢,” andg,” at the end points Cn (X141, £)=Bit 4141+ Bry2

of element %, x14,]. Local approximation function on _ 3

the elements;, x,,,] is defined as follows Cy G t) = ~(Bres — Bi-1) )

Cy(x ) = Xiti 1 Bi(®)gi(x) (8) (s t) = (8 )
N\AL+1D T p\Pl+2 T PL

Table 1. Values of approximate function and its derivagive Cy (x;,t) = %(BLH =26+ Bi-1)
at the end points of the element h

X Xi—2 X1-1 X1 X1+1 Xi+2 Cy (X1 t) = %(Bl+2 =211+ BY)
P 0 1 4 1 0 o .

, 0 3/h 0 3/h Now it is time to apply the Galerkin approach. By
b1 considering elementx[, x;,,], let us consider the
o 0 6/if  -12/1F 6/ 0 strong form of equation (1) over the intervay, .11,

one can then write
Values of the local approximation functiafy (x,t) — [**1y (a_c +v%.i0c-D "’Z_C) dx = 0. (10)
X1 ot ax ax2

and its first two derivatives at the end pointstiod

interval b, x,,1] is defined in terms of time The test functiow is selected to be equal to the cubic

dependent quantitig® (¢) using (8) and Table 1. The B_spline basis functions. This approach is known as

corresponding values are thus: the Galerkin approach in the finite element society
Use of (8) and local coordinate system (7) tramsfor
equation (10) to the following relation

h aps h , h
21y piwsdo| L+ VEEL [ oo B+ T2 ([ @ipydo] BE -
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h n
DY 1) ipf do] s = 0 (11)
or in a matrix notation time independent matrices. After the assembling
ape _ process of each element and imposing the boundary
M® e +VLB® + 68M°B° — DK°B° =0 (12)  conditions the matrix form will finally be
where M L4y LB + 9M* B-DK"B + R=0 (14)
e _

Mjj = Jy ¢i9;do, whereM*, L* andK* are(N + 1) x (N + 1) matrices,
LE = fh ©;do, B = (Bo, -, By)T is the unknown time approximation

31 / vector and R is an((N + 1) x 1) time dependent
K§ = [, vipj do, (13) vector. By considering Dirichlet boundary condison
B = (B, Bu Bis v, Braz)T (3) — (4),R is defined as follows
where i,j=1-1L1+11+2 for the element
[, x;41]- In equation (11)M€, K€ andL® are(4 X 4)
R = (9oP21,90P31, 9oPs1, 0, ""O'QIP(N)(N+3)'glp(N+1)(N+3)'glp(N+2)(N+3))T (15)
Pj = (M +VL" +60M" — DK™),. (16)
Note thatM™*, L** andK** are the assembled matricesP;; = (M* + VL* + 6M* — DK");; (23)

before imposing the boundary conditions. Thus,

equation (14) is a system of ordinary differentiallhus, consideration of a suitable time integration
equations, which is integrated usingamily of ime method for equation (21) gives us the solution of
approximation. equation (1) with conditions (2)-(4).

2.2 Collocation method 2.3Taylor-Galerkin method

Let us reconsider expressions (5)-(9) and moddihe third approximation method in solving equation
equation (1) with the following collocation points (1) is the Taylor-Galerkin method being effectiv f

(17) many problems represented by differential equations
] The main idea of the method is that the time
wherew™ = [Xpn, Xm41] IS the m —th element. Here  45-0ximation based on Taylor series expansion is

h andN indicate the element size and the number Qferformed before the spatial discretization. After
total element, respectively. Then the model eq“at'operforming the time discretization, the Galerkin

can be written as follows method is used for the spatial approximation by
aCN(t) _ Dazc”N(x,t) _ VGC'N(x,t)_HCN(x' £). (18) utilizing B-splines basis functions (5). The ordsr

Xp=a+mxh,m=0,1,..,N

ot ox2 ox . ~ the TGFEM schemes can be determined by the
Use of expressions (9) yields the following equatio  truncation error of the Taylor expansion. In tHisdy,
By + 4B + Bmsy = we prefer to use the second order TGFEM schemes for

6 3 the numerical solution of equation (1). Use of the
D ﬁ(/}m_l —2Bm + Bms1) — VE(—ﬁm_1 + Bn+1)  Taylor expansion of the functiofi with respect tat

gives rise to,
_Q(Bm—l + 4B‘m + ﬁm+1) (19) n cntl_cn dt p 2
where § stands for the time differentiation. For all®t = g 3 Cee = 0((d6)*). (24)

values ofm, N + 1 equations are obtained. In matrixTaking derivative of equation (1) with respect tto
notation, the corresponding equations can be renrit |eads to,

as Cot = (VCy — OC+DC )} = =V (CM, — 6CT +
ML+ VLp +6MB — DKB =0 (20) D(C{) - (25)
where M,L and K are (N+1)x (N + 3) time At the_ very moment, there are §everal ways to
independent matrices. After imposing Dirichlet"]‘[:’prox'ma_lte the secnond “m? denvat!ve of functibn
boundary conditiong3) — (4), equation (20) can be First one is that alC* terms in equation (222105121 be
written as replaced by Euler time stepping, i.€" = ¢ dt_c
M VLB +OM*B — DK*B+R =0 (21) This selection has t_he same as the Galer_kin method.
at For the sake of brevity, it is preferred to usefeecent
where M*,L* and K*are (N+1)x (N +1) time way to approximate the second time derivative of
independent matrices anfl = (B, ..., By)" is the function C. It is noticeable that, the first order time
unknown time approximation vectoR is an((N +  derivative of the function, i.&C,, can be rewritten by
1) x 1) time dependent vector and defined by using ADR equation (1) itself. Euler time steppisg
R = (go(O)P11,0, ...,0, g1 () Py 1yvs))” (22) used for the diffusion term of equation (25) whtihe
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rest of the terms are dealt with the considerege — (", " do. S¢ = ("0.0" do
technique. Thus, equation (25) can be re-expressed o ouej do. S5 = Jy o0}

follows, *(an?
W V1=ED1V2=1_9dt+w' (29)
Ch—V(=VCg —0C™ +DCL), — 2 2
O(=VCE —6C™ +DCE+) + ys = Vdt — 8V (dt)?
D (C"“—C") (26) '
dt xx dt vi@de?  ev(dt)?

Substitution of equations (1) and (26) into equatioy4 2 2 2
(24) and doing some mathematical manipulations lead VD(db)?

to the following semi-discrete system, Vs =

41 dt +1_ (1 _ 6% (dt)? _
et = Zpegt = (1- gt + 5 )cn
(Vdt — 6v(dt)®)Cl +

2

where i,j=1-1,,I+1,l+2 for the element
[x;, %41]. After assembling the procedure and

2442 2
(%D +%— @) Ch — imposing the Dirichlet boundary conditions, the
vD(dt)? matrix equation will then be

n
| B T L S Ay AT o
Using thg Galgrkln approa_ch for equation (27) under ¥sS*1p™ + R* (30)
the con_S|derat|or_1 of equatlons_(5)—(8) and dpmgeso where M*, L', K* and S* are (N + 1) x (N + 1)
algebraic operations, one obtains the following .
iteration system, matrices andn =0,1,..,T for T =
e e anit e e e e on (N+1)x1) time dependent residual vector
[M —7K :I’B =[72M “rL Ay K =7 Jﬁ Eesulting from boundary conditions. Assuming the
(28) case of Dirichlet boundary conditioii3) — (4),R* =
R, — R, and the required matrices are defined as
follows

T fi .
nal - pris an

and

e h e h r
M§ = [, @ipjdo, L§ = [ @ipjdo
R1= (90 P21, 90 P31, 90 Pa1, 0, -"rOrg?P(N)(N+3):g?P(N+1)(N+3)rg?P(N+2)(N+3))T
R,=(g8+" P31, 98" P31, 90 P41, 0, ---'0'g{l+1p(1N)(N+3)'g{l+1P(1N+1)(N+3)'g?+1p(1N+z)(N+3))T
and

_ *% *% 1 _ * * *

Py =M™ =y, K], Pjj = [yaM™ + v K" — ysS7];;.

Note thatM*™* and K** are the assembled matricesequation (21) give

before prescribing the boundary conditions. Equatiopm* + qdt(VL* + 0M* — DK){B}ess = [M* — (1 —
(30) is a recursive relation betwegf andg"*!. By .
obtaining8° we can calculate the solution vector for)dt(VL
each time step.

+6M*—D K*)]{,B}s + Rs+1 - Rs (34)

where s represents the time indeXf8}, can be

) ) ) ) obtained under the consideration of initial coruditi
2.4.0-family of time approximation (2). Then, by using recursive relation (34), the other
To solve the ODE systems (14) and (2ifamily of ~ solutions are computed.

time approximation is preferred since the method is

easy to implement, satisfies the unconditionalistab 3. Numerical illustrations

by the dependence of the selection of the parametefrpig gection is devoted to numerical illustratidrtte
and.has the reqy|req accuracy. As.stated in [h2-t various test problems for the advection-diffusion-
family of approximation can be defined as reaction processes by considering quantitative and

{B}s+1 = {B}s + dt{B}s+a (31) qualitative results. Accuracy and stability of the
. ) obtained results are figured out by demonstratingre
{Blsta = (1 — ) {B}s + a{ B}ss1 (32) norms and pointwise solutions. Produced results are

compared with the literature and exact solutions. T
evaluate error norms of the present results we=ptef

dt[(1— @) { B}s + af Blers] = (Bless — {B)s (33) use the following norm definitions,

. = |cexact _ Cnumerical
[ g} i ’

or

where0 < & < 1, ty,; — t, = dt andp stands for the ; — max|CEFect — crumerteaty,
time differentiation. Using the same steps of the -
procedure given in [12], both equation (14) and, = Jh YN |cpract — cpumerical 2,
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In the ADR equation, there are two important prable c(0,t) =0, 9¢(90005) _ (37)
parameters need to be considered, the Peclet and th ox .

Courant numbers. Non-dimensional parametetn Figure 1, we demonstrate the propagation of the
Courant (r) number, gives the fractional distanceinitial pulses up t®600 s by considering the Galerkin
relative to the grid spacing travelled due to atieec Method for the parameters = 50 anddt = 10. The

in a single time steffr = (Vdt)/h. This parameter comparison of thg absolute errors prod'uced by the
especially plays an important role when we need {galerkin, collocation and Taylor-Galerkin methods
determine stability conditions of the considered@re given in Figure 2 for the values &f= 0.5,
numerical approaches. The Peclet number is anotHer= 100m, dt =50 s andt = 9600s. As seen in
crucial non-dimensional parameter which comparesigure 2, the Galerkin method has been seen to be
the characteristic time for dispersion and diffasio more accurate than the rest of the considered mistho
given a length scale with the characteristic time f The error norms and peak location of the

advection, i.ePe = (Vh)/D where the parameters areconcentration are compared with the literatureaiéd
as in equation (1). exact peak location in Table 2 for various valués o

L e the Courant numbers, i.€r = (Vdt)/h. Because of
Problem 1 [6] Pure advection in an infinitely long the stability condition in Tgble(z taé Taylor-Gédie

chgnnel: . ) . method is not preferred to use. The method is not
Initially, we consider pure advection problem, i.egigple for higher Courant numbers.
D=0 and 8 =0. The analytic solution of the

problem of interest is as follows [6] ® | TERON (TAON SR e
Clx,t) = 10exp(—piz(x —x — V£)?) (35)

wherep is the real problem parameter. This solutior
construct a transportation of an initial concefrapf A
10 height units whose peak value is gt initially i
along an infinitely long channel as well as it ntains

its own shape during the propagation. The paramete 2
of the problem are taken to e= 0.5, x, = 2000 m i _ | !
and p = 264. To compare with the literature [6], all e e e

(%1}

parameters are taken to be equal. The finc. *
propagation time is; = 9600 s while the initial and Figure 1. Propagation Qf initigl pulse with constant wave
boundary conditions are as follows speed/ = 0.5 for various time values up 600 s.
C(x,0) = 10 exp (—ﬁ (x — 2000)2), (36)
04 I I i 1 X L]
—=— Galerkin |
—+— Collocation
0.35 | —<— Taylor-Galerkin
03[
5025
w
[
5 02}
o
2
< 015
01 T
0.05
{3 A A A A - 4
0 1000 2000 3000 4000 5000 8000 9000

X
Figure 2. Comparison of the absolute error norms of variahemes wittV = 0.5, h = 100 m, dt = 50 s andt = 9600 s.
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Table 2. Comparison of the error norms produced with varialaes of the Courant number atel = oo in Problem 1.

FEMQSF [6] GFEM CFEM
Cr h Peak L, Lo Peak L, Lo Peak L, Lo IED);aath
0.125 200 8.7529 32.874 1.350 9.9216 55198 0.2783319 37.0409 1.2897 10
0.25 100 9.647 10.596 0.494 9.9864 4.0050 0.1899402. 6.4028 0.3258 10
0.5 50 9.864 7.984 0.380 9.9865 4.0032 0.1896 9.984.1390 0.1976 10
1.0 25 9943 7.881 0.377 9.9865 4.0032 0.1896 9.984.0115 0.1901 10
2.0 125 9.956 7.899 0.378 9.9944 4.0032 0.1896949.9 4.0037 0.1897 10

Problem 2 [13] Purediffusion on afiniteline pure diffusion. As realized in Table 3, the present
Now consider pure diffusion problem for selectidn oGalerkin scheme produces better accuracy comparison
V=0,D=1/%andd =0 inthe ADR equation (1) to the literature [13] and the current collocation
with the following exact solution [13], scheme. Thus the computed results have been seen to
. represent the related physical problem. Yet,
C(x,t) = exp(=t) sin(mx). (38) comparison of absolute errors has been seen both
The problem has homogenous Dirichlet boundanjualitatively and quantitatively in Figure 3 for
conditions and initial condition can be taken frdm p = 0.01m, dt = 0.0001s and t = 1. Figure 4

exact solution (38). In Table 3, we compare maximuniustrates the diffusion process of the initial
error norms of the present schemes with the lileeat concentration with the diffusion constabt= 1/r?

[13] and among each other. As seen in Sectione?, tBy using the Galerkin approach far= 0.01 m and
same discretized equations have been obtainedidor t7: — 00001 s.

Galerkin and the Taylor-Galerkin methods in case of

Table 3. Comparison of the error norms produced with varicalges of the Peclet number afwd= 0 in Problem 2.

CN [13] GFEM CFEM TGFEM
h=dt Pe Lo, Lo, L, Lo L, Lo, L,
0.2 1.973 1.1E-2 1.1E-3 8.7E-4 1.2E-2 9.4E-3 1.1E-3 8.7E-4
0.1 0.986 2.7E-3 3.0E-6 2.1E-4 3.3E-3 2.3E-3 3.0E-6 2.1E-4
0.05 0.493 6.8E-4 7.6E-5 5.4E-5 8.3E-4 5.8E-4 B6E- 5.4E-5
0.025 0.246 1.7E-4 1.9E-5 1.3E-5 2.0E-4 1.4E-4 R9E 1,3E-5
0.0125 0.123 4.2E-5 4.7E-6 3.3E-6 5.2E-5 3.6E-5 E4&7 3,3E-6
0.00625 0.061 1.1E-5 1.1E-6 8.4E-7 1.3E-5 9.2E-6 1E&B 8,4E-7
35'108 35'10-5
' | — Galerkin/Taylor-Galerkin : —— Caollocation
3 //-\. 3t
25 /’ \-\ 25
S f ."._ LLO-—
B2 \ |52
= I \ 5
E 15 / "-._ E 15
< I \ <
1 / \ 1}
I" ..‘\
0.5 ;’ ' 0.5 / \
r"i
of 0
0 02 04 06 08 0 0.2 04 06 08 1

X

x

Figure 3. Comparison of the absolute errors of the Galerkih @llocation schemes fore= 0.01 m, dt = 0.0001 s and

t =1sin Problem 2.
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0.8

C(x,t)

Figure 4. Diffusion process of the initial concentration for= 1/72, h = 0.01 m anddt = 0.0001 s in Problem 2

Problem 3[14,10] Advection-diffusion processona  The produced results and exact solution are cordpare
finiteline in Table 4 for the various values of the Courant
Consider the advection-diffusion process with th&umber and various values @fat the peak location of
choice of V=1,v=0.01 andg = 0 in the ADR the concentrationx = 0.5 and t =1. The present
equation for which the exact solution, in a regiofolutions are compared with the work of Kadalbajoo
bounded by0 < x < 1, is [10]: and Arora [14] in Table 5 under the consideratién o
the values=0.1,h=0.01, Pe=1 andt=1. As
_ 0.025 ex &+ 0.5-1 ) seen in Tables 4-5, the Galerkin method seems to be
1/0.000625 0.02 0.00125+ 0.08)°

C(xt) (39)

more accurate than the other suggested methoids. It
also seen that the Galerkin and the Taylor-Galerkin
ethods are preferable comparison to the literature
FI4]. For various choices of the parameters, catali¢
behavior of the model problem is sketched in Figure
5-6. There has been seen to be good agreement among
the suggested methods (see Figure 6). Thus the
produced results showed that the current problesn ha

The boundary conditions of the problem can b
written from exact solution (40) as follows:

(x+0.5)2),

= eXp[_ 0.00125

go(t) = 0.025 exp(— (0.5-] ] (40) represented the physical behaviour very well. It is
+/0.000625+ 0.02 0.00125+ 0.04 important to note that the collocation method takes

0.025 @.51t§ . (41) less computational time than both the Galerkin thed

%0 = 5000625 008"l ~0.00125 0.0 Taylor-Galerki hods  whil i
0.000625- 0.0P 0.00125+ 0.04 aylor-Galerkin methods while the collocation

method is of a bit cruder results than the others.

Table 4. Comparison of the peak value for= 0.01, Pe = 1, x = 0.5andt = 1 in Problem 3.

dt cr Exact GFEM CFEM TGFEM
0.0005 0.025 0.17407766 0.17407779 0.17403093 0.17407778
0.0010 0.050 0.17407766 0.17407819 0.17403132 0.17407819
0.0020 0.100 0.17407766 0.17407975 0.17403288 0.17408007
0.0033 0.167 0.17407766 0.17408344 0.17403655 )
0.0040 0.200 0.17407766 0.17408597 0.17403907 -
0.0080 0.400 0.17407766 0.17411025 0.17406324 -
0.0100 0.500 0.17407766 0.17412783 0.17408073 -




134 M. Sari, H. Tunc / IJOCTA, Vol.8, No.1, pp.127-136 (2018)
Table5. A comparison of present solutions with the litera [14] and exact solution at various nodal poamd at = 1 in
Problem 3.
X Exact TGBS2L TGBS2HQ [14] TGBS2HL GFEM CFEM TGFEM
[14] [14]
0.1 0.0035992 0.0036360 0.0036055 0.0036070 0.®1359 0.0035981 0.0035995
0.2 0.0196422 0.0196436 0.0196048 0.0195969 0.am64 0.0196473 0.0196428
0.3 0.0660098 0.0656522 0.0658887 0.0658624 0.@®01 0.0660280 0.0660080
0.4 0.1366027 0.1362141 0.1366971 0.1367171 0.B660 0.1365920 0.1365975
0.5 0.1740776 0.1746041 0.1744042 0.1744743 0.B2407 0.1740313 0.1740782
0.6 0.1366027 0.1373258 0.1365433 0.1365294 0.8359 0.1366069 0.1366108
0.7 0.0660098 0.0659361 0.0657310 0.0656721 0.08600 0.0660477 0.0660133
0.8 0.0196422 0.0193197 0.0196024 0.0195950 0.@B®P64 0.0196494 0.0196397
0.9 0.0035992 0.0034754 0.0036699 0.0036847 0.@®59 0.0035902 0.0035948
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Figure 5. GFEM solution at various times in Problem 3 foe= 0.01,dt = 0.001, Cr = 0.1 andPe = 1.
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Figure 6. Absolute errors of the suggested methods attiélparameters= 1,h = 0.01,dt = 0.001, Cr = 0.1 and

Pe =1 in Problem 3
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Problem 4. Advection-diffusion-reaction process on

afiniteline

. . . A
Let us now consider the ADR equation with arbitrary ™

wherex € [0,L], t > 0 and

_ foL sin (nLLx) sin(mx) exp (— gx) dx

135

(44)

values of V, 8 and with homogeneous Dirichlet For the sake of simplicity, the upper bound of spat

boundary conditions.

condition
C(x,0) = sin(mx)

Taking

following

parameters,
(42) numerical methods are compared in Figures 7-8.

leads us to derive the following Fourier seriescéxa

absolute errors of

initial domain is taken to e = 1. For various values of the

the considered

solution,
C(x,t) =
© 4 pn? | v?
Zn=0 neXp - 212 + E +
V2 .
9)) exp (— x) sin (nmm) (43)
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Figure 7. Comparison of the currently suggested methodaring of the absolute errors foe= 0.1, h = 0.05,dt = 0.001,
D=1,V =1andf = 0.5 in Problem 4.
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Figure 8. Comparison of the currently suggested methodaring of the absolute errors foe= 0.1, h = 0.05,dt = 0.001,
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methods for numerical solutions of Burgers’
equationApplied Mathematics and Computation,
166, 506-522.

Dag, ., Irk, D. & Tombul, M. (2006). Least-squares
finite element method for the advection diffusion
equationApplied Mathematics and Computation,
173, 554-565

Goh, J., Majid, A.A., & Ismail, A.l. Md. (2012).
Cubic B-spline collocation method for one-
dimensional heat and advection-diffusion

4. Conclusions and recommendation

This paper has concentrated on numerically analyzin
the  advection-diffusion-reaction  equation  by[6]
considering various finite element techniques
including Galerkin, collocation and Taylor-Galerkin
methods. To profoundly understand the physical
processes represented by the model equation, saricm
choices of the problem have been discussed bo
qualitatively and quantitatively. Comparison of the
computed results showed that the Galerkin finite equationslournal of Applied Mathematics, 37, 1-8.
element method is more accurate and more versatile ] ] N
than the Taylor-Galerkin and the collocation method [8] Ramakrishnan, C.V. (1979). An upwind finite
However, note that the collocation method takes les €l€ment scheme for the unsteady convective diféusiv
computational time than both the Galerkin and the gagggozrgfquatlomplled Mathematical Modlling,
Taylor-Galerkin  methods while the collocation ' e

method is a bit cruder than the others. Furthadistu [9] Korkmaz, A., & Dag, I. (2016). Quartic and quintic
can concentrate on capturing the response of tine sa  B-spline methods for advection-diffusion equation.

physical model with various forms of forcing terms. Applied Mathematics and Computation, 274, 208-
219.
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