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 In this paper, numerical solutions of the advection-diffusion-reaction (ADR) 
equation are investigated using the Galerkin, collocation and Taylor-Galerkin 
cubic B-spline finite element methods in strong form of spatial elements using an 
α-family optimization approach for time variation. The main objective of this 
article is to capture effective results of the finite element techniques with B-
spline basis functions under the consideration of the ADR processes. All 
produced results are compared with the exact solution and the literature for 
various versions of problems including pure advection, pure diffusion, advection-
diffusion, and advection-diffusion-reaction equations. It is proved that the 
present methods have good agreement with the exact solution and the literature. 
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1. Introduction 

Consider the following advection-diffusion-reaction 
equation with given initial and boundary conditions: �� � ���� � ��� � ��, � � 0,	� � 
 � �                   (1) ��
, 0� � ���
�                                                          (2) ���, �� � ����� or 

��
�� � ����� at 		
 � �                      (3) ���, �� � ����� or 
��
�� � ����� at 		
 � �.                       (4) 

Many quantities are encountered in various field of 
science such as mass, heat, energy, velocity, and 
concentration represented in the advection-diffusion-
reaction (ADR) equation as the dependent variable �. 
The ADR equation has great importance in different 
areas, especially those involving fluid flow [1,2]. The 
ADR equation models various physical and chemical 
processes, as stated in the literature [3], such as heat 
transfer in draining film, dispersion of tracers in 
porous media, the spread of pollutants in rivers and 
stream, the dispersion of dissolved material in 
estuaries and coastal sea, etc. When the advection is 
dominant to the diffusion in the equation, the exact 
solutions mostly fail and thus diverge. In these cases, 
the effective numerical methods need to be 
constructed to obtain accurate and stable results of the 
model equation. 

Nowadays, B-spline basis functions are main interest 
of many researchers to find out effective numerical 
solutions of partial differential equations [4,5]. 

Various versions of finite element methods have 
profoundly been analyzed in the literature. For 
instance; Least-squares B-spline finite element 
method was used by Dag et al. [6], a cubic B-spline 
collocation method was introduced by Goh [7], an 
upwind finite element method was organized by 
Ramakrishman [8], the quartic and quintic B-spline 
methods were used by Korkmaz and Dag [9] for their 
own problems. In the study of Irk et al. [3], an 
extended cubic B-spline collocation method was also 
considered. In addition to finite element-based 
methods, some other numerical methods were also 
taken into consideration in dealing with the ADR 
processes [1,10]. 

This study discovers some finite element based hybrid 
techniques to analyze the model problems encountered 
in broad range of science. To integrate the resulted 
system of ordinary differential equations α-family of 
time approximation is performed and fully discrete 
algebraic equations are obtained in terms of the 
parameters. Note that the strong form of the ADR 
equation (1) is accepted, as opposed to the weak form 
commonly used in the literature, since the strong form 
leads to computationally more economic and more 
accurate results. 

All produced results are compared with the literature 
and exact solutions. Various test problems involving 
pure advection, pure diffusion, advection-diffusion 
and advection-diffusion-reaction are demonstrated 
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with quantitatively and qualitatively produced results.

2. Numerical methods 

2.1  Galerkin method  

To solve equation (1) with given boundary conditions 
(3)-(4) and initial condition (2), the Galerkin cubic B-
spline finite element method is used for spatial 
approximation. The selection of these types of basis 
functions is very suitable and advantageous. The well-
known advantages of using cubic B-splines are the 

continuity of the approximate solution and the first 
and second order-derivatives at all region. 

The interval [�, �] is partitioned into � finite 
elements. Each element has equal length ℎ and 
element nodes are discretized as � = �� < �� < ⋯ <�� = � where ���� = �� + ℎ    (� = 0,1. … ,� − 1). 
Let �� be the cubic B-spline basis functions [11] as 
follows 

 

����� = �
�� 	
�
�

�� − �����	

ℎ	 + 3ℎ��� − ����� + 3ℎ�� − ������ − 3�� − �����	

ℎ	 + 3ℎ������ − �� + 3ℎ����� − ��� − 3����� − ��	����� − ��	
0

 , � ∈ 	
�
�

����, �����
����, ���
�� , �����
����, �����
otherwise.

                                     (5) 

The corresponding cubic B-spline basis functions 
include the set of splines {���,��, … ,����} and the 
global approximation function ���(�, �) can be 
expressed as ���(�, �) = ∑ �������(�)����
��                                     (6) 

where ����� is the time part of approximation function ��̃��, �� and is to be determined from the time 

approximation. 

To compute element matrices, it is required to use 
local coordinate system considering (5) and � = � −��  where 0 ≤ � ≤ ℎ , the basis functions are 
expressed in the following form 

���������������

  = �
��� (ℎ − �)	

ℎ	 + 3ℎ��ℎ − �� + 3ℎ(ℎ − �)� − 3(ℎ − �)	

ℎ	 + 3ℎ�� + 3ℎ�� − 3�	�	

, � ∈  	
�
�

����, �����
����, ���
�� , �����
����, �����

    ��ℎ������.

                                            (7) 

 

Each finite element [x�, x���] is covered by the set of 
four cubic B-splines {����,�� ,����,����}. Table 1 
shows the values of ��  ,��
 and �� 

 at the end points 
of element [x�, x���]. Local approximation function on 
the element [x�, x���] is defined as follows ���(�, �) = ∑ �������(�)����
���                                    (8) 

 

Table 1. Values of approximate function and its derivatives 
at the end points of the element � ���� ���� ��  ���� ���� �� 0 1 4 1 0 ��
 0 -3/h 0 3/h 0 ��

 0 6/h2 -12/h2 6/h2 0 

 

Values of the local approximation function ��̃(�, �) 
and its first two derivatives at the end points of the 
interval [�� , ����] is defined in terms of time 
dependent quantities ����� using (8) and Table 1. The 
corresponding values are thus: 

 

 

 

���(�� , �)= ����+4��+���� ���(����, �)=��+4����+���� ���
 ��� , �� = 	
�(���� − ����)              (9) ���
 �����, �� = 	

�(���� − ��) ���

��� , �� = �
��(���� − 2�� + ����) ���

�����, �� = �

��(���� − 2���� + ��) 

Now it is time to apply the Galerkin approach. By 
considering element [�� ,����], let us consider the 
strong form of equation (1) over the interval [�� , ����], 
one can then write  � �  ��

�� + V ��
�� + !� − " ���

���#$� = 0.����
��              (10) 

The test function � is selected to be equal to the cubic 
B-spline basis functions. This approach is known as 
the Galerkin approach in the finite element society. 
Use of (8) and local coordinate system (7) transforms 
equation (10) to the following relation 

 ∑ %� ����$��
� &����
���

����

�� + ' ∑ %� ����
$��
� &����
��� β��+! ∑ %� ����$��

� & β������
��� −
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                                                                                           "∑ %� ����

$��
� &����
��� β�� = 0       (11) 

 

or in a matrix notation (� ���
�� + ')��� + !(��� − "*��� = 0             (12) 

where 

M��� = � ����$��
� , 

L ��� = � ����

�
� $�, 

K��� = � ����


�
� $�,                        (13) �� = (����,��,����,����)� 

where �, + = � − 1, �, � + 1, � + 2 for the element 
[�� , ����]. In equation (11); (�, *� and )� are (4 × 4) 

time independent matrices. After the assembling 
process of each element and imposing the boundary 
conditions the matrix form will finally be (∗ ��

��+')∗� + !(∗�-"*∗� + ,=0                       (14) 

where (∗,  )∗ and *∗ are (� + 1) × (� + 1) matrices, � = (��, … ,��)� is the unknown time approximation 
vector and R is an ((� + 1) × 1) time dependent 
vector. By considering Dirichlet boundary conditions �3� − �4�,, is defined as follows , =  (-�.��,-�.	�,-�.��, 0, … ,0,-�.������	�,-�.��������	�,-�.�����(��	))�        (15) .�� = ((∗∗ + ')∗∗ + !(∗∗ −  "*∗∗)�� .              (16)

Note that (∗∗, )∗∗ and *∗∗ are the assembled matrices 
before imposing the boundary conditions. Thus, 
equation (14) is a system of ordinary differential 
equations, which is integrated using α-family of time 
approximation. 

2.2 Collocation method 

Let us reconsider expressions (5)-(9) and model 
equation (1) with the following collocation points �� = � + / ∗ ℎ, / = 0,1, … ,�                       (17) 

where 0� = [�� , ����] is the  / − �ℎ element. Here 
ℎ and � indicate the element size and the number of 
total element, respectively. Then the model equation 
can be written as follows 
�� �(�,�)

�� = " ��!̃�(�,�)
��� − ' �� ���,��

�� − !�����, ��.       (18) 

Use of expressions (9) yields the following equation  �1��� + 4�1� + �1��� = " 6
ℎ� ����� − 2�� + ����� − ' 3

ℎ �−���� + ����� 
−!����� + 4�� + �����                (19) 

where �1  stands for the time differentiation. For all 
values of /, � + 1 equations are obtained. In matrix 
notation, the corresponding equations can be rewritten 
as  ( ��

�� + ')� + !(� − "*� = 0                  (20) 

where (, ) and * are (� + 1) × (� + 3) time 
independent matrices. After imposing Dirichlet 
boundary conditions (3) − (4), equation (20) can be 
written as  (∗ ��

�� + ')∗� + !(∗� − "*∗� + , = 0              (21) 

where (∗, )∗ and *∗are (� + 1) × (� + 1) time 
independent matrices and � = (��, … ,��)� is the 
unknown time approximation vector. , is an ((� +
1) × 1) time dependent vector and defined by , = (-����.��, 0, … ,0,-����.�����(��	))�            (22) 

.�� = ((∗ + ')∗ + !(∗ −  "*∗)��.                  (23) 

Thus, consideration of a suitable time integration 
method for equation (21) gives us the solution of 
equation (1) with conditions (2)-(4). 

2.3 Taylor-Galerkin method 

The third approximation method in solving equation 
(1) is the Taylor-Galerkin method being effective for 
many problems represented by differential equations. 
The main idea of the method is that the time 
approximation based on Taylor series expansion is 
performed before the spatial discretization. After 
performing the time discretization, the Galerkin 
method is used for the spatial approximation by 
utilizing B-splines basis functions (5). The order of 
the TGFEM schemes can be determined by the 
truncation error of the Taylor expansion. In this study, 
we prefer to use the second order TGFEM schemes for 
the numerical solution of equation (1). Use of the 
Taylor expansion of the function � with respect to � 
gives rise to, ��# = �	����	

�� − ��
� ���# − 2�($�)��.                 (24) 

Taking derivative of equation (1) with respect to � 
leads to, ��� = (−'�� − !�+"���)�# = −'���#�� − !��# +
                                                           "���#���.            (25) 

At the very moment, there are several ways to 
approximate the second time derivative of function �. 
First one is that all ��# terms in equation (25) can be 

replaced by Euler time stepping, i.e. ��# = �	����	
�� . 

This selection has the same as the Galerkin method. 
For the sake of brevity, it is preferred to use a different 
way to approximate the second time derivative of 
function �. It is noticeable that, the first order time 
derivative of the function, i.e. ��, can be rewritten by 
using ADR equation (1) itself. Euler time stepping is 
used for the diffusion term of equation (25) while the 
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rest of the terms are dealt with the considered 
technique. Thus, equation (25) can be re-expressed as 
follows, ���# − '�−'��#   − !�#  + "���# �� −
              !�−'��#   − !�#  + "���# +� +
             "  �	����	

�� #
��

.             (26) 

Substitution of equations (1) and (26) into equation 
(24) and doing some mathematical manipulations lead 
to the following semi-discrete system, �#�� − ��

� "���#�� =  1 − !$� + $������
� # �# −

                                       �'$� − !'�$������# +
                                      ��

� " + %����
� −  $%�����

� #���# −
                                       %&(��)�

� ����# .            (27) 

Using the Galerkin approach for equation (27) under 
the consideration of equations (5)-(8) and doing some 
algebraic operations, one obtains the following 
iteration system, 

1
1 2 3 4 5Ke e n e e e e nM M L K Sγ β γ γ γ γ β+   − − + −=     

                                                                    (28) 

and 

M��� = � ����$��
� , L ��� = � ����


�
� $� 

 K��� = � ����


�
� $�,  S��� = � ����




�
� $� 3� = ��

� ", 3� = 1 − !$� + $�(��)�
� ,                (29) 3	 = '$� − !'($�)�, 3� = ��

� " + %�(��)�
� − $%(��)�

� , 3' = '"($�)�

2           

where �, + = � − 1, �, � + 1, � + 2 for the element 
[�� , ����]. After assembling the procedure and 
imposing the Dirichlet boundary conditions, the 
matrix equation will then be 
(∗ − 3�K∗��#�� = 
3�(∗ − 3	L∗ + 3�K∗ −
                                         3'4∗��# + ,∗                 (30) 

where (∗,  )∗, *∗ and 4∗ are (� + 1) × (� + 1) 

matrices and 5 = 0,1, … ,6 for 6 = �
�	��
�� . ,∗is an 

((� + 1) × 1) time dependent residual vector 
resulting from boundary conditions. Assuming the 
case of Dirichlet boundary conditions �3� − �4�,,∗ =,� − ,� and the required matrices are defined as 
follows 

 ,�= (-�#.��,-�#.	�,-�#.��, 0, … ,0,-�#.������	�,-�#.��������	�,-�#.�����(��	))� ,�= (-�#��.��� ,-�#��.	�� ,-�#��.��� , 0, … ,0,-�#��.������	�� ,-�#��.��������	�� ,-�#��.��������	�� )� 

and .�� = 
(∗∗ − 3�K∗∗���. , .��� = 
3�(∗ + 3�K∗ − 3'4∗���.. 
Note that (∗∗ and *∗∗ are the assembled matrices 
before prescribing the boundary conditions. Equation 
(30) is a recursive relation between �# and �#��. By 
obtaining �� we can calculate the solution vector for 
each time step. 

2.4 α-family of time approximation 

To solve the ODE systems (14) and (21), α-family of 
time approximation is preferred since the method is 
easy to implement, satisfies the unconditional stability 
by the dependence of the selection of the parameter α 
and has the required accuracy. As stated in [12], the α-
family of approximation can be defined as 

{�}(�� = {�}( + $�{�}(�)                       (31) 

{�}(�) = (1 −  α) { �1}* +  α{ �1}*��              (32) 

or $�[(1 −  7) { �1}( +  7{ �1}(��] = {�}(�� − {�}(   (33) 
where 0 ≤ 7 ≤ 1, �(�� − �( = $� and �1  stands for the 
time differentiation. Using the same steps of the 
procedure given in [12], both equation (14) and 

equation (21) give  

[M∗ + �dt���∗ + ��∗ − �K∗�]{	}��� =  [M∗ − (1 −
�)dt(��∗ + ��∗ − � K∗)]{	}� + 
��� − 
�                (34) 

where � represents the time index. {�}� can be 
obtained under the consideration of initial condition 
(2). Then, by using recursive relation (34), the other 
solutions are computed. 

3. Numerical illustrations 

This section is devoted to numerical illustration of the 
various test problems for the advection-diffusion-
reaction processes by considering quantitative and 
qualitative results. Accuracy and stability of the 
obtained results are figured out by demonstrating error 
norms and pointwise solutions. Produced results are 
compared with the literature and exact solutions. To 
evaluate error norms of the present results we prefer to 
use the following norm definitions, 8� = 9����+!� − ��#,��-�!+�9, ). = /���|����+!� − ��#,��-�!+�|, )� = :ℎ ∑ |����+!� − ��#,��-�!+�|���
� . 
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In the ADR equation, there are two important problem 
parameters need to be considered, the Peclet and the 
Courant numbers. Non-dimensional parameter, 
Courant (��) number, gives the fractional distance 
relative to the grid spacing travelled due to advection 
in a single time step �� � �����/�. This parameter 
especially plays an important role when we need to 
determine stability conditions of the considered 
numerical approaches. The Peclet number is another 
crucial non-dimensional parameter which compares 
the characteristic time for dispersion and diffusion 
given a length scale with the characteristic time for 
advection, i.e. �� � ����/� where the parameters are 
as in equation (1). 

Problem 1 [6] Pure advection in an infinitely long 
channel: 
Initially, we consider pure advection problem, i.e. � � 0 and � � 0. The analytic solution of the 
problem of interest is as follows [6] ��
, �� � 10exp	�� �

�� �
 � 
� � �����              (35) 

where � is the real problem parameter. This solution 
construct a transportation of an initial concentration of 
10 height units whose peak value is at 
� initially 
along an infinitely long channel as well as it maintains 
its own shape during the propagation. The parameters 
of the problem are taken to be � � 0.5, 
� � 2000	" 
and � � 264. To compare with the literature [6], all 
parameters are taken to be equal. The final 
propagation time is �	 � 9600	& while the initial and 
boundary conditions are as follows ��
, 0� � 10 exp '� �

�
�� �
 � 2000��(,           (36) 

��0, �� � 0,  
���
���,��

�� � 0.                                  (37) 

In Figure 1, we demonstrate the propagation of the 
initial pulses up to	9600	s by considering the Galerkin 
method for the parameters  � � 50 and �� � 10. The 
comparison of the absolute errors produced by the 
Galerkin, collocation and Taylor-Galerkin methods 
are given in Figure 2 for the values of � � 0.5, � � 100	", �� � 50	& and � � 9600	&. As seen in 
Figure 2, the Galerkin method has been seen to be 
more accurate than the rest of the considered methods. 
The error norms and peak location of the 
concentration are compared with the literature [6] and 
exact peak location in Table 2 for various values of 
the Courant numbers, i.e. �� � �����/�. Because of 
the stability condition in Table 2, the Taylor-Galerkin 
method is not preferred to use. The method is not 
stable for higher Courant numbers. 

 
Figure 1. Propagation of initial pulse with constant wave 

speed � � 0.5 for various time values up to	9600	s. 
 

 
Figure 2. Comparison of the absolute error norms of various schemes with � � 0.5, 
 � 100	�, 
� � 50	� and � � 9600	�. 
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Problem 2 [13] Pure diffusion on a finite line  
Now consider pure diffusion problem for selection of � � 0, � � 1/*� and � � 0  in the ADR equation (1) 
with the following exact solution [13], ��
, �� � exp���� sin	�*
�.                                   (38) 

The problem has homogenous Dirichlet boundary 
conditions and initial condition can be taken from the 
exact solution (38). In Table 3, we compare maximum 
error norms of the present schemes with the literature 
[13] and among each other. As seen in Section 2, the 
same discretized equations have been obtained for the 
Galerkin and the Taylor-Galerkin methods in case of 

pure diffusion. As realized in Table 3, the present 
Galerkin scheme produces better accuracy comparison 
to the literature [13] and the current collocation 
scheme. Thus the computed results have been seen to 
represent the related physical problem. Yet, 
comparison of absolute errors has been seen both 
qualitatively and quantitatively in Figure 3 for � � 0.01	", �� � 0.0001	& and � � 1	&. Figure 4 
illustrates the diffusion process of the initial 
concentration with the diffusion constant � � 1/*� 
by using the Galerkin approach for � � 0.01	" and �� � 0.0001	&.

 

Table 3. Comparison of the error norms produced with various values of the Peclet number and �� � 0 in Problem 2. 

  CN [13] GFEM CFEM TGFEM 

� � �� �� �� �� �� �� �� �� �� 

0.2 1.973 1.1E-2 1.1E-3 8.7E-4 1.2E-2 9.4E-3 1.1E-3 8.7E-4 

0.1 0.986 2.7E-3 3.0E-6 2.1E-4 3.3E-3 2.3E-3 3.0E-6 2.1E-4 

0.05 0.493 6.8E-4 7.6E-5 5.4E-5 8.3E-4 5.8E-4 7.6E-5 5.4E-5 

0.025 0.246 1.7E-4 1.9E-5 1.3E-5 2.0E-4 1.4E-4 1.9E-5 1,3E-5 

0.0125 0.123 4.2E-5 4.7E-6 3.3E-6 5.2E-5 3.6E-5 4.7E-6 3,3E-6 

0.00625 0.061 1.1E-5 1.1E-6 8.4E-7 1.3E-5 9.2E-6 1.1E-6 8,4E-7 

 
Figure 3. Comparison of the absolute errors of the Galerkin and collocation schemes for
 � 0.01	�, 
� � 0.0001	� and 

� � 1	� in Problem 2. 

Table 2. Comparison of the error norms produced with various values of the Courant number and �� � ∞ in Problem 1. 

  FEMQSF [6] GFEM CFEM  

�	 � Peak �� �� Peak �� �� Peak �� �� 
Exact 
Peak 

0.125 200 8.7529 32.874 1.350 9.9216 5.5198 0.2783 9.1319 37.0409 1.2897 10 

0.25 100 9.647 10.596 0.494 9.9864 4.0050 0.1899 9.9402 6.4028 0.3258 10 

0.5 50 9.864 7.984 0.380 9.9865 4.0032 0.1896 9.9847 4.1390 0.1976 10 

1.0 25 9.943 7.881 0.377 9.9865 4.0032 0.1896 9.9864 4.0115 0.1901 10 

2.0 12.5 9.956 7.899 0.378 9.9944 4.0032 0.1896 9.9944 4.0037 0.1897 10 
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Figure 4. Diffusion process of the initial concentration for � � 1/��, 
 � 0.01	� and 
� � 0.0001	� in Problem 2. 

 
Problem 3 [14,10] Advection-diffusion process on a 
finite line 
Consider the advection-diffusion process with the 
choice of  � � 1, - � 0.01 and � � 0 in the ADR 
equation for which the exact solution, in a region 
bounded by0 1x≤ ≤ , is [10]: 

20.025 ( 0.5 )
C( , ) exp

0.00125 0.040.000625 0.02

x t
x t

tt

 + −= − ++   .   (39) 

The boundary conditions of the problem can be 
written from exact solution (40) as follows: 

2( 0.5)
( ) exp

0.00125

x
f x

 += −  
, 

2

0

0.025 (0.5 )
( ) exp

0.00125 0.040.000625 0.02

t
g t

tt

 −= − ++  
 (40)

2

1

0.025 (1.5 )
( ) exp

0.00125 0.040.000625 0.02

t
g t

tt

 −= − ++  
.   (41) 

 

The produced results and exact solution are compared 
in Table 4 for the various values of the Courant 
number and various values of α at the peak location of 
the concentration, 
 � 0.5 and � � 1. The present 
solutions are compared with the work of Kadalbajoo 
and Arora [14] in Table 5 under the consideration of 
the values � 0.1, � � 0.01, �� � 1 and � � 1. As 
seen in Tables 4-5, the Galerkin method seems to be 
more accurate than the other suggested methods. It is 
also seen that the Galerkin and the Taylor-Galerkin 
methods are preferable comparison to the literature 
[14]. For various choices of the parameters, qualitative 
behavior of the model problem is sketched in Figures 
5-6. There has been seen to be good agreement among 
the suggested methods (see Figure 6). Thus the 
produced results showed that the current problem has 
represented the physical behaviour very well. It is 
important to note that the collocation method takes 
less computational time than both the Galerkin and the 
Taylor-Galerkin methods while the collocation 
method is of a bit cruder results than the others. 

 

Table 4. Comparison of the peak value for 
 � 0.01, �� � 1, � � 0.5and � � 1 in Problem 3. 

�� �	 
��
� ��
� ��
� ���
� 

0.0005 0.025 0.17407766 0.17407779 0.17403093 0.17407778 

0.0010 0.050 0.17407766 0.17407819 0.17403132 0.17407819 

0.0020 0.100 0.17407766 0.17407975 0.17403288 0.17408007 

0.0033 0.167 0.17407766 0.17408344 0.17403655 - 

0.0040 0.200 0.17407766 0.17408597 0.17403907 - 

0.0080 0.400 0.17407766 0.17411025 0.17406324 - 

0.0100 0.500 0.17407766 0.17412783 0.17408073 - 
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Table 5. A comparison of present solutions with the literature [14] and exact solution at various nodal points and at � � 1 in 
Problem 3.  

 
Figure 5. GFEM solution at various times in Problem 3 for  
 � 0.01, 
� � 0.001,  �� � 0.1 and �� � 1. 

 

 
Figure 6. Absolute errors of the suggested methods at with the parameters � � 1, 
 � 0.01, 
� � 0.001, �� � 0.1 and 

�� � 1 in Problem 3. 
  

X Exact TGBS2L 
[14] 

TGBS2HQ [14] TGBS2HL 
[14] 

GFEM CFEM TGFEM 

0.1 0.0035992 0.0036360 0.0036055 0.0036070 0.0035991 0.0035981 0.0035995 

0.2 0.0196422 0.0196436 0.0196048 0.0195969 0.0196419 0.0196473 0.0196428 

0.3 0.0660098 0.0656522 0.0658887 0.0658624 0.0660105 0.0660280 0.0660080 

0.4 0.1366027 0.1362141 0.1366971 0.1367171 0.1366054 0.1365920 0.1365975 

0.5 0.1740776 0.1746041 0.1744042 0.1744743 0.1740782 0.1740313 0.1740782 

0.6 0.1366027 0.1373258 0.1365433 0.1365294 0.1365989 0.1366069 0.1366108 

0.7 0.0660098 0.0659361 0.0657310 0.0656721 0.0660075 0.0660477 0.0660133 

0.8 0.0196422 0.0193197 0.0196024 0.0195950 0.0196433 0.0196494 0.0196397 

0.9 0.0035992 0.0034754 0.0036699 0.0036847 0.0035953 0.0035902 0.0035948 
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Problem 4. Advection-diffusion-reaction process on 
a finite line 
Let us now consider the ADR equation with arbitrary 
values of 	�, � and with homogeneous Dirichlet 
boundary conditions. Taking following initial 
condition  ��
, 0� � sin	�*
�                              (42) 

leads us to derive the following Fourier series exact 
solution, ��
, �� �∑ 0�exp	1� '���

���� 2 ��
�� 2����																																�(3 �
4 '���� 
( &56 '����� (          (43) 

where 
 ∈ 80, 9:, � ; 0 and 0� � < &56 '���� ( sin	�*
��
� �
4 '� ��

�� 
(�
       (44) 

For the sake of simplicity, the upper bound of spatial 
domain is taken to be	9 � 1. For various values of the 
parameters, absolute errors of the considered 
numerical methods are compared in Figures 7-8. 

 

 

 

 

 

 
Figure 7. Comparison of the currently suggested methods in terms of the absolute errors for � � 0.1, 
 � 0.05, 
� � 0.001,  

� � 1, � � 1 and � � 0.5 in Problem 4. 
 

 
Figure 8. Comparison of the currently suggested methods in terms of the absolute errors for � � 0.1, 
 � 0.05, 
� � 0.001,  

� � 0.1, � � 0 and � � 1 in Problem 4. 
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4. Conclusions and recommendation 

This paper has concentrated on numerically analyzing 
the advection-diffusion-reaction equation by 
considering various finite element techniques 
including Galerkin, collocation and Taylor-Galerkin 
methods. To profoundly understand the physical 
processes represented by the model equation, various 
choices of the problem have been discussed both 
qualitatively and quantitatively. Comparison of the 
computed results showed that the Galerkin finite 
element method is more accurate and more versatile 
than the Taylor-Galerkin and the collocation methods. 
However, note that the collocation method takes less 
computational time than both the Galerkin and the 
Taylor-Galerkin methods while the collocation 
method is a bit cruder than the others. Further studies 
can concentrate on capturing the response of the same 
physical model with various forms of forcing terms. 
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