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1. Introduction

Fractional calculus is of course a very important
branch of mathematical analysis. This branch of
calculus is interested in generalizing the deriva-
tives and integrals of integer order to include
derivatives and integrals of an arbitrary order
(real or complex). A large number of authors in-
vestigate fractional derivatives from both theoret-
ical and practical points of view (see, for exam-
ple, [1–4]). It is well-known that many physical
phenomena in acoustics, damping laws, electro-
analytical chemistry, neuron modeling, diffusion
processing and material sciences (see for exam-
ple, [5–7]) are described by fractional differential
equations. Various algorithms are developed for
handling different kinds of fractional differential
equations. Some of these methods are, Adomian
decomposition method [7, 8], variational itera-
tion method [9] and fractional differential trans-
form method [10, 11] and ultraspherical wavelets
method [12].

Optimal control problems arise in various applied
sciences such as mechanics, aerospace engineer-
ing, and economics. The exact solutions for most
of these problems are not easy to implement, so it
is natural to try to derive numerical solutions for
such problems. The general definition of an opti-
mal control problem requires the minimization of
a criterion function of the states and control in-
puts of the system over a set of admissible control
functions. This system is governed by constrained
dynamics and control variables. Additional con-
straints such as final time constraints can be con-
sidered, see for example [13, 14].

Spectral and pseudospectral methods have be-
come increasingly popular as higher order meth-
ods for the solution of various differential equa-
tions represent the solution of a certain problem in
a basis set of orthogonal functions. The main ad-
vantage of these methods is that they can provide
exponential convergence of the solutions. These
methods are employed for solving many prob-
lems appear in various branches of science such as
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physics, chemistry and fluid mechanics. One can
consult the monographs by Shen et al. [15], the
books by Kopriva [16], and Shizgal [17] for some of
these applications. There are three popular tech-
niques for spectral methods, they are Galerkin,
tau and collocation methods. Every method has
its importance. The Galerkin approach requires
to select suitable basis functions satisfying the
boundary conditions and then enforcing the resid-
ual to be orthogonal with the basis functions.
This method has been applied in a variety of pa-
pers. It has has been successfully applied to linear
problems, see for example [18,19]. The collocation
method is a suitable approach for treating non-
linear problems, see for example [20–23]. The tau
method is a particular class of Petrov-Galerkin
method. This method is often used for problems
contain complicated boundary conditions.

Orthogonal polynomials in general and Jacobi
polynomials in particular have distinguished parts
in applied mathematical analysis. It is well-
known that the class of the Jacobi polynomi-
als includes six subclasses of orthogonal polyno-
mials, namely, Legendre, ultraspherical and the
four kinds of Chebyshev polynomials. The Jacobi
polynomials and their special polynomials are ex-
tensively used along with spectral methods for
solving ordinary and fractional differential equa-
tions, see for instance [24–29].

This paper introduces a general numerical algo-
rithm for a class of FOCPs. A FOCP is an opti-
mal control problem in which the criterion and/or
the differential equations governing the dynamics
of the system contain at least one fractional de-
rivative operator.

FOCP can be described by different definitions
of fractional derivatives. The most commonly
used types of fractional derivatives are Riemann-
Liouville and Caputo fractional derivatives. Gen-
eral necessary conditions of optimality have been
developed for FOCPs. For instance, in [9, 11],
the author has achieved Hamiltonian formulas
for FOCPs with Riemann-Liouville fractional de-
rivative, while the author in [30] has achieved
some formulas with Caputo fractional derivative.
Hamiltonian system of equations provides neces-
sary conditions of optimization. The optimal so-
lution of the FOCP should satisfy the system [31].

The main aim of this article is twofold:

• Reformulating fractional optimal control
problem to a coupled system of fractional-
order differential equations.

• Analyzing efficient spectral-tau algorithm
for handling the resulting system of

fractional-order differential equations via
Jacobi polynomials.

The rest of the paper is arranged as follows.
The next section is devoted to presenting math-
ematical preliminaries containing some basic def-
initions in the fractional calculus theory which
are required for establishing our results. Also,
some relevant properties of Jacobi polynomials
and their shifted ones are presented. In Section 3,
we present an efficient spectral tau algorithm for
solving FOCPs. In Section 4, we give some nu-
merical examples to ensure the efficiency, simplic-
ity and applicability of the suggested algorithm.
Finally, Section 5 is devoted to presenting con-
cluding remarks.

2. Preliminaries

This section is devoted to presenting some basic
definitions and properties in fractional calculus.
In addition, some relevant properties of Jacobi
polynomials and their shifted ones are presented.

2.1. Some definitions and properties of

fractional calculus

Definition 1. The Riemann-Liouville fractional
integral operator Iα of order α on the usual
Lebesgue space L1[0, 1] is defined as

Iαf(t) =







1
Γ(α)

∫ t

0
(t− τ)α−1 f(τ) dτ, α > 0,

f(t), α = 0.
(1)

The operator Iα has the following properties:

(i) Iα Iβ = Iα+β ,

(ii) Iα Iβ = Iβ Iα,

(iii)Iα(t− a)ν =
Γ(ν + 1)

Γ(ν + α+ 1)
(t− a)ν+α,

where f ∈ L1[0, 1], α, β > 0, and ν > −1.

Definition 2. The Riemann-Liouville fractional
derivative of order α > 0 is defined by

(Dαf)(t) =

(

d

dt

)n

(In−αf)(t), n− 1 6 α < n, n ∈ N.

(2)

Definition 3. The Caputo fractional left and
right differential operators are defined respectively
as

(0D
α
t f)(t) =

1

Γ(n− α)

∫ t

0
(t− τ)n−α−1 f (n)(τ) dτ,

(3)
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(tD
α
1 f)(t) =

1

Γ(n− α)

∫ 1

t
(τ − t)n−α−1 f (n)(τ) dτ,

(4)
where n− 1 6 α < n, n ∈ N.

The Caputo fractional differential operator satis-
fies the following basic formula, for n−1 6 α < n,

(IαDαf)(t) = f(t)−
n−1
∑

k=0

f (k)(0+)

k!
(t− a)k, t > 0.

For more details on the mathematical properties
of fractional derivatives and integrals, see for ex-
ample, [3].

2.2. Classical Jacobi polynomials

For γ, δ ∈ R, γ, δ > −1, and a nonnegative inte-

ger n, we denote by P
(γ,δ)
n (x) the Jacobi polyno-

mial, which comprises all the polynomial solutions
to singular Sturm-Liouville problems on (−1, 1).

P
(γ,δ)
n (x) has the following Gauss hypergeometric

representation:

P
(γ,δ)
n (x) =

Γ(n+ γ + 1)

n! Γ(γ + 1)
2F1

(

−n, n+ γ + 1; γ + 1;
1− x

2

)

.

The Jacobi polynomials are orthogonal on [−1, 1]

with the wight function w(γ,δ)(x) = (1 − x)γ(1 +
x)δ, in the sense that

∫ 1

−1

(1−x)γ(1+x)δ P (γ,δ)
m (x)P (γ,δ)

n (x) dx = h(γ,δ)
n δmn,

where,

h(γ,δ)n =
2γ+δ+1 Γ(n+ γ + 1)Γ(n+ δ + 1)

(2n+ γ + δ + 1)n! Γ(n+ γ + δ + 1)
,

(5)

and δmn is the well-known kronecker delta func-
tion. These polynomials are eigenfunctions of the
following singular Sturm-Liouville equation

(1−x2)u′′+
(

δ−γ−(γ+δ+2)x
)

u′+n(n+γ+δ+1)u = 0.

Also, Jacobi polynomials may be generated by
means of Rodrigue’s formula

P (γ,δ)
n (x) =

(−1)n

2n n!w(γ,δ)(x)

dn

dxn

[

w(γ,δ)(x)(1−x2)n
]

.

The polynomials, namely the ultraspherical, Le-
gendre, first, second, third and fourth kinds
Chebyshev polynomials, can be deduced as spe-
cial cases of the Jacobi polynomials as shown in
Table 1.

Table 1. Special cases of Jacobi
polynomials.

Ultraspherical polynomials C
(λ)
n = (2λ)n

(λ+ 1
2
)n
P

(λ− 1
2
,λ− 1

2
)

n (x)

Legendre polynomials Ln(x) = P
(0,0)
n (x)

Chebyshev polynomials of first kind Tn(x) =
( 1
2
)n

n! P
(− 1

2
,− 1

2
)

n (x)

Chebyshev polynomials of second kind Un(x) =
( 3
2
)n

(n+1)!P
( 1
2
, 1
2
)

n (x)

Chebyshev polynomials of third kind Vn(x) =
(2n n!)2

(2n)! P
(− 1

2
, 1
2
)

n (x)

Chebyshev polynomials of fourth kind Wn(x) =
(2n n!)2

(2n)! P
( 1
2
,− 1

2
)

n (x)

Note that in this table, the symbol (a)n is the

Pochhammer symbol, (a)n =
Γ(a+ n)

Γ(n)
. For more

details about Jacobi polynomials, one can see
[32–34].

2.3. Shifted Jacobi polynomials

In order to use the Jacobi polynomials on the in-
terval [0, 1], we define the so-called shifted Jacobi
polynomials by introducing the change of variable
t = 2x − 1. Let the shifted Jacobi polynomi-

als P
(γ,δ)
n (2x − 1) be denoted by ρ

(γ,δ)
n (x). Then

ρ
(γ,δ)
n (x) can be obtained as follows:

ρ(γ,δ)n (x) =
(−1)n

n!xδ(1− x)γ
dn

dxn

[

xδ+n(1− x)γ+n

]

.

The shifted Jacobi Polynomials ρ
(γ,δ)
n (x) has the

orthogonality relation

∫ 1

0
xδ(1−x)γ ρ(γ,δ)m (x) ρ(γ,δ)n (x) dx =

h
(γ,δ)
n

2γ+δ+1
δmn.

(6)

The following special values will be of important
use later

ρ
(γ,δ)
i (0) =

(−1)i(δ + 1)i
i!

, ρ
(γ,δ)
i (1) =

(γ + 1)i
i!

, (7)

D
q
ρ
(γ,δ)
i (0) =

(−1)i−q (δ + q + 1)i−q(i+ γ + δ + 1)q
(i− q)!

, (8)

D
q
ρ
(γ,δ)
i (1) =

(−1)i−q (γ + q + 1)i−q(i+ γ + δ + 1)q
(i− q)!

. (9)

A function f(t) defined over [0, 1] may be ex-
panded in terms of the shifted Jacobi polynomials
as

f(t) =

∞
∑

i=0

ci ρ
(γ,δ)
i (t),
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where,

ci =
2γ+δ+1

h
(γ,δ)
i

∫ 1

0
tδ(1− t)γ f(t) ρ

(γ,δ)
i (t) dt. (10)

The following theorem gives the differentiation

and integration formulae of ρ
(γ,δ)
i (t)

Theorem 1. [35] The differentiation and inte-

gration of ρ
(γ,δ)
i (t) are given by the following for-

mulae:

d

dt
ρ
(γ,δ)
i (t) = (i+ γ + δ + 1)ρ

(γ+1,δ+1)
i−1 (t), (11)

∫ t

0

ρ
(γ,δ)
i (s) ds

=
1

i+ γ + δ

(

ρ
(γ−1,δ−1)
i+1 (t) +

(−1)i(δ)i+1

(i+ 1)!

)

. (12)

3. Numerical treatment for FOCP

In this section, we are interested in the reformu-
lation of the fractional optimal control problem.
In addition, we introduce numerical solutions for
the proposed FOCP.

3.1. FOCP reformulation

The fractional optimal control problem (FOCP)
can be defined as follows. Find the optimal con-
trol u(t) for a fractional dynamical system (FDS)
that minimizes the performance index

J(u) =

∫ 1

0
F (t, x(t), u(t)) dt, (13)

subject to the dynamical system

Dα
t x(t) = G(t, x(t), u(t)), α ∈ (n− 1, n], t ∈ [0, 1],

(14)

subject to the initial condition

x(i)(0) = Xi, i = 0, 1, . . . , n− 1, (15)

where x(t) is the state variable, t represents the
time, F and G are two arbitrary functions and Xi

are real known constants. The necessary optimal-
ity conditions (see, [30]) of FOCP (13-15) leads to

0D
α
t x(t) = G(t, x(t), u(t)), (16)

tD
α
1 λ(t) =

∂F

∂x
+ λ

∂G

∂x
, (17)

∂F

∂u
+ λ

∂G

∂u
= 0, (18)

and

x(i)(0) = Xi, λ(i)(1) = 0 i = 0, 1, . . . , n− 1.
(19)

The necessary conditions for the optimality of
the FOCP considered are those given in (16-
19). These equations are similar to the Euler-
Lagrange equations for classical optimal control
problems except that the resulting differential
equations contain the left and the right fractional
derivatives. Moreover, the derivation of these
equations is very similar to the derivation for an
optimal control problem containing integral order
derivatives. Determination of the optimal control
for the fractional system requires solution of Eqs.
(16)-(19).

3.2. Numerical algorithm for FOCP

In this section, we are concerned with the numer-
ical solutions of the coupled system of equations
(16)-(19), by applying shifted Jacobi tau method.
First, we use Eq. (18), to eliminate u(t) from
Eqs. (16) and (17) to obtain a system of coupled
fractional order differential equations of the form:

0D
α
t x(t) = G1(t, x(t), λ(t)), (20)

tD
α
1 λ(t) = F1(t, x(t), λ(t)), (21)

subject to

x(i)(0) = Xi, λ(i)(1) = 0 i = 0, 1, . . . , n− 1.
(22)

We approximate x(t), λ(t) as follows

x(t) ≈
N−1
∑

i=0

ai ρ
(γ,δ)
i (t), (23)

λ(t) ≈
M−1
∑

i=0

bi ρ
(γ,δ)
i (t). (24)

Now we can compute the residual of Eqs. (20)
and (21) as follows:

R1(t) =

N−1
∑

i=0

ai 0D
α
t ρ

(γ,δ)
i (t)

−G1

(

t,

N−1
∑

i=0

ai ρ
(γ,δ)
i (t),

M−1
∑

i=0

bi ρ
(γ,δ)
i (t)

)

,(25)

R2(t) =

M−1
∑

i=0

bi tD
α
1 ρ

(γ,δ)
i (t)

−F1

(

t,

N−1
∑

i=0

ai ρ
(γ,δ)
i (t),

M−1
∑

i=0

bi ρ
(γ,δ)
i (t)

)

.(26)
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The application of the typical tau method yields

∫ 1

0
R1(t)ρ

(γ,δ)
i (t) dt = 0,

i = 0, 1, . . . , N − n− 1, (27)
∫ 1

0
R2(t)ρ

(γ,δ)
i (t) dt = 0,

i = 0, 1, . . . ,M − n− 1. (28)

The derivative and integral formulae of shifted Ja-
cobi polynomials in (11) and (12) enable one to
reduce the integrals in (27) and (28) into a set
of algebraic equations in the unknown expansion
coefficients. Moreover, the use of the initial con-
ditions along with the identities (8) and (9) yield

N−1
∑

i=j

ai
(−1)i(δ + 1)i

i!
= Xj ,

j = 0, 1, . . . , n− 1, (29)
M−1
∑

i=j

bi
(γ + 1)i

i!
= 0,

j = 0, 1, . . . , n− 1. (30)

Eqs. (27)-(30) generate a system of (N +M) al-
gebraic equations in the expansion coefficients, ai
and bi, which can be solved with the aid of the
well-known Newton’s iterative method.

4. Numerical results and discussion

In this section, the spectral-tau Jacobi algorithm
(STJA) is employed for handling some FOCPs
accompanied with some comparisons hoping to
demonstrate the efficiency and applicability of the
proposed algorithm.

Example 1. Consider the following minimiza-
tion problem [31]:

min J =
1

2

∫ 1

0

(

x2 + u2 − 2t2 x− 2t3 u+ t4 + t6
)

dt,

0D
α
t x(t) = 2

(

t1+α Γ(3− α)
)−1

u(t), α ∈ (0, 1),

x(0) = 0,

with the exact solution
(

x(t)
u(t)

)

=

(

t2

t3

)

.

This solution minimizes the performance index J ,
and the minimum value is µ = 0. Applying the
procedures explained in Section 3, we get the fol-
lowing coupled system:

0D
α
t x(t) = 2

(

t1+α Γ(3− α)
)−1

×
[

t3 − 2
(

t1+α Γ(3− α)
)−1

λ(t)
]

, (31)

tD
α
1 λ(t) = x(t)− t2, (32)

x(0) = 0, λ(1) = 1. (33)

If we apply STJA with N = M = 4, then we have

x(t) ≈
3
∑

i=0

ai ρ
(γ,δ)
i (t), (34)

λ(t) ≈
3
∑

i=0

bi ρ
(γ,δ)
i (t). (35)

Now the residuals of (31), (32) can be written in
the following formulae

R1(t) =

3
∑

i=0

ai 0 D
α
t ρ

(γ,δ)
i (t)−

2
(

t1+α Γ(3− α)
)−1

×
[

t3 − 2
(

t1+α Γ(3− α)
)−1

3
∑

i=0

bi ρ
(γ,δ)
i (t)

]

,

(36)

R2(t) =

3
∑

i=0

bi tD
α
1 ρ

(γ,δ)
i (t)−

3
∑

i=0

ai ρ
(γ,δ)
i (t) + t2.

(37)

The application of tau method yields

∫ 1

0
R1(t)ρ

(γ,δ)
j (t) dt = 0, j = 0, 1, 2,(38)

∫ 1

0
R2(t)ρ

(γ,δ)
j (t) dt = 0, j = 0, 1, 2.(39)

Moreover, the initial conditions lead to the follow-
ing two equations:

3
∑

i=0

ai
(−1)i(δ + 1)i

i!
= 0, (40)

3
∑

i=0

bi
(γ + 1)i

i!
= 1, (41)

The system in (38)-(41) can be solved to give

a0 =
(1 + δ)2

(2 + γ + δ)2
, a1 =

2(2 + δ)

(2 + γ + δ)(4 + γ + δ)
,

a2 =
2

(3 + γ + δ)2
, a3 = 0,

and
bi = 0, 0 ≤ i ≤ 3.
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Hence

x(t) = t2, λ(t) = 0.

Finally, and based on Eq. (18), we get

u(t) = t3,

which are the exact solutions.

Example 2. Consider the following FOCP (see,
[31]):

min J =
1

2

∫ 1

0





(

x− t2
)2

+

(

u+ t4 − 20t
9

10

9Γ( 9
10 )

)2


 dt,

0D
1.1
t x(t) = t2 x(t) + u(t),

x(0) = x′(0) = 0,

with solution
(

x(t)
u(t)

)

=

(

t2

20t
9
10

9Γ( 9
10

)
− t4

)

.

This solution minimizes the performance index J

and the minimum value is µ = 0. In Table 2, we
introduce the maximum absolute error

E := max

(

max
t∈[0,1]

|x− xN |, max
t∈[0,1]

|u− uM |
)

by using STJA for various choices of N,M, γ and
δ.

Remark 1. It is worthy to note that the best error
obtained here is 3.28 . 10−17 for (N,M) = (5, 5)
and (γ, δ) = (−1

2 ,
1
2), while the best error obtained

in [31] is 7.03 . 10−8, for (M,N) = (8, 9).

Example 3. Consider the following time invari-
ant FOCP: Find the control function u(t) which
minimizes the performance index (see, [9]):

min J =
1

2

∫ 1

0

[

(

x(t)
)2

+
(

u(t)
)2
]

dt,

0D
α
t x(t) = −x(t) + u(t), 0 < α 6 1

x(0) = 1.

The exact solution for this problem in case α = 1,
is

(

x(t)
u(t)

)

=

(

c0 sinh
(√

2t
)

+ cosh
(√

2t
)

(

c0 +
√
2
)

sinh
(√

2t
)

+
(√

2c0 + 1
)

cosh
(√

2t
)

)

,

where

c0 = −
√
2 sinh(

√
2)+cosh(

√
2)

sinh(
√
2)+

√
2 cosh(

√
2)
.

In Figure 1, we illustrate the exact solution in
case of α = 1, and the STJA solution for the case
corresponds to (N,M) = (7, 7), (γ, δ) = (−1

2 ,
1
2)

(Chebyshev third kind case) and different values of
α. Figure 1 shows the state and the control vari-
ables, respectively, as a function of time. From
this figure it is clear that both the state and the
control variables is close to the solution in the in-
tegral value of α as expected.

Example 4. Consider a linear time varying sys-
tem with the same performance index and the
same initial condition as those considered in Ex-
ample 3, except in this example, the system is sub-
jected to the following dynamic constraint:

0D
α
t x(t) = t x(t) + u(t), 0 < α 6 1,

the exact solution for this problem in case α = 1,
is

(

x(t)
u(t)

)

=

(

c1e
t2

2 sin(t) + e
t2

2 cos(t)

c1e
t2

2 cos(t)− e
t2

2 sin(t)

)

,

where c1 = tan(1). In Figure 2, we illustrate the
exact solution in case of α = 1, and the STJA so-
lution for the case corresponds to (N,M) = (8, 8),
(γ, δ) = (12 ,−1

2) (Chebyshev fourth kind case) and
different values of α. Figure 2 shows the state and
the control variables, respectively, as a function of
time. From this figure it is clear that both the state
and the control variables is close to the solution
in the integral value of α as expected.

Example 5. Consider the following nonlinear
FOCP (see, [36]):

min J =

∫ 1

0

[

et
3/2−tu(t)− 2t3/2x(t)

+
1

4
e2t

3/2−2t − 3

8

√
πet

3/2−2t

+ t3 + u(t)2 − 3

4

√
πe−tu(t) + x(t)2

+ e2t +
9

64
πe−2t

]

dt,

0D
1.5
t x(t) = ex(t) + 2et u(t),

x(0) = x′(0) = 0.

The exact solution for this problem is
(

x(t)
u(t)

)

=

(

t
3
2

1
2 e

−t(3
√
π

4 − et
3
2 )

)

,

which minimizes the performance index J

and the minimum value is 1
2(e

2 − 1) ≈
3.1945280494653251. In Table 3, we introduce the
maximum absolute error
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Table 2. Maximum absolute error of Example 2.

(N,M) (γ, δ) E (γ, δ) E (γ, δ) E

(3,4) 8.40 . 10−10 5.87 . 10−10 2.32 . 10−10

(4,3) (0, 0) 6.85 . 10−10 (−1
2 ,−1

2) 1.02 . 10−10 (12 ,
1
2) 1.85 . 10−10

(5,5) 9.31 . 10−16 5.27 . 10−16 3.25 . 10−16

(3,4) 9.24 . 10−10 6.38 . 10−10 2.32 . 10−10

(4,3) (−1
2 ,

1
2) 4.28 . 10−10 (−1

2 ,
1
2) 1.02 . 10−10 (1, 2) 1.85 . 10−10

(5,5) 3.28 . 10−17 8.27 . 10−17 5.75 . 10−16

E := max

(

max
t∈[0,1]

|x− xN |, max
t∈[0,1]

|u− uM |
)

by using STJA for various choices of N,M, γ and
δ.

Remark 2. It is worthy noting here, for
M = N = 16 and (γ, δ) = (12 ,

1
2) and (−1

2 ,
1
2),

we get J = 3.1945280494653253 and
3.1945280494653258 which is almost the exact
value.

5. Concluding Remarks

In this paper, we presented an efficient numerical
algorithm for some spectral solutions of a class
of fractional optimal control problems. The pro-
posed numerical solutions are expressed as expan-
sions of Jacobi polynomials. The celebrated spec-
tral tau method is utilized for this purpose. The
numerical tests clarify that our method is appli-
cable and it is more accurate than some other
methods in literature.
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Figure 1. Different solutions of Example 3.

0.0 0.2 0.4 0.6 0.8 1.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

t

x
(t
)

α=0.8
α=0.9
α=1

0.0 0.2 0.4 0.6 0.8 1.0

-0.3

-0.2

-0.1

0.0

t

u
(t
)

α=0.8
α=0.9
α=1

Figure 2. Different solutions of Example 4.
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