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Abstract. The problem of finding the global minimum of molecular potential energy function is very 

challenging for algorithms which attempt to determine global optimal solution. The principal difficulty 

in minimizing the molecular potential energy function is that the number of local minima increases 

exponentially with the size of the molecule. The global minimum of the potential energy of a molecule 

corresponds to its most stable conformation, which dictates the majority of its properties. In this paper 

the efficiency of four newly developed real coded genetic algorithms is tested on the molecular potential 

energy function and their supremacy is established over other existing algorithms. The minimization of 

the function is performed on an independent set of internal coordinates involving only torsion angles. 

Computational results with up to 100 degrees of freedom are presented. 
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1. Introduction 

Finding the most stable conformation of a molecule 

is a captivating problem as it is highly complex and 

its complexity increases with the increase in 

number of atoms. Amongst many different spatial 

configurations for a given molecule, the most stable 

one is of particular importance as it dictates most of 

its properties. Experimental evidence [1] shows that 

in the majority of the cases the most stable 

conformation corresponds to the one involving the 

global minimum of potential energy. So it can be 

formulated as a global optimization problem. It is 

an eminently challenging global optimization 

problem as the number of local minima increases 

exponentially with the size of the molecule [2]. 

These local minimizers correspond to metastable 

states of the molecule and the global minimizer 

defines the energetically most favorable molecular 

conformation. Many optimization methods have 

already been applied to this problem, such as 

branch and bound methods, smoothing methods, 

simulated annealing, and genetic algorithms. 

References [2-4] provide an overview about these 

and other methods for molecular conformation 

problems. Further, a function [5] has been 

developed to test methods applied to global 

minimization of potential energy of molecules. In 

literature, many researchers for example [6-9]  have 

applied computational intelligence methods for 

minimizing the potential energy function.  

 The aim of the present paper is to investigate the 

effect of newly developed RCGAs on a highly 

complex molecular potential energy problem and to 

check the efficiency of the new operators of 

RCGAs and to look for the their contribution in the 

success of an algorithm. In this paper the potential 

energy problem with up to 100 degrees of freedom 

is solved using four newly developed real coded 

genetic algorithms: WX-PM, WX-LLM, LX-LLM  

(Communicated to Applied Mathematics and 

Computation) and LX-PM [10]. 
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 This paper is organized as follows: Section 2 

describes the molecular potential energy function 

mathematically; Section 3 describes the real coded 

genetic algorithms applied for solving the problem; 

and Section 4 presents the performance evaluation 

criteria used in this paper for evaluating the 

performance of all algorithms used. Computational 

results and discussions are presented in Section 5 

and conclusions in Section 6.  

2. Problem Discussion  

In a simplified molecular model consists of a linear 

chain of n beads centered at 1,..., nx x  in a 3-

dimensional space for every pair of consecutive 

beads 
ix and 1ix , let 

1, iir  be the bond length 

which is the Euclidean distance between them. For 

every three consecutive beads
21 ,,  iii xxx , let 

1, ii be the bond angle corresponding to the 

relative position of the third bead with respect to 

the line containing the previous two. Likewise, for 

every four consecutive beads 
321 ,,,  iiii xxxx , 

let
3, ii be the angle, called the torsion angle, 

between the normals through the planes determined 

by the beads 
21 ,,  iii xxx and

321 ,,  iii xxx  

all of which can be understood from Figure 1. 

 
 

 
Figure 1.  a) Euclidean distance, b) Bond angle, 

c) Torsion angle of Coordinate Set of Atomic Chain 

 

 The potential energy of a system of atoms is 

explained through force field potentials, where a 

force field is a mathematical function which returns 

the energy of a system as a function of the 

conformation of the system. Now the forces can be 

written in terms of potential energy functions of 

various structural features such as bond lengths, 

bond angle, non bonded interactions etc.  

 Here the force field potentials corresponding to 

bond lengths, bond angles and torsion angles will 

be defined respectively as 
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where 
1

ijc  is bond stretching force constant, 
2

ijc  is 

angle bending force constant and 
3

ijc  is the torsion 

force constant. The constants 
0

ijr  and 
0

ij   represent 

the “preferred” bond length and bond angle 

respectively and 
0

ij  is the phase angle that defines 

the position of the minima. 3,2,1, kM k represents 

the set of pair of atoms separated by k  covalent 

bonds. In addition to the above, there is also a 

potential 4E which characterizes the 2-body 

interactions between every pair of beads separated 

by more than two covalent bonds along the chain. 

We use the following function to represent 4E : 
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where 
ijr  is the Euclidean distance between the 

beads ix and
jx . The general problem is to 

minimize the total molecular potential energy

4321 EEEEE  , leading to the optimal 

spatial position of the beads. Using the parameters 

defined in [5] potential energy function takes the 

following form 
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where 1,..., 3i n 
 
and n is the number of beads 

in the given system. The problem is thus reduced to 
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find , 3,   1,..., 3i i i n    . As E is a nonconvex 

function it involves numerous local minimizers 

even for small value of n. These local minimizers 

correspond to a state which is not truly stationary 

but is almost stationary called the metastable state 

of the molecule. Lavour and Maculan [5] have 

shown that the number of local minimizers of the 

function (3) is 
N2 , where nnN ,3  is the total 

number of beads in a molecule. The global 

minimum of E is the alternate sequence of torsion 

angles <a, b, a, b, a, b, a, b, …> independent of the 

number of variables, where a=1.039195303 and b= 

3.141592654. And by restricting
ji , ; 50 ,  ji

the existence of only one global minimum is 

guaranteed. As given in [6] it can also be shown 

that for all value of n the difference between the 

global minimum value E
*
 and second best value of 

(3) i.e. E2 always satisfies the following relation  

                  
0816608225.0* 2 EE             (4)       (4)                                                                               

 Although many simplifications have been done 

in the function E  despite these, the problem 

remains very difficult because of the large diversity 

of local minimizers possible. It can be seen from 

the fact that corresponding to 20 beads, the number 

of local minimizers will be 131072217  . 

3. Real Coded Genetic Algorithm 

Genetic algorithms are population based heuristics 

which are used to determine solution of non-linear 

optimization problems. GAs mimics the Darwin’s 

principal of survival of fittest. GA uses three basic 

operations: selection, crossover and mutation in 

moving from one generation to another. GAs which 

make use of the real-encoding of chromosomes are 

termed as Real Coded GAs (RCGAs). Four 

different RCGAs are used in this paper, which use 

two real coded crossover operators WX and LX 

[11] and two mutation operators LLM and PM [10]. 

The schema of RCGAs is given in Figure 2. 

 

 

More details of operators used in all the algorithms 

used here are defined in the following subsections: 

3.1. Crossover 

Two offsprings 1O  and 2O  are generated from a 

pair of parents 1P and 2P  obtained after selection, in 

the following manner: 

Generate a random number ]1,0[u , 

Check if
2

1
u ; then  

                             
dPO
dPO

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22

11                     (5)                    

        (5) 

otherwise if 
2

1
u , then 

                              
dPO

dPO



22

11                         (6)                       (6) 

 

where 21 PPd   is the distance between the 

parents and  is a random number following 

Laplace distribution in case of LX and Weibull 

distribution in case of WX. 

3.2. Mutation 

A mutated solution M is created in the vicinity of 

the solution P as follows: 

Generate a random number ]1,0[r , 

Check if Tr  ; then  

                               )( LPPM                      (7)        (7) 

Otherwise, if Tr  , then 

                        )( PUPM                      (8)        (8) 

where L andU are the lower and upper bounds of 

decision variable, 
PU

LP
T




  and  is a random 

number following Power distribution in case of PM 

and Log Logistic distribution in case of LLM.  

3.3. Selection Technique 

A selection technique in a GA is simply a process 

that favors the selection of better individuals in the 

population for the mating pool. All RCGAs used in 

this paper uses tournament selection. 

3.4. Computational Steps 

Computational steps of algorithms used are as 

follows: 

1. Generate a suitably large initial set of 

random points within the domain 

  Crossover   WX                LX   

              

Mutation           LLM                 PM   

  RCGAs       WX - LLM    LX - LLM   WX - PM        LX - PM 

Figure 2. Schema of all RCGAs used 
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prescribed only by the bounds on variable 

i.e. points satisfying UxL  . 

2. Check the stopping criteria, if satisfied 

stop; else go to 3.  

3. Apply tournament selection procedure on 

initial (old) population to make mating 

pool.  

4. Apply crossover and  mutation to all 

individuals in mating pool, with probability 

of crossover cp  and probability of 

mutation mp  respectively, to make new 

population.  

5. Increase generation ; replace old 

population by new population; go to 2.   

4. Performance Evaluation Criteria  

For evaluating the performance of each method the 

following are recorded: 

1)SuccessRate(SR) = 100
runsofnumberTotal

runssuccessfulofNumber
 

2)  Average computational time of successful runs 

(in seconds).  

3)  Average number of function evaluations of 

successful runs (AFE). 

4) Minimum number of function evaluations of 

successful runs (MNFE). 

5) Maximum number of function evaluations of 

successful runs (MXFE). 

6) Standard Deviation of function evaluations of 

successful runs (SDFE). 

7) Performance Index (PI). 

 

 A run in which the algorithm finds a solution 

satisfying 01.0min  optff , where minf  is the best 

solution found when the algorithm terminates and 

optf  is the known global minimum of the problem 

is considered to be successful. For each problem 

size, MNFE represents minimum and MXFE 

represents the maximum number of function 

evaluations needed to achieve the threshold in the 

100 runs performed. Also, AFE represents the 

average number of function evaluations and SDFE 

represents the standard deviation of the successful 

runs out of all the 100 runs performed. 

 The Performance Index (PI) given by Bharti 

[12] and used in [11] is utilized to compare the 

relative performance of all the four RCGAs 

simultaneously. This index gives prescribed 

weighted importance to SR, AFE and 

computational time. For each of the algorithms the 

value of PI is computed as follows: 
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and 

Sr
i 
= number of successful runs of i

th
 problem. 

Tr
i
 = total number of runs of i

th
 problem. 

At
i 

= average time used by an algorithm in 

obtaining the solution of i
th
 problem. 

Mt
i
 = minimum of average time used by all the 

algorithms in obtaining the solution of i
th
 problem. 

Af
i
 = average number of function evaluations of 

successful runs used by an algorithm in obtaining 

the solution of i
th
 problem 

Mf
i
 = minimum of average number of function 

evaluations of successful runs used all algorithms in 

obtaining the solution of i
th
 problem 

N = total number of problems considered. 

 

 Further, 

)1,,01(, 321321321  kkkandkkkkandkk are 

the weights assigned by the user to the average 

execution time, average number of function 

evaluations and the percentage of success 

respectively. The same methodology is adopted as 

given in [13] by assigning equal weights to two of 

these terms ( 321 , kandkk ) at a time so that, PI 

become function of a single variable. The resulting 

cases are as follows: 
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 All the RCGAs have the same termination 

criteria i.e. if either the maximum number of 

generation (5000) is reached or known global 

minimum is attained.  

5. Computational Results and Discussion  

In this section we present numerical results 

obtained for the energy function E . The program is 
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coded in C++ and executed on a Pentium IV with 

1.66GHz speed and 512 MB of RAM. The potential 

energy function E is minimized in the specified 

search space [0, 5]
 n

, where n is the total number of 

beads in a system. Table 1 reproduces the global 

minimum values of [6] attained for the function E 

corresponding to different chain sizes i.e. 

corresponding to n equal to 20, 40, 60, 80 and 100. 

top edge indicated. 

     Table 1. Global minimum value for chains of 

different sizes (for n=20 to 100) 

n 20 40 60 80 100 

E -0.822366 -1.644732 -2.467098 -3.289464 -4.111830 

 

Since we are using a probabilistic technique, 

100 independent runs are performed, each time 

using a different seed for the generation of random 

number. The parameter setting for all algorithms is 

given in Table 2. 

Table 2. Parameter setting of all RCGAs used for   

finding the Global minimum of E 
Parameter WX-PM LX-PM WX-LLM LX-LLM 

Pop size 5n 10n 5n 5n 

pc 0.7 0.65 0.75 0.7 

pm 0.08 0.05 0.04 0.06 

 

Computational results are presented in Table 3 

in terms of function evaluations: average, 

minimum, maximum, and standard deviations of 

successful runs as well as the computational time of 

all new RCGAs. These are compared with the 

existing results of Bansal et al. [14] and Barobosa 

et al. [6]. 

In Table 3 rHYB [2] denotes the staged hybrid GA 

with a reduced simplex and a fixed limit for 

simplex iterations and qPSO [14] is a hybrid PSO 

in which quadratic approximation operator is 

hybridized with PSO. In case of qPSO, no run is 

found to be successful, i.e. the difference between 

the best solution found by the algorithm and the 

known global minima is always greater than 0.01. 

It is quite clear from the Table 3 that the newly 

developed RCGAs have outperformed both rHYB 

and qPSO.  

  

 

Table 3. Computational results for simplified molecular 

model for n=20 to 100 using WX-PM, LX-PM, WX-

LLM, LX-LLM, rHYB [6] and qPSO [14]. 

n Algorithm AFE MNFE MXFE SDFE Time (sec) 

 

20 

WX-PM 15574 8412 24051 3675 0.45 

LX-PM 23257 29313 37096 5523 0.53 

WX-LLM 28969 17643 44867 7117 0.59 

LX-LLM 14586 10351 21532 3021 0.34 

rHYB* 35836 31415 41653 2530 27.27 

qPSO** - - - - - 

 

40 

WX-PM 59999 37863 95335 13015 2.46 

LX-PM 71336 45544 99370 15184 2.57 

WX-LLM 89478 61765 120042 18059 3.34 

LX-LLM 39366 34202 53370 4342 1.47 

rHYB* 129611 120967 143940 5350 246.05 

qPSO** - - - - - 

 

60 

WX-PM 175865 136429 195119 14635 10.39 

LX-PM 280131 203618 329337 35492 15.65 

WX-LLM 225008 195462 300197 25165 12.15 

LX-LLM 105892 83272 155530 14865 5.54 

rHYB* 249963 238867 271393 7431 784.93 

qPSO** - - - - - 

 

80 

WX-PM 302011 281755 323296 21684 20.71 

LX-PM 326287 281876 369451 27841 25.12 

WX-LLM 372836 322095 398969 20432 31.28 

LX-LLM 237621 263097 291265 19032 18.03 

rHYB* 387787 370534 405025 8901 3234.59 

qPSO** - - - - - 

 

100 

WX-PM 369376 324621 412876 30276 30.62 

LX-PM 379998 310432 467427 36848 31.98 

WX-LLM 443786 399601 498352 28659 39.91 

LX-LLM 320146 268764 356729 32412 26.48 

rHYB* 554026 534697 581879 11182 4176.03 

qPSO** - - - - - 

* Barbosa et al., [6],  ** Bansal et al., [14] 

To further analyze the relative performance of all 

RCGAs in terms of average function evaluations, a 

graphical representation in the form of box plot is 

shown in Figure 3, where the best performer is 

marked with star. The average function evaluation 

is directly proportional to the computational cost of 

the method. It is clear that LX-LLM is the best 
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performing algorithm and so in terms of 

computational time (see Figure 4). 

 

Figure 3. Box plot of Average function evaluations 

(AFE) for simplified molecular model. 

 

Figure 4. Box plot of computational time (in sec) for 

simplified molecular model. 
 

Table 4 compares the success rate of all the four 

RCGAs considered in this paper. The success rate 

is directly proportional to the reliability of the 

method. The corresponding box plot is shown in 

Figure 5. It is clear that in this case also the 

performance of LX-LLM is the best amongst all. 

 
 

 

 

 

Table 4. Success Rate (SR) for simplified molecular 

model for n=20 to 100 using WX-PM, LX-PM, WX-

LLM, LX-LLM. 

 

n WX-PM LX-PM WX-LLM LX-LLM 

20 100 100 100 100 

40 100 100 98 100 

60 93 91 89 95 

80 71 79 78 82 

100 89 88 82 86 

 

Figure 5. Box plot of Success rate (SR) for simplified 

molecular model. 

 

To see the consolidated effect of all the factors 

(AFE, SR and the computation time together), the 

performance index (PI) is plotted (Figure 6 – Figure 

8) for all the three cases (a, b, c) discussed in the 

previous section. Now the PIs clearly indicate the 

supremacy of LX-LLM over WX-PM, WX-LLM 

and LX-PM. 
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Figure 6. PI for WX-PM, LX-PM, WX-LLM, LX-LLM 

when 2/)1(, 321 wkkwk   
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Figure 7. PI for WX-PM, LX-PM, WX-LLM, LX-LLM 

when 2/)1(, 312 wkkwk   
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Figure 8. PI for WX-PM, LX-PM, WX-LLM, LX-LLM 

when 2/)1(, 213 wkkwk   

    

6. Conclusions 

In this paper, newly developed RCGAs are 

successfully applied to a scalable simplified energy 

function. Although the energy function is taken in 

simplified form yet it keeps the main difficulty that 

the number of local minima of the function grows 

exponentially with problem size, making it difficult 

to find the global minima. Computational tests are 

performed with degrees of freedom varying from 

20 to 100. It is clear that LX-LLM is the best 

performing algorithm as it is less computationally 

expensive (in terms of AFE and time) as well as 

more reliable (in terms of SR) amongst all other 

RCGAs applied for obtaining the global minimum. 

Also the consolidated effect of all factors can be 

seen together in the plots for PI and it is very clear 

that LX-LLM is performing the best. 

 Although LX-LLM is the best, from this it can 

not be concluded that Laplace crossover (LX) is 

better than Weibull crossover (WX) because in that 

case LX-PM should have performed better than 

algorithms which use WX. This fact compels us to 

notice the importance of mutation operators in the 

efficiency of a genetic algorithm. Then again, 

mutation alone can not be credited for the success 

of an algorithm. It is the appropriate combination of 

the crossover and mutation operators which guides 

the search of a genetic algorithm in an effective 

manner. In other words, exploration of the search 

space should be backed with appropriate diversity 

of the population. So here in the case of molecular 

potential energy function this job is done by LX-

LLM.  

 Finally, LX-LLM has successfully obtained the 

global minimum of molecular potential energy 

function, it is observed that LX-LLM is an efficient 

search algorithm which is it not limited to the cases 

considered here but can also be applied to some 

other and more complex functions. 
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