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In this paper,

using Riemann-Liouville integral operators,
new fractional integral inequalities of Hermite-Hadamard-Fejer type for co-
ordinated convex functions on a rectangle of R%. The results presented here
would provide extensions of those given in earlier works.
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1. Introduction

Let & : I CR — R be a convex mapping defined
on the interval I of real numbers and a,b € I,
with a < b. The following double inequality is well
known in the literature as the Hermite-Hadamard

inequality [13]:
()

! /abfb(:v)dx

b—a
® (a) + P (b)
—

a+b

: (1)

The most well-known inequalities related to the
integral mean of a convex function are the Her-
mite Hadamard inequalities or its weighted ver-
sions, the so-called Hermite-Hadamard-Fejér in-
equalities (see, [14], [19], [21]). In [IT], Fejer gave
a weighted generalizatinon of the inequalities ()
as the following:
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Theorem 1. Let ® : [a,b] — R be a convex func-
tion. Then the inequality hold:

o(45) [vio

a+b
2

where ¥ : [a,b] — R is nonnegative, integrable
(a+b)
5

and symmetric to

In the following, we will give some necessary def-
initions and mathematical preliminaries of frac-
tional calculus theory which are used further in
this paper. More details, one can consult [12]18].

Definition 1. ( [{,[12,[18]) Let ® € Li([a,b]).
The Riemann-Liouville integrals J3*, ® and Ji* ®
of order o« > 0 with a > 0 are defined by
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1 X
J2, () = / (x— 0 D), > a

()
and
b
J ®(x) = r(la)/ (t—2)*  ®(t)dt, =<b

respectively. Here, T'(a) is the Gamma function
and J) ®(z) = J)_ ®(z) = ®(z).

Meanwhile, in [24], Sarikaya et al. gave the fol-
lowing interesting Riemann-Liouville integral in-
equalities of Hermite-Hadamard-type:

Theorem 2. Let K : [a,b] — R be a positive
function with 0 < a < b and K € Li([a,b]). If K
is a convez function on [a,b], then the following
inequalities for fractional integrals hold:

K (a;b> 2)
INa+1)
~20b—-a)"
K@ KD

with o > 0.

[J& K (b) + J§ K (a)]

Later, in [14], Iscan presented the following
Hermite-Hadamard-Fejer type inequalities for
convex functions via Riemann-Liouville fractional
integrals:

Theorem 3. Let K : [a,b] — R be convex func-
tion with 0 < a < b and K € (L;]a,b]). If
L : [a,b] — R is nonnegative, integrable and sym-

atb then the following in-

metric with respect to “5=,
equalities for fractional integrals hold:

K (50 o)+ @] ®
< [JSLK(b) + JpK(a)]

K (a) + K (b)

<
B 2

[J& L(b) + J5_L(a)]
with o > 0.

Let us now consider a bi-demensional interval
which will be used throughout this paper. So,
we define A =: [a,b] x [c,d] in R? with a < b and
¢ < d. A mapping ¢ : A — R is said to be convex
on the co-ordinates A if the following inequality:

O(te+ (1 —t)z,ty+ (1 —2t)r)
<t® (z,y)+ (1 —1t)P(2,7)

holds, for all (z,y),(z,7) € A and t € [0,1].

A function ® : A — R is said to be convex on the
co-ordinates on A if the partial mappings ®, :
[a,b] = R, ®,(u) =@ (u,y) and ®; : [c,d] = R,
®, (v) = @ (x,v) are convex where defined for all
x € [a,b] and y € [c,d] (see, [10]).

A formal definition for co-ordinated convex func-
tions may be stated as follows:

Definition 2. ( [10/) A function ® : A — R
will be called co-ordinated conver on A, for all
t,s € [0,1] and (z,y), (u,r) € A, if the following
inequality holds:

O(te+ (1 —t)y,su+ (1 —s)r)
< ts®(x,u) + s(1 —1)P(y, u) (4)

+t(1 — 5)P(z,7) + (1 —t)(1 — 5)P(y, 7).

Clearly, every convex function is a co-ordinated
convex. Furthermore, there exists a co-ordinated
convex function which is not convex, (see, [10]).

For several recent results concerning Hermite-
Hadamard’s inequality for some convex function
on the co-ordinates on a rectangle of R?, we refer
the reader to ( [1]- [3], [10], [15]- [17], [20], [22],
271).

In [I0], Dragomir established the following
inequality of Hermite-Hadamard-type for co-
ordinated convex mapping on a rectangle of R?
similar to ().

Theorem 4. Suppose that ® : A — R is co-
ordinated convex on A. Then one has the inequal-
ities:
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1 b pd
< (b_a)(d_c)/a i ® (2,y) dydx (5)
1 1 b b
< 4[b—a/a ® (z,c)dx + _a/aq)(x,d)dw
1 1
e R L AL

® (a,c)+ @ (a,d) + P (b,c) + P (b, d)
1 :
The above inequalities are sharp.

<

Later, in [27], Sarikaya and Yaldiz proved inequal-
ities of the Hermite-Hadamard type by using the
definition of co-ordinated convex functions for L-
Lipschitzian mappings.

In [3], a Hermite-Hadamard-Fejer type inequality
for co-ordinated convex mappings is established
as follows:

Theorem 5. Let & : A — R be a co-ordinated
convex function. Then the following double in-
equality hold:

(I)(a—}—b’c—kd)
2 2

fjl(p(x7y)p($ay) dydaz
< a c (6)

p(z,y) dydz

f—
0 —aq,

® (a,c) + P (a,d)+ D (b,c) + P (b,d)

4 )
where p : A — R is positive, integrable and sym-
metric with respect to x = aTer and y = # on
the co-ordinates on A. The above inequalities are
sharp.

<

Because of the wide application of Hermite
Hadamard type inequalities, Fejer type inequal-
ities and Riemann-Liouville integrals for two-
variable functions, many authors extend their
studies to Hermite Hadamard type inequalities
and Fejer type inequalities involving Riemann-
Liouville integrals not limited to integer integrals.

Definition 3. ( [12,[18]) Let ® € L;(A).

a?ﬁ
Ja+7d—’

Jl?_’BCJr a,nngy_’Bd_ of order a, 3 > 0 with a,c > 0
are defined by

The Riemann-Liouville integrals Jjjfﬁ,

J(?-fc-ﬁ— @(1‘7 y) =

_L y:v— by — )Pt s)ds
e / / (x— )" (y — )L B(t, s)dsdt,

T >a,y>c

J(?-;-B,d— (I)({E, y) =

1 xr pd 1 5-1
NONE] /a /y (x =) (s—y)" D¢, s)dsdt,

x>a,y<d

Tl (ay) =

1 by a—1 p—1
W/z/c(t—x) (y — )P B (L, 5)dsdt,

x<by>c

and
Jéﬁ?df <I>(m, y) =

b pd
T [, [, 6o e e

x<by<d

respectively. Here, I' is the Gamma function,

Jgf7c+¢(aj, y) = Jgf,d*(b(x’ y)

= )0 (x,y) = )0y ®(x,y) = D(x,y)

and
T ry
J(}ic+<1>(x,y):/ / ®(t,s)dsdt.

Similar to Definition [I] and Definition [3, we intro-
duce the following fractional integrals:

d
JO B (w c;)
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c+d
()
Jb— (I, B )

:F(la)/:(t_x)“*@(t,cgd

)dt,x<b;

:F(lﬁ) /y(ys)ﬁ_1¢(a;b,s)ds, y >

d
11(1,6)/?4 (sy)ﬁlé(a;b,s) ds, y<d.
It is remarkable that Sarikaya et al.( [26]) and
( [28]) gave the following interesting integral
inequalities of Hermite-Hadamard-type involv-
ing Riemann-Liouville fractional integrals by us-
ing convex functions of 2-variables on the co-
ordinates.

Theorem 6. Let ® : A — R be co-ordinated
conver on A, with 0 < a < b, 0 < ¢ < d and
® € Ly (A). Then one has the inequalities:

q)<a—2|—b’c—i2—d> 7)

T(a+ 1)T(B + 1)

<
4(b—a)*(d—c)?
x e @) + T3, @ (b,0)
+JP ®(a,d) + I, ®(a,c)
b—,c+ ) b—,d— )
_ ®(a,0) +P(a,d) +2(be) +2(b,d)

4

For some recent results connected with fractional
integral inequalities, see ( [5]- [9], [23]- [26]).
The main aim of this paper is to establish new
results on Hermite-Hadamard-Fejer type inequal-
ities for co-ordinated convex functions on the rec-
tangle A introduced in the first section of this pa-
per. We will use the Riemann-Liouville integral
operators to prove our main results.

2. Hermite-Hadamard-Fejer type
inequalities for fractional integrals

In this section, using Riemann-Liouville fractional
integral operators, we establish new results on
Hermite-Hadamard-Fejer type inequalities for co-
ordinated convex functions. We present evidence

by using two different methods. We begin by the
following theorem:

Theorem 7. Let ® : A — R be a co-ordinated
convez function such that ® € Ly (A). If ¥ : A —
R is nonnegative, integrable and symmetric with
respect to “TJ“b, %fl on the co-ordinates, then for
any o, B > 0 with a,c > 0, the following integral
inequalities hold

(b<a—2|—b’c42—d> ()

X [Ja;c+\11 (b,d) + J%2 W (b,c)

a

+J5L€+\IJ (a,d) + Jba,’g,\ll (a, c)}

IN

1 (6% (6%
7 [ @) (b, d) + T (@) (b )

+J08 (W) (a,d) + JE5_ (D) (a, c)]

® (a,¢) + ® (a,d) + ® (b,c) + ® (b, d)
= 4

X [Ja;/;q; (b,d) + J%2 W (b,c)

a

—I—Jgﬁiglf (a,d) + Jbajg,\Il (a,c)} )

Proof. Since ® is a convex function on A, then,
for all (¢,s) € [0,1] x [0,1], we can write:

(I><a—2i—b’c—|2—d> ©)

B <I)<ta—i—(1—1§)b+(1—1f)a—i-tb
= : ’

sc+(1—s)d+ (1 —s)c+sd
)

IN

i [® (ta + (1 — )b, sc+ (1 — s)d)

+® (ta+ (1 — )b, (1 — s)c + sd)
+@ ((1 —t)a+tb,sc+ (1 — s)d)

+® ((1 —t)a+1tb, (1 —s)c+ sd)].
Multiplying both sides of (@) by

t*1sA=10 (1 — t)a + tb, (1 — s)c+ sd), and in-
tegrating the resulting inequality with respect to
(t,s) on [0,1] x [0, 1], we obtain
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<I><a+b,c+d>
2 2

1
/to‘_lsﬂ_l\ll (1 =t)a+tb, (1 — s)c+ sd) dsdt

0

X
O\H

IN

41;/01 /Olto‘_lsﬁ_l @(ta+ (1= bosct (1-9)d)  _
40 (ta+ (1 — )b, (1 — s)e + sd)
£ ((1— t)a + th, s+ (1 — s)d)
+0 ((1— t)a+ tb, (1 — s)e + sd)]

XU ((1—t)a+tb, (1 —s)c+ sd)dsdt

t* 1P 1D (ta 4+ (1 — )b, sc + (1 — s)d)

Il
o~
O\H
O\H

XU ((1 —t)a+1tb, (1 —s)c+ sd)dsdt

t 1AL (ta+ (1 — )b, (1 — s)c + sd)

+
o — _
o _

XU ((1 —t)a+1tb, (1 —s)c+ sd)dsdt

t* 1 sP71d (1 — t)a + tb, sc + (1 — s)d)

+
o _
o _

XU ((1—1t)a+1tb, (1 —s)c+ sd)dsdt

t* 1 sP71d (1 — t)a + tb, (1 — s)c + sd)

+
o _
o _

XU ((1—t)a+tb, (1 — s)c+ sd)dsdt.

Setting z = tb+ (1 —t)a, y = sd + (1 — s) ¢ and
dx = (b—a)dt, dy = (d — ¢) ds, we obtain:

209

(b—a)al(d—c)ﬁ(I> <a;b’ C;d>

b d

[ -0
4(b—a)*(d—c)?

x{/ab/cdu—a)a—l(y—c)ﬁ—l

U (z,y) dydx

— )71 (2, y) dyda

x®(a+b—x,c+d—1y)

of [

x®(a+b—x,y)V(r,y)dydx

+/ab/cd(b

X (x,c+d—y) VU (z,y)dydx

ald y)l

Yy —o)f ™!

b d
[ <bx)a*(dy)ﬁ-1<b<x7y>wx,y>dydx}
1

4(b—a)*(d—c)’

AL

X® (z,c+d—y) ¥

Yy—of!

(a+b—x,y)dyde

w [ [o-arta-

x® (z,y) ¥ (a+b—x,y)dyde

+ b / "2y - P

X® (z,c+d—1y) ¥V (x,y)dydx

of [e-

o (d - )1 () W <x,y>dydx}
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:4(b—a)°1‘(d—c)/3 {/:/Cd(b—az)al(y_c)ﬂl

X® (x,c+d—y)V(z,y)dydx

b d
+ / / (b—2)2"1(d = 5)* 1@ (2,9) ¥ (2, ) dyda

[ [o-ata-o

x® (x,c+d—y)V(z,y)dydx

+ /ab /Cd(b —2)* N d = )7L (2,y) ¥ (2,y) dydm} -

Therefore,

()T (B) a+b c+d
(b—a)“(d—c)ﬁq)( 2 7 2 >

X [JO‘J;C+\IJ (b,d) + J%2 W (b,c)

a

—I—J:,’@\I’ (a,d) + Jbajg,\ll (a, c)}

I'(a) T (B)
4(b—a)®(d—c)’

IN

X |0 (@W) (b,d) + T2 (@) (bc)

+J28 (W) (a,d) + JE5_ (D) (a c)] .

The first inequality of (8)) is thus proved.

We shall prove the second inequality of (§): Since
f is a convex function on A, then, for all (¢,s) €
[0,1] x [0,1], it yields

® (ta + (1 — )b, sc + (1 — 5)d)

+® (ta + (1 — )b, (1 — s)c + sd)
+® (1 —t)a + t, sc + (1 — 5)d)
+®((1—t)a+1tb,(1—s)c+sd)  (10)

< ®(a,c)+ ®(b,c) + ®(a,d) + (b, d).

Then, multiplying both sides of ([I0) by
t* 1A= (tb 4 (1 — t) a, sd + (1 — s) ¢) and inte-
grating the resulting inequality with respect to
(t,s) over [0,1] x [0, 1], we get

1 1

/ / 1918 (a4 (1 — 1), se + (1 — 5)d)
o Jo

+® (ta+ (1 —1t)b, (1 — s)c+ sd)

+® ((1 —t)a+tb,sc+ (1 — s)d)

+® ((1 —t)a+tb, (1 — s)c+ sd)]

XU (th+ (1 —t)a,sd+ (1 —s)c)dsdt

IN

[®(a,c) + (b, c) + P(a,d) + D(b,d)]

1 1
X / / LN (th 4+ (1 — t) a, sd + (1 — s) ¢) dsdL.
0 0
That is,
1 (6% (6%
7 [ @) (b, d) + I (@) (b )
+JP (@) (a,d) + JEO_ (BV) (a, c)]

® (a,c)+ @ (a,d) + P (b,c)+ P (b,d)
4

IN

X [Jj+’6+\11 (b,d) + J%2 W (b,c)

—I—J;‘,"{;\If (a,d) + Jl?,’g,\ll (a,c)| .

The proof of Theorem 7 is thus achieved. O

Remark 1. In Theorem[7:

(i) If we take oo = B = 1, then the inequality (8)
becomes the inequality (@) of Theorem [3.

(11) If we take U (z,y) = 1, then (8) becomes (7)
of Theorem[6.

We prove also the following result:

Theorem 8. Let ® : A C R> = R be a co-
ordinated convex function on A, with a,c > 0,
a,f>0and ® € L1 (A). If ¥ : A = R is non-
negative, integrable and symmetric with respect to
“TH’ and % on the co-ordinates, then we have:

b d
o (a; o ) x [JeL o wb.d) + I, Wb,

I Wlayd) + T3, W(a,o)] (11)
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+J0 | @

IA
[\
=~
e
Jr
2
=
=
)
+
<

7/3
+Jboi c+

< Jar

+Jat
g e

e o

+I2,
+J2,

+J7
+J

®(a,c)+ P (a,d)+ P

(@) (a,d) + J5_ (29) (a,0)|

® (b, c) J2, W(b, d)}

® (b,d) JS (b, c)]

(CL, C) Jéi_\Il(aj d):

(a,d) J} U(a, c):
(@ (a,d) J2, ¥(b,d)]
(@ (b,d) Jp Y (a,d)]

[@ (a,c) Jgt W (b, c)]
(@ (b,c) Ji V(a,c)]

(b,c) + @ (b,d)

x [l . d)+

4

fd (b, c)

I8 W (a,d) + Ty W(a,c)| .

Proof. Since ¢ :
co-ordinates,

A — R is convex on the
it follows that the mapping F,
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[c,d] = R, Fy(y) = ®(z,y), is convex on [c, d] and
the mapping G, : [c,d] — R, Gz(y) = ¥(z,y) is
nonnegative, integrable and symmetric with re-
ng, for all € [a,b]. Then, thanks to

the inequalities ([B]), we can write

F, (C . d) [72,G.d) + 77 Ga(e)]

IA

J2(FoGy) (d) + J7_(FuGy) (¢)

Fy (c) + F; (d)

IA

[J2.Gold) + J]Gale)]

® <x C;d> 1“(15) [/cd(d—y)ﬂ‘l\lf(x,y) dy

+ " P () dy]

d
< <1m[ / (d— )P (2,) @ (2,y) dy

- /cd(y =) (2, y) @ (,y) dy]

—

Q(z,c0)+@(z,d) 1
2 r'(B)

+f d(y—c)ﬁ*1W<x,y>dy} ,

<

|/ ") )

for all z € [a, b].

(b—z)>—1
T'(a)

, and integrating with respect to x over

Multiplying both sides of (I2]) by and

(z—a)*~ 1
T'(a)
[a, b], respectively, we have

. al -1
TETE // " —y)
C+d> (z,y) dydx

b d
—r a—1 —c Bs—1
+r<a>r</3)/a / (b=2)" (=)

d
x P <x, C—; > U (z,y) dydx

x| x,

(13)
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ozldy —1

IS

X® (z,y) ¥ (z,y) dydx

F(a

+ /ab /cd(b —2)* Ny — )’ (2,9) ¥ (z,y) dydw}

(14

o L, e

x® (z,c) ¥ (z,y) dydx
/ / b—x) Yy — )1 (2,¢) U (2,y) dydz
/ / ) Nd — )P 71D (2, d) U (2, y) dydz

of fo-er

F //x—aald y)P1

X@@,Q)w PR
rwrE [ oo

<@ <w,c+d> (2, ) dyda

< | [ o tav

x® (z,y) ¥ (z,y) dydx

[ [w-art-or

x® (z,y) ¥ (2,y) dydz]

@ L, [ (e oo

X® (z,c) ¥ (z,y) dydx
b pd
/ / (x —a)* Yy — C)B71¢ (z,0) ¥ (z,y) dydx

/ ’ / = ) (A= ) (2, ) ¥ (o) dyd

VA

)P (2,d) U (,y) dydﬂc} .

)LD (x,d) U (z,y) dydx].

For the mappings F, : [a,b] = R, F(z) = ®(z,y)
and Gy : [a,b] = R, Gy(z) = ¥(x,y), we use the
same arguments as before. So, we can state that

Fa)F // (b—xz)*1(d - y) -1

<a+b ) (z,y) dydx

i a)lrw)/G/
x@(a;b )

X

(16)

ald y)l

(x,y) dydx

b d
oA A
X® (z,y) ¥ (z,y) dydx

IN
’1

b d
+ / / (2 — @) (d — )P B (2, 4) U (2, y) dydz

1 forion

x® (a,y) ¥ (x,y) dydz

_2FaF

b d
" / / (2 — 0)* "} (d — 1)° 10 (a,9) ¥ (2, ) dydz

[ [ oot e ) W o e

// )N d = )P0 (by) © (x,y) dyda:
and
_ a 1 _ \6-1
T@TE / / ) 9
x P a+b ) (z,y) dydx (17)
1, \B—1
+r<a>r<ﬁ>/a / (o= =0
x P (a;—b,y>\ll(x,y)dydaz
b rd
el A R
x® (z,y) ¥ (z,y) dydx
// )P 1@ (,y) ¥ (x,y) dyda
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A1
= M (T (B —0)

ClINAS

x® (a,y) ¥ (z,y) dydx

b d
" / / (- a)* Ly — )P (a, ) ¥ (&, ) dyd

+ b / "o
+/ab/cd(x

x® (b,y) ¥

- 0)671@ (ba Z/) v ('Ta y) dydac
Yy -t

(z,y) dydz] .

Adding the inequalities (I3))-(I7), we can write

s |o (0 550) 2w

d

o ¢<b,0+ > (b,c)]
i . i
I <I><a,c+ )Jf+ (a,d)
i d i
+Jp <I><a, 5 )J _Y(a,c)
i ) i
+J°, @(“; ,d)J U(b, d)
B [ a+b i
+IL |0 (5= d) i v(ad)

B & a+b (b
+<]d_ 92 e J—l— ( ,C)

+b

+J5 (a 5 > U(a, c)}

< 2 (@0) (0, d) + T, (@9) (b

D (@) (a,d) + T30, (B0) (a, c)}

< o [(I) (b, ) JE, (b, d)]
+Jo, [@ (b,d) J? (b, c)

e [cp (a,¢) J%, U (a, d)|

e [q» (a,d) J} T(a,c)]

+J2[® (a,d) & (b, d)]

+J2 [@ (b, d) J3_W(a, d)]

+J5_[® (a,¢) J& W (b, 0)]

+J7 [ (b,¢) P W(a,c)] .

These give the second and the third inequalities
in ().

Now, by using the first inequality in (3]), it yields
that

a+b c+d
(0]
(545

Uab /cd(b —2)7Nd ~ 9)7 71 (2,y) dyda

b d
/ / (& — @)1 (d - )P~ (2,y) dyde

VA

d
x P (x, %) U (z,y) dydx

VA

and

X

+

IN

ald y)l

d
Y td - y)ﬁ 1<I>< CJQF )\I/(x,y)dydx

@(a+b7c;d>
/[ /
A
/ b / "o 0 (- )
x@(a;b
+ /ab/cd(b

X ® (a;—b,y>\11(:v,y)dydx.

By addition, and using the fact that ¥ is symmet-
ric, we get

)N d — )P (2, y) dyda

X

— o) N (2, y) dydz

IN

,y> U (z,y) dydz

Yy —c)f !
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® (a + b’ c+ d)
2 2
[T v, + I, W)
+J?_”?C+\Il(a, d) + Jlf‘_”?d_\ll(a, c)]

d
< g [cp (b, C;) 72w, d)]

c+d
+Jg, [@ <b, 2) T W (b, c)}

o | c+d 1
+Jg | ® <a, 5 > J2 W(a,d)
o | c+d 1
+J- | @ (a, 5 ) Jf_\I/(a, c)
3 [ a+b o |
+J. | ® 5 d ) Jg Y(b,d)
B [ a+b o ]
+J., | P 5 yd | Jg U (a,d)
w8 o (A2 6) gewo
d— 5 ¢ ) Jay W (b, c)
8 [ a+b o
+J |® 5 1€ Jpr U(a,c)

which gives the first inequality in (L.

Finally, by using the second inequality in (B]), we
can state that:

(07

(s Uab(b )0 (a1, ¢) da
+ /ab(x —a)*7'® (z,¢) d:c]

® (a,c)+ @ (b,c)
5 ;

IN

Q

0—a)p {/ab(b —2)*71® (z,d) dz

+ /ab(x —a)*71® (z,d) dm]

P (a,d)+ @ (b,d)

< b
= 2
g 4 s a
s [ @G iy
d
+/ (y—C)B_l@(a,y)dy}
® (a,c) + P (a,d)
5 :
d
Mﬁ_c)ﬁ[/c (d—y)~'® (by)dy
d
+ [ <y—c>5—1<1><b,y>dy}
g q)(b,c);r(b(b,d)‘

By addition, we get the last inequality in (II)). O

Remark 2. In Theorem/[8, if we take a = 5 =1,
then the inequalities (I1]) become ().

3. Conclusion

In this paper, we established the Hermite-
Hadamard-Fejer type inequalities for co-
ordinated mappings related results to present new
type of inequalities involving Riemann-Liouville
integral operator. The results presented in this
paper would provide generalizations of those given
in earlier works. The findings of this study have
several significant implications for future applica-
tions.
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