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1. Introduction

In [16], h(x)-Fibonacci polynomials are defined
by Fh,0(x) = 0, Fh,1(x) = 1 and Fh,n+1(x) =
h(x)Fh,n(x) + Fh,n−1(x) for n ≥ 1. h(x)-Lucas
polynomials are defined by Lh,0(x) = 2, Lh,1(x) =
h(x) and Lh,n+1(x) = h(x)Lh,n(x)+Lh,n−1(x) for
n ≥ 1. Therefore some properties of these poly-
nomials are presented in that paper.

Let p(x) and q(x) be polynomials with real coeffi-
cients, p (x) 6= 0, q (x) 6= 0 and p2 (x)+4q (x) > 0.
In [9], it was defined generalized Fibonacci poly-
nomials Fp,q,n(x) as

Fp,q,n+1(x) = p(x)Fp,q,n(x)

+ q(x)Fp,q,n−1(x), n ≥ 1 (1)

with initial values Fp,q,0(x) = 0, Fp,q,1(x) = 1 and
generalized Lucas polynomials Lp,q,n(x) as

Lp,q,n+1(x) = p(x)Lp,q,n(x)

+ q(x)Lp,q,n−1(x), n ≥ 1 (2)

with the initial values Lp,q,0(x) = 2, Lp,q,1(x) =
p(x). In that paper, it was derived factorizations

and representations of polynomial analogue of an
arbitrary binary sequence by matrix methods. In
[11], it was given factorizations of Pascal matrix
involving (p, q)−Fibonacci polynomials. In [19],
it was obtained some arithmetic and combinato-
rial identities for the (p, q)−Fibonacci and Lucas
polynomials. In Section 2, we obtain some ba-
sic properties of generalized Fibonacci and Lucas
polynomials. In Section 3, we give some prop-
erties of these polynomials using 2 × 2 matrices.
In Section 4, we make the proof of two idenitites
concerning generalized Fibonacci and Lucas poly-
nomials using Laplace expansion of determinants.
In Section 5, we give new families of tridiagonal
matrices whose successive determinants generate
any subsequence of the generalized Fibonacci and
Lucas polynomials.

2. Generalized Fibonacci and Lucas

polynomials

Let p(x) and q(x) be polynomials with real coeffi-
cients, p (x) 6= 0, q (x) 6= 0 and p2 (x)+4q (x) > 0.
In this section, firstly we consider the general-
ized Fibonacci polynomials Fp,q,n(x) defined in
(1). The first six generalized Fibonacci polyno-
mials are given in the following table :
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Fp,q,1(x) = 1
Fp,q,2(x) = p(x)
Fp,q,3(x) = p2(x) + q(x)
Fp,q,4(x) = p3(x) + 2p(x)q(x)
Fp,q,5(x) = p4(x) + 3p2(x)q(x) + q2(x)
Fp,q,6(x) = p5(x) + 4p3(x)q(x) + 3p(x)q2(x).

For p(x) = x and q(x) = 1 we have Catalan’s
Fibonacci polynomials Fn(x); for p(x) = 2x and
q(x) = 1 we have Byrd’s polynomials ϕn(x);
for p(x) = k and q(x) = t we have general-
ized Fibonacci numbers Un ; for p(x) = k and
q(x) = 1 we have k-Fibonacci numbers Fk,n; for
p(x) = q(x) = 1 we have classical Fibonacci num-
bers Fn (for more details see [2], [4], [8], [10], [18]
and the references therein).

The generating function gF,p,q(t) of the general-
ized Fibonacci polynomials Fp,q,n(x) is defined by

gF,p,q(t) =
∞∑

n=0

Fp,q,n(x)t
n. (3)

From [11], we know that the generating function
of the generalized Fibonacci polynomials Fp,q,n(x)
is

gF,p,q(t) =
t

1− tp(x)− t2q(x)
. (4)

Theorem 1. Assume that p(x) is an odd poly-
nomial and q(x) is an even polynomial. Then
Fp,q,n(−x) = (−1)n+1Fp,q,n(x) for n ≥ 0.

Proof. From (3), and (4), we have

∞∑

n=0

Fp,q,n(−x)(−t)n =
−t

1− tp(x)− t2q(x)

and

∞∑

n=0

(−1)n+1Fp,q,n(−x)tn =
t

1− tp(x)− t2q(x)

=
∞∑

n=0

Fp,q,n(x)t
n.

Then the proof is follows.

�

Binet’s formulas are well known among the Fi-
bonacci numbers. Let α(x) and β(x) be the roots
of the characteristic equation

v2 − vp(x)− q(x) = 0, (5)

of the recurrence relation (1). From [9], we know
that

Fp,q,n(x) =
αn(x)− βn(x)

α(x)− β(x)
, for n ≥ 0, (6)

where

α(x) =
p(x)+

√
p2(x)+4q(x)

2 ,

β(x) =
p(x)−

√
p2(x)+4q(x)

2 .



 (7)

Notice that α(x)+β(x) = p(x), α(x)β(x) = −q(x)

and α(x)− β(x) =
√
p2(x) + 4q(x).

Theorem 2. For n ≥ 1, we have

Fp,q,n(x)

= 21−n
⌊n−1

2 ⌋∑
j=0

(
n

2j + 1

)
pn−2j−1(x)(p2(x) + 4q(x))j .

Proof. From (7), we have

αn(x)− βn(x) = 2−n[(p(x) +
√
p2(x) + 4q(x))n

−(p(x)−
√

p2(x) + 4q(x))n]

= 2−n[
n∑

j=0

(
n

j

)
pn−j(x)(

√
p2(x) + 4q(x))j

−
n∑

j=0

(
n

j

)
pn−j(x)(−

√
p2(x) + 4q(x))j ]

= 2−n+1
⌊n−1

2 ⌋∑
j=0

(
n

2j + 1

)
pn−2j−1(x)(

√
p2(x) + 4q(x))2j+1.

From the equation (6), then we obtain

Fp,q,n(x) =
αn(x)−βn(x)
α(x)−β(x) = αn(x)−βn(x)√

p2(x)+4q(x)

= 2−n+1
⌊n−1

2 ⌋∑
j=0

(
n

2j + 1

)
pn−2j−1(x)(p2(x) + 4q(x))j .

�

In [12], definitions of Chebyshev polynomials of
the first and second kinds are given by the follow-
ings (resp.)

Tn (x) = cosnθ and Hn (x) =
sin [(n+ 1) θ]

sin θ
,

where x = cos θ, 0 ≤ θ ≤ π.

We know that the generating functions of Cheby-
shev polynomials of the first and second kinds are

∞∑

n=0

Tn (t) z
n =

1− tz

1− 2tz + z2

and
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∞∑

n=0

Hn (t) z
n =

1

1− 2tz + z2
,

respectively. Also we can write Chebyshev poly-
nomials of the first and second kinds as follows:

Tn(t) =
n

2

⌊n
2 ⌋∑

j=0

(−1)j

n− j

(
n− j

j

)
(2t)n−2j

with T0 (t) = 1 and

Hn(t) =

⌊n
2 ⌋∑

j=0

(−1)j
(

n− j

j

)
(2t)n−2j

with H0 (t) = 1 (for more details one can see [3],
[13] and [17]).

Theorem 3. For n ≥ 1, we have

Fp,q,n(x) = in−1q(x)
n−1

2 Hn−1

(
p(x)

2i
√
q(x)

)
,

where i2 = −1 and

Hn(t) =

⌊n
2 ⌋∑

j=0

(−1)j
(

n− j

j

)
(2t)n−2j

with H0 (t) = 1 is the Chebyshev polynomial of
the second kind.

Proof. We know that the generating function for
the second kind Chebyshev polynomial Hn(t) is

∞∑

n=0

Hn(t)z
n =

1

1− 2tz + z2
.

Let z = iy
√

q(x) and t = p(x)

2i
√

q(x)
. Then we get

∞∑
n=0

inynq(x)
n
2 Hn

(
p(x)

2i
√

q(x)

)

= 1
1−yp(x)−y2q(x)

or

∞∑
n=0

inyn+1q(x)
n
2 Hn

(
p(x)

2i
√

q(x)

)

= y
1−yp(x)−y2q(x)

.

From the equation (4), we find

Fp,q,n(x) = in−1q(x)
n−1

2 Hn−1

(
p(x)

2i
√
q(x)

)
.

�

Now, we consider the generalized Lucas polynomi-
als Lp,q,n(x) defined in (2). The first six general-
ized Lucas polynomials are given in the following
table :

Lp,q,1(x) = p(x)
Lp,q,2(x) = p2(x) + 2q(x)
Lp,q,3(x) = p3(x) + 3p(x)q(x)
Lp,q,4(x) = p4(x) + 4p2(x)q(x) + 2q2(x)
Lp,q,5(x) = p5(x) + 5p3(x)q(x) + 5p(x)q2(x)
Lp,q,6(x) = p6(x) + 6p4(x)q(x)

+ 9p2(x)q2(x) + 2q3(x).

For p(x) = x and q(x) = 1 we have Lucas poly-
nomials Ln(x); for p(x) = k and q(x) = t we
have generalized Lucas numbers Vn; for p(x) = k

and q(x) = 1 we have k-Lucas numbers Lk,n; for
p(x) = q(x) = 1 we have classical Lucas numbers
Ln (for more details see [5], [7], [10], [18] and the
references therein).

The generating function gL,p,q(t) of the Lucas
polynomials Lp,q,n(x) is defined by

gL,p,q(t) =
∞∑

n=0

Lp,q,n(x)t
n.

From [11], we know that the generating function
of the generalized Lucas polynomials Lp,q,n(x) is

gL,p,q(t) =
2− tp(x)

1− tp(x)− t2q(x)
. (8)

Theorem 4. Assume that p(x) is an odd poly-
nomial and q(x) is an even polynomial. Then we
have

Lp,q,n(−x) = (−1)nLp,q,n(x), for n ≥ 0.

Proof. Using the equation (8), the proof is
clear. �

From [9], we know that Binet’s formula for
Lp,q,n(x) is

Lp,q,n(x) = αn(x) + βn(x) for n ≥ 0,

where α(x) and β(x) are the roots of the charac-
teristic equation (5). Using Binet formulas for the
generalized Fibonacci and Lucas polynomials, we
obtain the following corollaries.

Corollary 1. For n ≥ 0, we have

Lp,q,n(x) = p (x)Fp,q,n(x) + 2q (x)Fp,q,n−1(x).
(9)
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Corollary 2. For n ≥ 0, we have

αn(x) =
Lp,q,n(x) +

√
p2(x) + 4q(x)Fp,q,n(x)

2

and

βn(x) =
Lp,q,n(x)−

√
p2(x) + 4q(x)Fp,q,n(x)

2
.

Corollary 3. For n ≥ 0, we have

L2
p,q,n(x)− (p2(x)+4q(x))F 2

p,q,n(x) = 4q(x)(−1)n.

Corollary 4. For n ≥ 0, we have

Fp,q,2n(x) = Fp,q,n(x)Lp,q,n(x).

As similar to Theorem 3, we can give the follow-
ing theorem giving the relation between Lp,q,n(x)
and Tn(x). Since its proof is similar to that of
Theorem 3, we omit it.

Theorem 5. For n ≥ 0, we have

Lp,q,n(x) = 2inq(x)
n
2 Tn

(
p(x)

2i
√
q(x)

)
,

where i2 = −1 and

Tn(t) =
n

2

⌊n
2 ⌋∑

j=0

(−1)j

n− j

(
n− j

j

)
(2t)n−2j

with T0 (t) = 1 is the Chebyshev polynomial of the
first kind.

3. Some new identities for generalized

Fibonacci and Lucas polynomials

In [19], it was defined generalized Fibonacci and
Lucas polynomials with negative subscript of the
following form:

Fp,q,−n(x) =
−Fp,q,n(x)
(−q(x))n ,

Lp,q,−n(x) =
Lp,q,n(x)
(−q(x))n .

}
(10)

In this section we find some identities using the
following 2× 2 matrices

A =

[
p(x) q(x)
1 0

]
and B =

[
0 1

q(x) p(x)

]
.

Indeed the above matrices satisfy X2 = p(x)X +
q(x)I. We obtain some new identities using 2× 2
matrices of the form

X2 = p(x)X + q(x)I. (11)

In the following theorems we use the proof meth-
ods like as [18].

Theorem 6. If X is a square matrix of the form
X2 = p(x)X + q(x)I, then we have

Xn = Fp,q,n(x)X + q(x)Fp,q,n−1(x)I,

for any integer n.

Proof. It can be easily seen that Xn =
Fp,q,n(x)X+ q(x)Fp,q,n−1(x)I for every n ∈ N us-
ing mathematical induction. Now we show that
X−n = Fp,q,−n(x)X + q(x)Fp,q,−n−1(x)I for every
n ∈ N. Let K = p(x)I −X, then we have

K2 = (p(x)I −X)2

= p2(x)I − p(x)X + q(x)I

= p(x)K + q(x)I.

So we get Kn = Fp,q,n(x)K + q(x)Fp,q,n−1(x)I.
Then

(−q(x))nX−n = Kn

= Fp,q,n(x)K + q(x)Fp,q,n−1(x)I
= Fp,q,n(x) (p(x)I −X)
+q(x)Fp,q,n−1(x)I
= Fp,q,n+1(x)I − Fp,q,n(x)X.

Thus using the equation (10), we find

X−n =
−Fp,q,n(x)X

(−q(x))n
+

Fp,q,n+1(x)I

(−q(x))n

and

X−n = Fp,q,−n(x)X + q(x)Fp,q,−n−1(x)I.

�

Theorem 7. Let X be an arbitrary 2× 2 matrix.
Then X2 = p(x)X + q(x)I if and only if X is of
the form

X =

[
a b

c p(x)− a

]
, with detX = −q(x)

or X = δI where δ ∈ {α(x), β(x)} , α(x) =
p(x)+

√
p2(x)+4q(x)

2 and β(x) =
p(x)−

√
p2(x)+4q(x)

2 .
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Proof. Assume that X2 = p(x)X + q(x)I. Then
the minimal polynomial of X must divide λ2 −
λp(x)− q(x). So it must be λ−α(x), λ− β(x) or
λ2 − λp(x) − q(x). In the first case X = α(x)I,
in the second case X = β(x)I and in the third
case characteristic polynomial of X should be
λ2 − λp(x) − q(x) because X is a 2 × 2 matrix.
Clearly, its trace is p(x) and its determinant is
−q(x). The rest of the proof can be similarly com-
pleted. �

Corollary 5. If X =
[
a b

c p(x)− a

]

is a matrix with detX = −q(x), then we have

Xn =
[
aFp,q,n(x) + q(x)Fp,q,n−1(x) bFp,q,n(x)

cFp,q,n(x) Fp,q,n+1(x)− aFp,q,n(x)

]
.

Proof. From Theorem 7, we know that X2 =
p(x)X + q(x)I. Then, from Theorem 6 we get
Xn = Fp,q,n(x)X + q(x)Fp,q,n−1(x)I for any in-
teger n. Then the proof follows. �

Corollary 6. Let S =

[
p(x)
2

p2(x)+4q(x)
2

1
2

p(x)
2

]
, then

we have

Sn =

[
Lp,q,n(x)

2
(p2(x)+4q(x))Fp,q,n(x)

2
Fp,q,n(x)

2
Lp,q,n(x)

2

]
.

Proof. Since S2 = p(x)S + q(x)I , the proof is
completed by using Corollary 5. �

4. Generalized Fibonacci and Lucas

polynomials with Laplace expansion

In [6], it was given some identities about Fi-
bonacci numbers using Laplace expansion. In this
section we give two theorems about generalized
Fibonacci and Lucas polynomials and prove them
using Laplace expansion of determinants.

Let us consider the n×n tridiagonal matrix C(n)
defined by the following form:

C(n) =




p(x) i
√
q(x)

i
√
q(x) p(x) i

√
q(x)

i
√
q(x) p(x) .

. . .

. . i
√
q(x)

i
√
q(x) p(x)




.

Theorem 8. For any integer k (2 ≤ k ≤ n− 1),
we have

Fp,q,n(x) = Fp,q,k(x)Fp,q,n−k+1(x)

+ q(x)Fp,q,k−1(x)Fp,q,n−k(x). (12)

Proof. From k = 2 to k = n − 1, the equation
(12) becomes the followings:

Fp,q,n(x) = Fp,q,2(x)Fp,q,n−1(x)
+ q(x)Fp,q,1(x)Fp,q,n−2(x),

Fp,q,n(x) = Fp,q,3(x)Fp,q,n−2(x)
+ q(x)Fp,q,2(x)Fp,q,n−3(x),

...

Fp,q,n(x) = Fp,q,n−2(x)Fp,q,3(x)
+ q(x)Fp,q,n−3(x)Fp,q,2(x),

Fp,q,n(x) = Fp,q,n−1(x)Fp,q,2(x)
+ q(x)Fp,q,n−2(x)Fp,q,1(x).

It can be easily seen that Fp,q,n(x) = |C(n− 1)|
for n ≥ 2. Using Lemma 1 in [1] we get

|C(n− 1)|
= p(x) |C(n− 2)|+ q(x) |C(n− 3)|
= p(x)Fp,q,n−1(x) + q(x)Fp,q,n−2(x)
= Fp,q,2(x)Fp,q,n−1(x) + q(x)Fp,q,n−2(x)

Then we find

Fp,q,n(x) = Fp,q,2(x)Fp,q,n−1(x) + q(x)Fp,q,n−2(x)

Now we use the techniques in [14] to find the de-
terminant of the matrix C(n−1). If we choose the
first two rows of C(n−1), there are only three 2×2
submatrices of C(n− 1) whoose determinants are
not equal to zero.

C([1, 2], [1, 2]) =

∣∣∣∣
p(x) i

√
q(x)

i
√
q(x) p(x)

∣∣∣∣
= |C(2)| = Fp,q,3(x),

C([1, 2], [1, 3]) =

∣∣∣∣
p(x) 0

i
√
q(x) i

√
q(x)

∣∣∣∣
= ip(x)

√
q(x),

C([1, 2], [2, 3]) =

∣∣∣∣
i
√
q(x) 0

p(x) i
√
q(x)

∣∣∣∣
= −q(x).

Their corresponding cofactors are

C̃([1, 2], [1, 2]) = (−1)1+2+1+2 |C(n− 3)|
= Fp,q,n−2(x),

C̃([1, 2], [1, 3]) = (−1)1+2+1+3i
√
q(x) |C(n− 4)|

= −i
√
q(x)Fp,q,n−3(x),

C̃([1, 2], [2, 3]) = 0.

By the Laplace expansion in [14], we have
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Fp,q,n(x) = |C(n− 1)|
= C([1, 2], [1, 2])C̃([1, 2], [1, 2])

+C([1, 2], [1, 3])C̃([1, 2], [1, 3])

+C([1, 2], [2, 3])C̃([1, 2], [2, 3])

= |C(2)|Fp,q,n−2(x) + p(x)i
√
q(x)

(−i
√
q(x))Fp,q,n−3(x) + (−q(x)).0

= Fp,q,3(x)Fp,q,n−2(x)
+p(x)q(x)Fp,q,n−3(x).

Then we get

Fp,q,n(x) = Fp,q,3(x)Fp,q,n−2(x)
+ q(x)Fp,q,2(x)Fp,q,n−3(x).

If we choose the first three rows of C(n−1), there
are only four 3×3 submatrices of C(n−1) whoose
determinants are not equal to zero.

C([1, 2, 3], [1, 2, 3]) =

∣∣∣∣∣∣

p(x) i
√
q(x) 0

i
√
q(x) p(x) i

√
q(x)

0 i
√
q(x) p(x)

∣∣∣∣∣∣
= |C(3)| = Fp,q,4(x),

C([1, 2, 3], [1, 2, 4]) =

∣∣∣∣∣∣

p(x) i
√
q(x) 0

i
√
q(x) p(x) 0

0 i
√
q(x) i

√
q(x)

∣∣∣∣∣∣
= i
√
q(x) |C(2)| = i

√
q(x)Fp,q,3(x),

C([1, 2, 3], [1, 3, 4]) =

∣∣∣∣∣∣

p(x) 0 0

i
√
q(x) i

√
q(x) 0

0 p(x) i
√
q(x)

∣∣∣∣∣∣
= −p(x)q(x),

C([1, 2, 3], [2, 3, 4]) =

∣∣∣∣∣∣

i
√
q(x) 0 0

p(x) i
√
q(x) 0

i
√
q(x) p(x) i

√
q(x)

∣∣∣∣∣∣
= −i

√
q(x)q(x).

Their corresponding cofactors are

C̃([1, 2, 3], [1, 2, 3]) = (−1)6+6 |C(n− 4)|
= Fp,q,n−3(x),

C̃([1, 2, 3], [1, 2, 4]) = (−1)6+7i
√
q(x) |C(n− 5)|

= −i
√
q(x)Fp,q,n−4(x),

C̃([1, 2, 3], [1, 3, 4]) = 0,

C̃([1, 2, 3], [2, 3, 4]) = 0.

By the Laplace expansion in [14], we have

Fp,q,n(x) = |C(n− 1)|
= C([1, 2, 3], [1, 2, 3])C̃([1, 2, 3], [1, 2, 3])

+C([1, 2, 3], [1, 2, 4])C̃([1, 2, 3], [1, 2, 4])

+C([1, 2, 3], [1, 3, 4])C̃([1, 2, 3], [1, 3, 4])

+C([1, 2, 3], [2, 3, 4])C̃([1, 2, 3], [2, 3, 4])
= Fp,q,4(x)Fp,q,n−3(x)

+i
√
q(x)Fp,q,3(x)(−i)

√
q(x)Fp,q,n−4(x).

Then we get

Fp,q,n(x) = Fp,q,4(x)Fp,q,n−3(x)
+ q(x)Fp,q,3(x)Fp,q,n−4(x).

By the mathematical induction, we prove the
other identities in the equation (12). �

Let D(n) be the n × n tridioganal matrix given
of the following form:

D(n) =




p(x)
2 i

√
q(x)

i
√
q(x) p(x) i

√
q(x)

i
√
q(x) p(x) .

. . .

. . i
√
q(x)

i
√
q(x) p(x)




Theorem 9. For any integer k (1 ≤ k ≤ n− 1),
we have

Lp,q,n(x) = Lp,q,k(x)Fp,q,n−k+1(x)

+ q(x)Lp,q,k−1(x)Fp,q,n−k(x). (13)

Proof. From k = 1 to k = n − 1, the equation
(13) becomes the followings:

Lp,q,n(x) = Lp,q,1(x)Fp,q,n(x)
+ q(x)Lp,q,0(x)Fp,q,n−1(x),

Lp,q,n(x) = Lp,q,2(x)Fp,q,n−1(x)
+ q(x)Lp,q,1(x)Fp,q,n−2(x),

...

Lp,q,n(x) = Lp,q,n−2(x)Fp,q,3(x)
+ q(x)Lp,q,n−3(x)Fp,q,2(x),

Lp,q,n(x) = Lp,q,n−1(x)Fp,q,2(x)
+ q(x)Lp,q,n−2(x)Fp,q,1(x).

It is clear that Lp,q,n(x) = 2 |D(n)| , for n ≥
1. From the Corollary 1, we have Lp,q,n(x) =
p(x)Fp,q,n(x) + 2q(x)Fp,q,n−1(x). Then we get

Lp,q,n(x) = Lp,q,1(x)Fp,q,n(x)
+ q(x)Lp,q,0(x)Fp,q,n−1(x).

The rest of the proof can be completed similar to
the proof of the Theorem 8. �
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In [19], for m = 0 in the equation (3.9) coincides
with our Theorem 9 for k = n− 1.

5. Generalized Fibonacci and

generalized Lucas polynomials

subsequences

In this section we obtain another applications of
Lemma 1 in [1]. We generalize the family of tridi-
agonal matrices to a subsequence of generalized
Fibonacci (resp. generalized Lucas) polynomials
which is a family of tridiagonal matrices whose
successive determinants are given by that polyno-
mials. To do this, we use the following identities.

For n ≥ 1 we have

Fp,q,m+n(x) = Lp,q,n(x)Fp,q,m(x)

+ (−1)n+1qn(x)Fp,q,m−n(x) (14)

and

Lp,q,m+n(x) = Lp,q,n(x)Lp,q,m(x)

+ (−1)n+1qn(x)Lp,q,m−n(x). (15)

These identities was proved in [15] for p(x) = k

and q(x) = 1. We give the following theorems
using the proof methods given in [1].

Theorem 10. Let Mα,β(n), n = 1, 2, ... be the
family of symmetric tridiagonal matrices whose
elements satisfy following conditions :

m1,1 = Fp,q,α+β(x),

m2,2 =
⌈
Fp,q,2α+β(x)
Fp,q,α+β(x)

⌉
,

m1,2 = m2,1

=
√
m2,2Fp,q,α+β(x)− Fp,q,2α+β(x),

mj,j+1 = mj+1,j =√
(−1)αqα(x), 2 ≤ j ≤ 3,

mj,j = Lp,q,α(x), 3 ≤ j ≤ k,

with α ∈ Z
+ and β ∈ N. The successive determi-

nants of this family of matrices is

|Mα,β(n)| = Fp,q,αn+β(x).

Proof. We use the principle of mathematical in-
duction. We have

|Mα,β(1)| = detFp,q,α+β(x) = Fp,q,α+β(x)

and

|Mα,β(2)|

=

∣∣∣∣∣
Fp,q,α+β(x)

√
m2,2Fp,q,α+β(x)−Fp,q,2α+β(x)

√
m2,2Fp,q,α+β(x)−Fp,q,2α+β(x)

⌈
Fp,q,2α+β(x)
F,p,q,α+β(x)

⌉
∣∣∣∣∣

= Fp,q,2α+β(x).

Now we assume that |Mα,β(n)| = Fp,q,αn+β(x) for
1 ≤ k ≤ n. Then by Lemma 1 in [1] and (14) we
have

Mα,β(n+ 1)
= mn,n |Mα,β(n)| −mn,n−1mn−1,n |Mα,β(n− 1)|
= Lp,q,α(x) |Mα,β(n)| − (−1)αqα(x) |Mα,β(n− 1)|
= Lp,q,α(x)Fp,q,αn+β(x) + (−1)α+1qα(x)Fp,q,αn+β−α(x).

Using the equation (14), we get

Mα,β(n+ 1) = Fp,q,α+αn+β(x)
= Fp,q,α(n+1)+β(x).

�

Theorem 11. Let Rα,β(n), n = 1, 2, ... be the
family of symmetric tridiagonal matrices whose
elements satisfy the following conditions :

r1,1 = Lp,q,α+β(x),

r2,2 =
⌈
Lp,q,2α+β(x)
Lp,q,α+β(x)

⌉
,

r1,2 = r2,1
=
√
r2,2Lp,q,α+β(x)− Lp,q,2α+β(x),

rj,j+1 = rj+1,j

=
√
(−1)αqα(x), 2 ≤ j ≤ 3,

rj,j = Lp,q,α(x), 3 ≤ j ≤ k,

with α ∈ Z
+ and β ∈ N. The successive determi-

nants of this family of matrices is

|Rα,β(n)| = Lp,q,αn+β(x).

Proof. We use the principle of mathematical in-
duction. We have

|Rα,β(1)| = detLp,q,α+β(x) = Lp,q,α+β(x)

and

|Rα,β(2)|

=

∣∣∣∣∣
Lp,q,α+β(x)

√
m2,2Lp,q,α+β(x)−Lp,q,2α+β(x)

√
m2,2Lp,q,α+β(x)−Lp,q,2α+β(x)

⌈
Lp,q,2α+β(x)
L,p,q,α+β(x)

⌉
∣∣∣∣∣

= Lp,q,2α+β(x).

Now we assume that |Rα,β(n)| = Lp,q,αn+β(x) for
1 ≤ k ≤ n. Then by Lemma 1 in [1] and (15) we
find
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Rα,β(n+ 1)
= rn,n |Rα,β(n)| − rn,n−1rn−1,n |Rα,β(n− 1)|
= Lp,q,α(x) |Rα,β(n)| − (−1)αqα(x) |Rα,β(n− 1)|
= Lp,q,α(x)Lp,q,αn+β(x)
+(−1)α+1qα(x)Lp,q,α(n−1)+β(x).

Using the equation (15), we get

Rα,β(n+ 1) = Lp,q,α+αn+β(x)
= Lp,q,α(n+1)+β(x).

�

As a consequence of Theorem 10 and Theorem 11,
we establish new families of tridiagonal matrices
whose successive determinants generate any sub-
sequence of the generalized Fibonacci and gener-
alized Lucas polynomials. For example, we have

Fp,q,4n−2(x) =











p (x) 0 0
0 p4 (x) + 4p2 (x) q (x) + 3q2 (x) q2 (x)
0 q2 (x) p4 (x) + 4p2 (x) q (x) + 2q2 (x) .

. . .

. . q2 (x)
q2 (x) p4 (x) + 4p2 (x) q (x) + 2q2 (x)











and

Lp,q,4n−2(x) =











p2 (x) + 2q (x) 0 0
0 p4 (x) + 4p2 (x) q (x) + q2 (x) q2 (x)
0 q2 (x) p4 (x) + 4p2 (x) q (x) + 2q2 (x) .

. . .

. . q2 (x)
q2 (x) p4 (x) + 4p2 (x) q (x) + 2q2 (x)











.

6. Conclusion

In this study we give some new properties of gen-
eralized Fibonacci and Lucas polynomials using
matrices, complex numbers and Chebyshev poly-
nomials. Our results generalize some known re-
sults in the literature.
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