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1. Introduction

Analytical or numerical solutions of nonlinear
problems has a crucial importance in all areas of
physical, mathematical and engineering sciences.
Nonlinear equations have interesting characteris-
tics for physical systems and they can be under-
stood by the solution of these problems either an-
alytically or numerically. In general, finding the
analytical solution of nonlinear problems is very
hard or even impossible for some cases, because
of that, numerical solutions of these equations are
particularly important.

In this paper, we will consider coupled KdV
(cKdV) equation which is an important nonlin-
ear evolution equation and given in the following
form

ut − 6auuy − 2bvvy − auyyy = 0,

vt + 3uvy + vyyy = 0, y1 ≤ y ≤ y2
(1)

with the initial conditions

u(y, 0) = f(y), v(y, 0) = g(y), y ∈ [y1, y2]
(2)

and the boundary conditions

u(y1, t) = u(y2, t) = uy(y2, t) = 0 t ∈ [0, T ]

v(y1, t) = v(y2, t) = vy(y2, t) = 0 t ∈ [0, T ] (3)

where a and b are constants [1]. These equations
describe interaction of two long waves with dif-
ferent dispersion relations, it is introduced by Hi-
rota and Satsuma [1] in 1981. A lot of long waves
with weak dispersion such as internal, acoustic,
and planetary waves in geophysical hydrodynam-
ics are related with (cKdV) equation [2, 3].

Because of the importance of cKdV system among
evolution equations it is studied by many re-
searchers both analytically and numerically: A
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difference scheme given in [4] by Zhu for the peri-
odic initial-boundary value problem of the cKdV
Equation. Adomian decomposition method is
used to solve this system by Kaya and Inan [5].
Tanh method is used to find solution of the sys-
tem by Fan [6]. By using the Jacobian elliptic
function expansion approach and Hermite trans-
formation Ma and Zhu [7] have obtained some
new exact solutions of the cKdV equations. cKdV
equation is solved by Assas [8] by using variational
iteration method. Homotopy analysis method is
used by Abbasbandy [9] for solving the general-
ized cKdV system. Analytic solutions of nonlin-
ear cKdV equations are studied by Al-Khaled et
al. [10] by using tanh and the He’s variational it-
eration methods. Mokhtari and Mohammadi [11]
solved a coupled system of nonlinear partial dif-
ferential equations by using Exp-function method.
Ismail solved cKdV system by using finite differ-
ence and finite element methods [12–14]. Halim
et al. [2, 3] introduced a numerical scheme for
general cKdV systems. For the periodic initial
boundary value problem of the cKdV system a fi-
nite difference scheme produced by Wazwaz [15].
By using collocation method and quintic splines
Ismail [16] solved cKdV system. A quadratic
B-spline Galerkin approach applied by Kutluay
and Ucar [17] for solving cKdV system. Ismail
and Ashi [18] used a Petrov-Galerkin method and
product approximation technique to solve numer-
ically the Hirota-Satsuma cKdV equation.

In this paper, for obtaining numerical solutions
of systems (1), we have employed Haar wavelet
method. The paper is organized as follows; In
Section 2, an introduction about Haar wavelets is
given. In Section 3, time and space discretizations
are described and error analysis is given. Numer-
ical results are given in Section 4 and finally the
paper is concluded in Section 5.

2. Haar wavelets

The wavelet methods have been attracting more
attention lately in solving differential equations
numerically since they were first applied to solve
differential equations in early 1990s. Before ex-
plaining the method, we will give basic informa-
tion about Haar wavelets. They are special kind
of wavelets, introduced in 1910 by Alfred Haar
and they are the simplest of all possible wavelets
with compact support. They are box shaped func-
tions, defined in the interval [0,1). Together they
form an orthonormal system in the space of square
interable functions. In order to use these wavelets
in differential equations one must solve the discon-
tinuity problem of Haar wavelets. This problem
was overcome by Chen and Hsiao [19], they used

integral method in which the highest derivative
of the function in the dierential equation is ex-
panded into Haar series. After this achievement
researchers have been using Haar wavelets to ob-
tain numerical solutions of differential equations
because of their simplicity and computational fea-
tures. Recently, many authors have used Haar
wavelet method for solving ordinary and partial
differential equations [20–31]. Especially high or-
der pdes like KdV and fractional coupled KdV
equations are considered in [32, 33].

Here we give an explanation of the method, start-
ing with the definition of the ith Haar wavelet as
follows for x ∈ [0, 1]

hi(x) =











1, for x ∈
[

k
m , k+0.5

m

)

−1, for x ∈
[

k+0.5
m , k+1

m

]

0, elsewhere

(4)

wherem = 2j , j = 0, 1, ..., J and k = 0, 1, ...,m−1
is dilation parameter and translation parameter,
respectively. The index of hi in Eq. (4) can be
found by relation i = m + k + 1. For the lowest
values of m = 1, k = 0, we have i = 2 and the
greatest value of i will be i = 2M = 2J+1; where
J is the maximal resolution of the wavelet. For
i = 1 we have Haar scaling function

h1(x) =

{

1, for x ∈ [0, 1)

0, elsewhere

Any function u(x) ∈ L2[0, 1) can be expanded
into Haar series as

u(x) =
∞
∑

i=1

cihi(x),

where ci can be found by

ci = 2j
∫ 1
0 u(x)hi(x)dx,

i = 2j + k, j ≥ 0, 0 ≤ k < 2j .

Practically, for approximating a square integrable
function u(x) on interval [0, 1) finite terms of Haar
series are needed, hence one may write

u(x) =
2M
∑

i=1

cihi(x) = cT(2M)h(2M)(x),

In the above relation M = 2j , T denotes trans-
pose and
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cT(2M) = [c1, c2, ..., c(2M)]

h(2M)(x) = [h1(x), h2(x), ..., h(2M)(x)]
T .

To employ Haar wavelet method for solving any
order partial differential equation one needs the
following integrals

pi,1(x) =

∫ x

0
hi(x)dx

pi,n+1(x) =

∫ x

0
pi,n(x)dx, n = 1, 2, 3, ...

general form of the integral is given in [34]

pi,α(x) =











































0; for x < ζ1
1
α!

(

x− k
m

)α
; for x ∈ [ζ1, ζ2]

1
α!

[

(

x− k
m

)α − 2 (x− ζ2)
α
]

;

for x ∈ [ζ2, ζ3]
1
α!

[

(

x− k
m

)α − 2 (x− ζ2)
α
+ (x− ζ3)

α
]

;

for x > ζ3

For the first three integrals following expressions
can be found from the above equation

pi,1(x) =











x− ζ1, for x ∈ [ζ1, ζ2]

ζ3 − x, for x ∈ [ζ2, ζ3]

0, elsewhere

(5)

pi,2(x) =























(x−ζ1)2

2 , for x ∈ [ζ1, ζ2]
1

4m2 − (ζ3−x)2

2 , for x ∈ [ζ2, ζ3]
1

4m2 , for x ∈ [ζ3, 1]

0, elsewhere

(6)

pi,3(x) =























(x−ζ1)3

6 , for x ∈ [ζ1, ζ2]
x−ζ2
4m2 − (ζ3−x)3

6 , for x ∈ [ζ2, ζ3]
x−ζ2
4m2 , for x ∈ [ζ3, 1]

0, elsewhere

. (7)

where ζ1, ζ2 and ζ3 defined as follow.

ζ1 =
k

m
, ζ2 =

k + 0.5

m
, ζ3 =

k + 1

m
.

Once the above integrals are computed we can
store the results in memory and we can use them
wherever they are needed.

3. Discretization scheme for cKdV

Since we defined Haar wavelets for x ∈ [0, 1]. We
have to transform the domain of Eq. (1) into
unit interval. By using transformation x = y−y1

L ,
L = y2−y1 the interval y1 ≤ y ≤ y2 can be trans-
formed into the unit interval 0 ≤ x ≤ 1. Hence
Eqs. (1) become

ut −
6

L
auux −

2

L
bvvx −

1

L3
auxxx = 0,

vt +
3

L
uvx +

1

L3
vxxx = 0.

Now we can start to discretization process

3.1. Time discretization for cKdV

To discretize the Eq. (1), we use forward finite
differences for time derivatives and time averages
of the other terms, as follows

un+1 − un

∆t
− 6a

2L
[(uux)n+1 + (uux)n]

− 2b

2L
[(vvx)n+1 + (vvx)n]

− a

2L3
[(uxxx)n+1 + (uxxx)n] = 0,

vn+1 − vn

∆t
+

3

2L
[(uvx)n+1 + (uvx)n]

+
1

2L3
[(vxxx)n+1 + (vxxx)n] = 0

For nonlinear term (uux)n+1, we use un+1 (ux)n+
un (ux)n+1 − (uux)n linearization [35] formula.
We make similar linearization for (vvx)n+1 and
(uvx)n+1. Hence we get

un+1 −
∆t

L
3a [un+1(ux)n + un(ux)n+1]

−∆t

L
b [vn+1(vx)n + vn(vx)n+1]

−a∆t

2L3
(uxxx)n+1 = un +

a∆t

2L3
(uxxx)n,

vn+1 + 3
∆t

2L
[un+1(vx)n + un(vx)n+1]

+
∆t

2L
(vxxx)n+1 = vn − ∆t

2L3
(vxxx)n (8)

with the initial conditions

u0 = f(x), v0 = g(x), x ∈ [0, 1]

and boundary conditions
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un+1(0) = f1(tn+1), un+1(1) = f2(tn+1),

(ux) n+1(1) = f3(tn+1), n = 0, 1, ..., N − 1

vn+1(0) = g1(tn+1), vn+1(1) = g2(tn+1),

(vx) n+1(1) = g3(tn+1), n = 0, 1, ..., N − 1 (9)

where un+1 and vn+1 are the solutions of the Eq.
(8) at the (n+ 1)th time step.

3.2. Space discretization by Haar wavelets

In this subsection we show how to discretize space
derivatives appeared in Eqs. (8), we start with the
highest derivative by Haar wavelets. To do so we
assume

(uxxx)n+1 (x) =
2M
∑

i=1

cihi(x) = cT(2M)h(2M)(x) (10)

where the row vector cT(2M) is constant. Integrat-

ing Eq. (10) with respect to x from 0 to x, we get
the following equation

(uxx)n+1 (x) = (uxx)n+1 (0) +
2M
∑

i=1

cipi,1(x). (11)

In Eq. (11), (uxx)n+1 (0) is unknown so to find it,
we need to integrate Eq. (11) from 0 to 1. After
that, using boundary conditions (9) we get

(ux)n+1 (1)− (ux)n+1 (0) = (uxx)n+1 (0)

+
2M
∑

i=1

cipi,2(1)

(uxx)n+1 (0) =f3(tn+1)− (ux)n+1 (0)

−
2M
∑

i=1

cipi,2(1). (12)

Substituting (12) into Eq. (11) results in the fol-
lowing equation

(uxx)n+1 (x) =
2M
∑

i=1

cipi,1(x) + f3(tn+1)

− (ux)n+1 (0)−
2M
∑

i=1

cipi,2(1).

(13)

Now, if we integrate Eq. (13) from 0 to x we get

(ux)n+1 (x) = (ux)n+1 (0) +
2M
∑

i=1

cipi,2(x)

+ x
(

f3(tn+1)− (ux)n+1 (0)
)

− x

2M
∑

i=1

cipi,2(1). (14)

In Eqs. (12), (13) and (14),(ux)n+1 (0) term is un-
known. So to find (ux)n+1 (0) term we integrate
Eq. (14) from 0 to 1 and use boundary conditions
(9). Therefore we have

(ux)n+1 (0) = 2

[

f2(tn+1)− f1(tn+1)−
1

2
f3(tn+1)

−
2M
∑

i=1

cipi,3(1) +
1

2

2M
∑

i=1

cipi,2(1)

]

Now by plugging the calculated value of
(ux)n+1 (0) into Eq. (14) we obtain

(ux)n+1 (x) = 2

[

f2(tn+1)− f1(tn+1)−
1

2
f3(tn+1)

−
2M
∑

i=1

cipi,3(1) +
1

2

2M
∑

i=1

cipi,2(1)

]

(1− x)

+x (f3(tn+1)) +
2M
∑

i=1

cipi,2(x)− x

2M
∑

i=1

cipi,2(1)

(15)

Finally, integrating (15) from 0 to x, we obtain

u(x) = 2

[

f2(tn+1)− f1(tn+1)−
1

2
f3(tn+1)

−
2M
∑

i=1

cipi,3(1) +
1

2

2M
∑

i=1

cipi,2(1)

]

×
(

x− x2

2

)

+
x2

2
(f3(tn+1))

+
2M
∑

i=1

cipi,3(x)−
x2

2

2M
∑

i=1

cipi,2(1) + f1(tn+1)

(16)

If we summarize, we have
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(uxxx)n+1
(x) =

2M
∑

i=1

cihi(x)

(uxx)n+1
(x) =

2M
∑

i=1

cipi,1(x) + f3(tn+1)

− 2 [f2(tn+1)− f1(tn+1)

−

1

2
f3(tn+1)−

2M
∑

i=1

cipi,3(1)

+
1

2

2M
∑

i=1

cipi,2(1)

]

−

2M
∑

i=1

cipi,2(1)

(ux)n+1
(x) = 2 [f2(tn+1)− f1(tn+1)

−

1

2
f3(tn+1)−

2M
∑

i=1

cipi,3(1)

+
1

2

2M
∑

i=1

cipi,2(1)

]

(1− x)

+ x (f3(tn+1)) +
2M
∑

i=1

cipi,2(x)

− x

2M
∑

i=1

cipi,2(1)

(u)
n+1

(x) = 2 [f2(tn+1)− f1(tn+1)

−

1

2
f3(tn+1)−

2M
∑

i=1

cipi,3(1)

+
1

2

2M
∑

i=1

cipi,2(1)

]

×

(

x−

x2

2

)

+
x2

2
(f3(tn+1))

+
2M
∑

i=1

cipi,3(x)−
x2

2

2M
∑

i=1

cipi,2(1)

+ f1(tn+1)































































































































































































































































































































(17)

Similarly, we have

(vxxx)n+1
(x) =

2M
∑

i=1

dihi(x)

(vxx)n+1
(x) =

2M
∑

i=1

dipi,1(x) + g3(tn+1)

− 2 [g2(tn+1)− g1(tn+1)

−

1

2
g3(tn+1)−

2M
∑

i=1

dipi,3(1)

+
1

2

2M
∑

i=1

dipi,2(1)

]

−

2M
∑

i=1

dipi,2(1)

(vx)n+1
(x) = 2 [g2(tn+1)− g1(tn+1)

−

1

2
g3(tn+1)−

2M
∑

i=1

dipi,3(1)

+
1

2

2M
∑

i=1

dipi,2(1)

]

(1− x)

+ x (g3(tn+1)) +
2M
∑

i=1

dipi,2(x)

− x

2M
∑

i=1

dipi,2(1)

(v)
n+1

(x) = 2 [g2(tn+1)− g1(tn+1)

−

1

2
g3(tn+1)−

2M
∑

i=1

dipi,3(1)

+
1

2

2M
∑

i=1

dipi,2(1)

]

×

(

x−

x2

2

)

+
x2

2
(g3(tn+1))

+
2M
∑

i=1

dipi,3(x)−
x2

2

2M
∑

i=1

dipi,2(1)

+ g1(tn+1)































































































































































































































































































































(18)

Notice that for our problem

f1(tn+1) = 0, g1(tn+1) = 0

f2(tn+1) = 0, g2(tn+1) = 0

f3(tn+1) = 0, g3(tn+1) = 0

Substituting Eqs. (17), (18) into Eq. (8) and
discretizing the results at the collocation points
xl = l−0.5

2M , l = 1, 2, ..., 2M we found following
system of equations for cKdV system

Al,ici +Bl,idi = un +
a∆t

2L3
(uxxx)n

Dl,ici +El,idi = vn − ∆t

2L3
(vxxx)n (19)

where
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Al,i =

(

2

[

−pi,3(1) +
1

2
pi,2(1)

](

xl −
x2
l

2

)

+ pi,3(xl)−
x2
l

2
pi,2(1)

)(

1−
∆t

L
.3a.(ux)n

)

−

∆t

L
.3a.un

(

2

[

−pi,3(1) +
1

2
pi,2(1)

]

(1− xl) + pi,2(xl)− xlpi,2(1)

)

−

a∆t

2L3
hi(xl),

Bl,i =−

∆t

L
.b

([

2

[

−pi,3(1) +
1

2
pi,2(1)

](

xl −
x2
l

2

)

+ pi,3(xl)−
x2
l

2
pi,2(1)

]

(vx)n

)

−

∆t

L
.b

(

vn

[

2

[

−pi,3(1) +
1

2
pi,2(1)

]

(1− xl) + pi,2(xl)− xlpi,2(1)

])

,

Dl,i =

[

3
∆t

2L
(vx)n

(

2

[

−pi,3(1) +
1

2
pi,2(1)

](

xl −
x2
l

2

)

+ pi,3(xl)−
x2
l

2
pi,2(1)

)]

,

El,i =2

[

−pi,3(1) +
1

2
pi,2(1)

](

xl −
x2
l

2

)

+ pi,3(xl)−
x2
l

2
pi,2(1)

+ 3
∆t

2L
un

(

2

[

−pi,3(1) +
1

2
pi,2(1)

]

(1− xl) + pi,2(xl)− xlpi,2(1)

)

+
∆t

2L3
hi(xl).

ci and di are column vectors of wavelet coeffi-
cients and right hand side of Eqs. (19) is column
vectors calculated at xl collocation points for time
steps n. By solving Eqs. (19) simultaneously,
wavelet coefficients ci and di can be calculated
successively.

3.3. Error analysis

Convergence analysis of the Haar wavelets is
taken from [28]. Using the asymptotic expansion
of Eq. (16) as given in [28], one can write

u(x) = 2

[

f2(tn+1)− f1(tn+1)−
1

2
f3(tn+1)

−
∞
∑

i=1

cipi,3(1) +
1

2

∞
∑

i=1

cipi,2(1)

]

×
(

x− x2

2

)

+
x2

2
(f3(tn+1))

+
∞
∑

i=1

cipi,3(x)−
x2

2

∞
∑

i=1

cipi,2(1) + f1(tn+1)

Lemma 1. Suppose that u(x) ∈ L2(R) with
∣

∣

∣

∂u(x)
∂x

∣

∣

∣
≤ K, ∀x ∈ (0, 1); K > 0 and u(x) =

∑∞
i=1 cihi(x). Then |ci| ≤ K2(−3j−2)/2 [37].

Lemma 2. Let u(x) ∈ L2(R) be a continuous
function defined in (0, 1). Then the error norm
at J th level satisfies the following inequality

‖Ej‖2 ≤
K2

12
2−2J

where
∣

∣

∣

∂u(x)
∂x

∣

∣

∣
≤ K, ∀x ∈ (0, 1); K > 0, M is a

positive number related to the J th level resolu-
tion of the wavelet given by M = 2J [37].

Theorem 1. Suppose that u(x) is exact and
u2M (x) is approximate solution of the Eq. (16),
then

‖Ej‖ = ‖u(x)− u2M (x)‖ ≤
√
CK2−3(2J )−1

1− 2−3/2

Proof. See Kumar et al. [28] �

Similar procedure is valid for the convegence of
v2M (x). It is clear from above equation that by
increasing the level of resolution J the error de-
creases.

4. Numerical Experiments

Numerical computations have been done with the
free software package GNU Octave and graphi-
cal outputs were generated by Matplotlib package
[36]. In order to measure the difference between
the numerical and analytic solutions as the simu-
lation proceeds we considered the error norms L2

and L∞ defined by

L2 =

√

√

√

√∆x

2M
∑

i=1

|uexacti − unumi |2

L∞ = max
i

∣

∣uexacti − unumi

∣

∣ .

We also check the conservation laws of the cKdV
equation given by

I1 =

∫ ∞

−∞
udy

I2 =

∫ ∞

−∞

(

u2 +
2

3
bv2

)

dy
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I3 =

∫ ∞

−∞

[

(1 + a)

(

u3 − 1

2
u2y

)

+ b
(

uv2 − v2y
)

]

dy.

The invariants I1,I2 and I3 [18] are monitored at
the computations to check the conservation of the
numerical scheme.

4.1. Single soliton

Firstly, we consider the following initial condi-
tions for the single soliton problem for the Eq.
(1)

u(y, 0) = 2λ2sech2(ξ), v(y, 0) =
1

2
√
w
sech(ξ)

and the boundary conditions (3). This problem
have the following exact solution [1].

u(y, t) = 2λ2sech2(ξ), v(y, t) =
1

2
√
w
sech(ξ)

where

ξ = λ(y − λ2t) +
1

2log(w)
, w =

−b

8(4a+ 1)λ4
.

We solve the problem for ∆t = 0.01, λ = 0.5,
a = −0.125, b = −3 and different values of 2M
at t = 10. Table 1 shows the L2, L∞ error norms
for both u and v for increasing collocation points.
We can easily see from the table that the er-
ror norms decrease with the increasing colloca-
tion points as expected. In Table 2 we tabulated
the error norms with the invariants, for various
values of time. We see that the error norms are
sufficiently small and also the invariants are con-
served with increasing time. Relative changes of
invariants I1, I2 and I3 between t = 0 and t = 10
are found as %9.5362 × 10−6, %8.0525 × 10−9,
%3.5459× 10−6 respectively according to the for-

mula
|It=0

i −It=10
i |

It=0
i

× 100, (i = 1, 2, 3).

Finally, for the single soliton problem we depicted
the evolution of numerical solutions of u and v in
Fig. 1 for a = −0.125, b = −3 and λ = 0.5.
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Figure 1. Numerical solutions for
∆t = 0.01 and 2M = 1024.

4.2. Birth of solitons

We consider Eq. (1) with the initial conditions

u(y, 0) = e−0.01y2 , v(x, 0) = e−0.01y2

and the boundary conditions (3). Computer sim-
ulation of this problem are done for a = 0.5 and
b = −3 in the interval −50 ≤ y ≤ 150. Nu-
merical results of invariants and their comparison
with Petrov-Galerkin method are tabulated in Ta-
ble 4, as it can be seen from the table our results
are agree with Ref. [18]. The positions and am-
plitudes of waves at t = 25 are given in Table
5. It is clearly seen from the table that for first
three wave the positions are same for u and v.
Finally, evolution of numerical solutions between
t = 0 and t = 25 for ∆t = 0.01 and 2M = 2048 is
depicted in Fig. 2.

In Table 3, we give a comparison of our results
with ref. [18] for ∆t = 0.01, λ = 0.5, a = −0.125,
b = −3 and 2M = 1024. Numerical results of
the present method are comparable with the other
methods.
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Table 1. Numerical results for ∆t = 0.01, λ = 0.5, a = −0.125, b = −3 and different values of
2M at t = 10.

2M L2(u) L2(v) L∞(u) L∞(v)
256 0.000951 0.000327 0.000583 0.000140
512 0.000240 0.000082 0.000147 0.000035
1024 0.000060 0.000021 0.000037 0.000009

Table 2. Numerical results for ∆t = 0.01, λ = 0.5, a = −0.125, b = −3 and 2M = 1024.

t I1 I2 I3 L2(u) L2(v) L∞(u) L∞(v)
0 2.000000 0.500000 0.112500 0.000000 0.000000 0.000000 0.000000
2 2.000000 0.500000 0.112500 0.000025 0.000009 0.000019 0.000005
4 2.000000 0.500000 0.112500 0.000040 0.000014 0.000028 0.000007
6 2.000000 0.500000 0.112500 0.000050 0.000017 0.000033 0.000008
8 2.000000 0.500000 0.112500 0.000057 0.000019 0.000036 0.000008
10 2.000000 0.500000 0.112500 0.000060 0.000021 0.000037 0.000009

Table 3. A comparison for ∆t = 0.01, λ = 0.5, a = −0.125, b = −3 and 2M = 1024.

t Present Method Petrov-Galerkin [18] Product Approx. Tech. [18]

L∞(u) L∞(v) L∞(u) L∞(v) L∞(u) L∞(v)
2 0.000019 0.000005 0.000015 0.000004 0.000004 0.000005
4 0.000028 0.000007 0.000021 0.000005 0.000008 0.000007
6 0.000033 0.000008 0.000023 0.000006 0.000010 0.000009
8 0.000036 0.000008 0.000024 0.000007 0.000013 0.000012
10 0.000036 0.000009 0.000025 0.000008 0.000014 0.000013
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Figure 2. Numerical solutions for ∆t = 0.01 and 2M = 1024.

Table 4. Numerical results for ∆t = 0.01 and 2M = 2048 at various times.

t I1 I2
Haar Petrov-Galerkin [18] Haar Petrov-Galerkin [18]

0 17.7245385 17.724343 -12.5331414 -12.533142
5 17.7245385 17.723816 -12.5331169 -12.532956
10 17.7245385 17.723352 -12.5325963 -12.530116
15 17.7245385 17.722782 -12.5324374 -12.529239
20 17.7245020 17.722217 -12.5323640 -12.529013
25 17.7245998 17.721734 -12.5306828 -12.528983
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Table 5. Amplitudes and positions of waves and their comparisons for ∆t = 0.01 and 2M =
2048 at t = 25.

Position (y) Amplitude (u) Position (y) Amplitude (v)
First wave 47.7 3.4508 47.7 2.4415
Second wave 32.4 2.4434 32.4 2.7298
Third wave 18.7 1.5601 18.7 1.1046
Fourth wave 7.0 0.6908 6.9 0.5236
Fifth wave -2.8 0.2214 -3.6 0.1809

5. Conclusion

In conclusion, we have applied Haar wavelet
method to coupled KdV equation in this study.
Single soliton and birth of solitons have been used
as test examples to see the efficiency of the Haar
wavelet method. The error norms L2 and L∞

obtained by Haar wavelet method are compared
with the exact solutions and with those numerical
ones available in the literature. The comparisons
of error norms as well as conservation of invari-
ants during simulations clearly indicate that the
present method is both reliable and competitive
with other methods. As a conclusion, the pro-
posed method can safely and quickly be employed
to solve similar coupled partial differential equa-
tions.
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