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The Capacitated Multi-facility Weber Problem (CMWP) tries to determine
the location of I capacitated facilities in the plane and to satisfy demand of J
customers so as to minimize the total transportation cost. The CMWP assumes
that the facilities can be located anywhere on the plane and customers are
directly connected to them. This study considers an extension of the CMWP
where there exist convex polyhedral barriers blocking passage and locating
facilities inside. As a result, the distances between facilities and customers
have to be measured by taking into account the polyhedral barriers. The
CMWP with convex polyhedral barriers (CMWP-B) is a non-convex problem
that is difficult to solve. We propose specially tailored discretization based
heuristic procedures. Since CMWP-B is novel to the literature, a new set of
test problems is randomly generated. Then, the performance of the suggested
methods are tested on the test instances. Our results imply that the suggested
heuristics yield quite accurate and efficient solutions for the CMWP-B.
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1. Introduction

The Capacitated Multi-facility Weber Problem
(CMWP) tries to locate I facilities with capac-
ity restrictions in the plane and to meet the de-
mand of J customers while minimizing the total
cost of transportation. The objective function of
the CMWP is shown to be neither convex nor
concave [1]. When capacity restrictions of the
facilities are removed, the CMWP becomes the
so called Multi-facility Weber Problem (MWP).
Both of the MWP and CMWP are NP-hard as
shown by Sherali and Nordai [2], and Meggido and
Supowit [3], respectively. Moreover, they both
generalize the Weber Problem (WP) that aims to
find the optimal location of a single facility. The
objective function of the WP is convex, and thus,
easy to solve. However, this is not true for its
generalizations of the MWP and CMWP as ad-
ditional allocation decisions have to be made for
them. One can partition the customer set into

non-intersecting subsets each of which is served by
an uncapacitated facility for the MWP. This in-
dicates that each customer is served from exactly
one facility at the optimal solution of the MWP.
On the other hand, customer demands may need
to be met from multiple facilities for the CMWP
when capacity restrictions are imposed. Never-
theless, all of the WP, MWP and CMWP as-
sume that each facility can be freely located in
the plane. Such an assumption can be mislead-
ing in practice since there may exist physical ar-
eas that obstruct to travel and to open facilities
inside. For example, lakes, mountains, glaciers
and forests are natural barrier areas which can
prohibit both travelling and facility location in-
side. Indeed, traveling (or passage) is frequently
blocked by existing work-shop (office room) areas
in a manufacturing plant (in an office building).
This work focuses on an extension of the CMWP
where the existence of convex polyhedral barriers
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are considered as obstacles to pass inside and to
locate facilities. Namely, the CMWP with con-
vex polyhedral barriers (CMWP-B) is addressed.
We suggest several discretization based heuristic
approaches to efficiently solve the CMWP-B.

Mostly, the transportation cost between a facil-
ity and customer is a function of the distance and
the amount of shipment between them. In par-
ticular, the distance is usually modelled with the
Euclidean, squared Euclidean, rectilinear and ℓr
(with 1 ≤ r < ∞) norms in location-allocation
type problems such as the CMWP. Alpaydın et
al. [4] and Brimberg et al. [5] provide excellent
surveys that include techniques and functions to
model distances. In this work, the distances be-
tween facilities and customers are measured by
the so called “barrier distance” which uses the
Euclidean distance, i.e. ℓ2, as its underlying dis-
tance measure. Observe that the Euclidean dis-
tance may not be feasible when polyhedral barri-
ers exist between facilities and customers. There-
fore, “barrier distance” is determined as the short-
est path, which does not pass through the barrier
regions where the edge costs are calculated with
the Euclidean distance, between a facility and
a customer. Clearly, the “barrier distances” re-
quire extra efforts to calculate the distances which
makes the CMWP-B a more realistic and difficult
problem to solve than the unrestricted CMWP.
Nonetheless, the “barrier distance” still preserves
the metric properties [6].

This work has the following contributions. For all
we know, the CMWP-B is novel to the literature
and we suggest a mathematical programming for-
mulation for it. Next, we offer three discretization
based (DB) heuristics which reduce the contin-
uous location space into a discrete space using
a discretization strategy. The first DB heuris-
tic employs the solution of an approximating
mixed-integer linear programming (MILP) for-
mulation suggested for the CMWP-B. The sec-
ond DB heuristic applies a Lagrangean Relaxation
(LR) scheme on the suggested MILP formulation.
The third DB heuristic performs a Tabu Search
(TS) using neighborhoods defined over the dis-
cretized location space. All upper bounds are
calculated with alternate location-allocation type
heuristics for the DB heuristics. We generate new
test instances for the CMWP-B where they in-
herit the data of the standard CMWP instances.
For that purpose, convex polyhedral barriers are
randomly constructed such that the feasibility of
the CMWP-B instances is maintained. Lastly, we
perform extensive computational experiments on
randomly generated test instances derived from
the standard CMWP instances.

The remainder of this study is organized as fol-
lows. In Section 2 a brief review of the relevant
literature is presented. This is followed by the
mathematical programming formulation of the
CMWP-B in Section 3. Section 4 presents details
of the suggested DB heuristics. Section 5 is where
we discuss our computational findings. Lastly, the
paper is concluded and future research directions
are given in Section 6.

2. Literature Review

In this section, we present a short review of the
relevant literature. Both the MWP and CMWP
have attracted the attention of researchers start-
ing with the seminal works by Cooper [1,7]. There
exist several exact solution procedures suggested
for the MWP ( [8–11]) as well as heuristic ap-
proaches for the MWP ( [7,12–18]). Furthermore,
we can cite the works by Cooper [1], Sherali et
al. [19] and Akyüz et al. [20] as examples of exact
solution methods developed for the CMWP. On
the other hand, we can mention Cooper’s [7] Al-
ternate Location-Allocation (ALA) type heuris-
tics [21,22], Discrete Approximation (DA) heuris-
tics [23, 24] and metaheuristics [25] developed for
the CMWP. Akyüz et al. [26,27] also offer heuris-
tic procedures for a multi-commodity extension of
the CMWP. A survey on the location-allocation
type problems can be found in the work by Brim-
berg et al. [28].

As an extension of the single facility WP, the WP-
B arises when there exist barriers which prohibit
to travel inside and to locate a facility. Katz
and Cooper [29] introduce the WP-B having a
single circular barrier region. The WP-B with
rectilinear distances is considered in the works
by Larson and Sadiq [30] and Batta et al. [31].
Aneja and Parlar [32] design an algorithm for
the WP-B as well as for a variant of the WP-
B where travelling is permitted within the bar-
riers. Butt and Cavalier [33] address the WP-B
where barriers are convex polygons and propose
an algorithm which yields local optimum solution.
Klamroth [34] derives a reduction result for the
WP-B having convex polyhedral barriers. Then,
an exact and a heuristic procedure is developed
for the WP-B. McGarvey and Cavalier [35] de-
velop a branch and bound approach that parti-
tions the continuous location space to optimally
solve the WP-B in the presence of polyhedral bar-
riers. Bischoff and Klamroth [36] deal with the
WP-B where the barriers are convex polyhedral
sets. Their method benefits from the reduction
result by Klamroth [34] and decomposes the WP-
Bs into multiple subproblems (i.e. WPs) each can
be solved over a convex and bounded region. The
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authors [36] apply a genetic algorithm to decrease
the number of subproblems to solve.

The MWP with convex polyhedral barriers
(MWP-B) is first considered by Krau [10] which
applies a column generation approach based on
partitioning of the customer set. Bischoff et al.
[37] suggest two ALA type heuristics that have
similar allocation phases for the MWP-B. Their
first ALA type heuristic alternately solves multi-
ple WP-Bs and set partitioning problems result-
ing in an inefficient algorithm. The second ALA
type heuristic suggested by Bischoff et al. [37]
yields better results. In the location phase, the
reduction result of [34] is extended to the multi-
facility case. Unlike their first ALA type heuristic,
this results in solving multiple WPs over convex
restricted regions and increase the efficiency of the
location phase for the second ALA type heuristic.
In what follows, we give a formal definition of the
CMWP-B.

3. Capacitated Multi-Facility Weber
Problem with Convex Polyhedral
Barriers

Let I, J and P denote the number of facilities,
the number of customers and the number of poly-
hedral barriers, respectively. The coordinates of
customer j is shown by aj = (aj1, aj2)

T and
its demand is denoted by qj . The parameter si
stands for the capacity of facility i. There are
two decisions to be made for the CMWP-B: lo-
cation decisions and allocation decisions. Then,
the unknown location of facility i is represented
as xi = (xi1, xi2)

T . The unknown amount of flow
between facility i and customer j is denoted by
fij . cij is the cost of transportation per unit flow
between customer j and facility i per unit dis-
tance. A polyhedral barrier p is indicated with set
Bp and the union of barriers are stated with the

set B, i.e. B =
P
⋃

p=1
Bp. Now, the feasible region to

locate facilities is given with the set X that can be
defined as X = E

2 \B where E2 is the two dimen-
sional Euclidean space. The Euclidean norm, i.e.

||xi − aj ||2 =
[

(xi1 − aj1)
2 + (xi2 − aj2)

2
]1/2

, is
used as the underlying distance measure to calcu-
late the “barrier distance” between facility i and
customer j. Note that barrier distance is repre-
sented with dB(xi,aj) between facility i and cus-
tomer j. The details about its calculation will
be discussed later on. Now a mathematical pro-
gramming formulation of the CMWP-B is given
as follows.

CMWP-B:

min Z =
I

∑

i=1

J
∑

j=1

cijfijdB(xi,aj) (1)

s.t.

J
∑

j=1

fij = si i = 1, . . . , I, (2)

I
∑

i=1

fij = qj j = 1, . . . , J, (3)

fij ≥ 0 i = 1, . . . , I; j = 1, . . . , J, (4)

xi ∈ X i = 1, . . . , I. (5)

The objective function (1) is to minimize the sum
of total transportation cost between facilities and
customers. Notice that constraints (2)-(4) are
the constraints of the well-known Transportation
Problem (TP). Constraints (2) state that the to-
tal flow sent from a facility i is equal to its ca-
pacity si. Constraints (3) imply that the demand
qj of customer j is exactly met. Constraints (4)
ensure the nonnegativity of flows. Constraints
(5) guarantee that facilities are placed within the
feasible region X . It is possible to further re-
strict the set of feasible region X . Wendell and
Hurter [38] show that an optimal solution of the
WP can be found within the convex hull of cus-
tomers. The result by Wendell and Hurter [38]
can be directly generalized to the WP-B as well
as to the CMWP-B in the case where barrier re-
gions stay within the convex hull of customer lo-
cations. In this case, it is enough to consider the
region within convex hull of customers that is out-
side of the polyhedral barriers. However, unlike
the CMWP, the resulting feasible region to locate
facilities is non-convex for the CMWP-B. More-
over, distances between facilities and customers
are measured with barrier distances dB(xi,aj) for
the CMWP-B. Observe that, the CMWP employs
the Euclidean distance between each facility and
customer. However, barrier distance is calculated
as the shortest path distance between any two
points when there exist barriers. The CMWP-
B can be reduced to the CMWP when all bar-
riers are removed. The optimal objective value
of the CMWP is a lower bound on the optimal
objective value of the CMWP-B since barrier dis-
tance between any two points is larger than or
equal to their Euclidean distances. That is to
say, the CMWP-B is more difficult to solve than
the CMWP which is NP-hard. This motivates the
implementation of efficient heuristic methods for
the CMWP-B.
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The calculation of the barrier distance dB(.) re-
quires additional efforts. Notice that convex poly-
hedral barriers can be represented with their ex-
treme points. Let epb = (epb1, epb2)

T be the coor-
dinates of their extreme points for each polyhedral
barrier p = 1, . . . , P with corresponding extreme
points b = 1, . . . , Bp. Here, Bp gives the number
of extreme points defining the polyhedral barrier
p represented with the set Bp. It should be em-
phasized that considering only convex polyhedral
barriers does not cause a loss of generality. Mc-
Garvey and Cavalier [35] have shown that optimal
solution of the WP-B can be found outside of the
convex hull of barriers which does not contain a
customer location. As the convex hull of any bar-
rier (convex or non-convex) can be approximated
with a convex polyhedron, barriers are assumed
to be convex polyhedrons. The barrier distance
between two points a and e is defined as the dis-
tance of the shortest feasible path from a to e.
To ensure that a path is feasible, it should not
coincide with the interior of polyhedral barriers.
The concept of visibility graph, e.g. Ghosh [39],
is used to ensure that a path is feasible. Two
points are said to be visible to each other if and
only if they can be connected with a line which
does not pass through the interior of polyhedral
barriers. Nodes of the visibility graph are cus-
tomer locations and the extreme points of poly-
hedral barriers. An edge is defined in the visibility
graph if and only if two points, say customer a and
extreme point e are visible to each other. Edge
costs are calculated with the Euclidean distance
d(a, e) =

[

(a1 − e1)
2 + (a2 − e2)

2
]1/2

. Clearly,
when two nodes are not visible to each other,
there is no corresponding edge in the visibility
graph. Finally, the barrier distance between two
points (nodes) dB(a, e) is equal to the cost of the
shortest path from a to e on the visibility graph.
Shortest paths can be obtained by a shortest path
algorithm such as the Dijkstra’s algorithm [40].

The discussion above only considers the barrier
distances among the nodes existing in the visibil-
ity graph. For an arbitrary point x within the set
of feasible locations, i.e. x ∈ X , the calculation
of barrier distances is slightly different. One may
consider re-constructing the visibility graph from
scratch such that x is also added into the node
set. Fortunately, it is sufficient to determine only
the set of nodes visible from x, say Vx, in the visi-
bility graph. Then, the barrier distances from the
point x to any customer location a is measured
using the formula:

dB(x,a) = min
h∈Vx

{d(x,h) + SPD(h,a)}, (6)

where h stands for the customer locations and/or
extreme points of barriers that are visible from
the point x. SPD(h,a) represents the shortest
path distance between points h ∈ Vx and a in
the visibility graph. The barrier distance function
dB(x,a) defines a metric on X satisfying the fol-
lowing properties of a metric: positivity, definite-
ness, symmetry and triangle inequality. Klamroth
[6] is an excellent reference to resort for more de-
tails on the single facility location problems with
barriers and their properties. In the left-hand side
of Figure 1, an example with four customers and
single tetragon barrier is given. In the right-hand
side of Figure 1, the corresponding visibility graph
is illustrated.

4. Discretization Based (DB)
Heuristics

The CMWP-B reduces to solving I WP-B’s when
the amount of shipments are known. This results
in a two dimensional minimum location problem
in continuous space. When all barriers are re-
moved, the resulting problem is a classical WP
and using the results by Wendell and Hurter [38]
and Hansen et al. [41], an optimal solution can
be found within the convex hull of customer loca-
tions. Clearly, the single WP is easy to solve be-
cause it is a convex programming problem. That
is to say, it can be solved by the Weiszfeld’s [42]
algorithm or one of its generalizations ( [43, 44]).
On the other hand, the objective function of the
CMWP-B is non-convex and the problem itself is
not easy to solve on continuous space. This sparks
a discretization strategy to solve the CMWP-B
using a discretized location space. It is conceiv-
able that the CMWP-B can be transformed into
a MILP problem formulation when facility loca-
tions are chosen from a set of candidate locations.
Indeed, the resulting MILP problem formulation
may yield the optimal solution of the CMWP-B
when the set of candidate locations to place facil-
ities includes the optimal facility locations. Ob-
viously, it is not possible to determine the opti-
mal facility locations in advance when construct-
ing the set of candidate facility locations. How-
ever, solving a MILP problem considering a set
of candidate facility locations produces an ap-
proximate solution for the CMWP-B. For that
purpose, a systematic way of choosing candidate
facility locations is of high importance and may
provide good solutions for the CMWP-B. In fact,
such a strategy is formerly offered by Hansen et
al. [14] and Aras et al. [23] for the MWP and
CMWP, respectively. They use customer loca-
tions as the set of candidate facility locations and
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Figure 1. An illustrative example with 4 customers, a single tetragon barrier and the corre-
sponding visibility graph.

solve approximating MILPs. Hansen et al. [14]
solve an approximating p-median problem and
obtain highly accurate solutions for the MWP.
Similar results also hold for the CMWP from the
work by Aras et al. [23]. The discretization strat-
egy that we pursue in this study is analogous to
the previous ones [14,23]. In what follows, we first
present the approximating MILP problem formu-
lation and the first DB (DB-I) heuristic. This
part also elaborates how we tackle with the dif-
ficulties imposed by the barrier distances for the
single WP-B. Then, the efficiency of DB-I heuris-
tic is improved by a LR scheme. This heuristic
is denominated as DB-II. Lastly, a Tabu Search
(TS) algorithm is employed to further improve the
efficiency of the DA-I heuristic. This heuristic is
called as DB-III heuristic.

4.1. Approximating MILP Problem
Formulation: DB-I Heuristic

Let k = 1, . . . ,K denote candidate facility lo-
cations with known coordinates given as vk =
(vk1, vk2)

T . The decision variables wijk represent
the amount of flow between facility i located at
candidate point k and customer j. Binary vari-
ables uik take a value of 1 if and only if facil-
ity i is opened at candidate point k and 0 oth-
erwise. cijk is the corresponding transportation
cost for flow wijk. Specifically, it is calculated
as cijk = cijdB(vk,aj). Now, an approximating
MILP problem formulation of the CMWP-B can
be stated as follows.

DA:

min ZDA =
I

∑

i=1

J
∑

j=1

K
∑

k=1

cijkwijk (7)

s.t.

J
∑

j=1

wijk = siuik i = 1, . . . , I;

k = 1, . . . ,K, (8)

I
∑

i=1

K
∑

k=1

wijk = qj j = 1, . . . , J, (9)

K
∑

k=1

uik = 1 i = 1, . . . , I, (10)

wijk ≥ 0 i = 1, . . . , I; j = 1, . . . , J ;

k = 1, . . . ,K, (11)

uik ∈ {0, 1} i = 1, . . . , I;

k = 1, . . . ,K. (12)

Here, constraints (8), (9) and (11) are analogous
to the TP constraints (2)-(4) for the approximat-
ing MILP problem formulation of the CMWP-
B. Constraints (10) ensure that every facility is
opened at exactly one candidate facility location.

Before giving the details of the DB-I heuristic,
we first introduce an improvement heuristic that
is employed within the DB heuristics in the fol-
lowing. This improvement heuristic is an adapta-
tion of the famous Alternate Location-Allocation
(ALA) heuristic that is offered for the MWP by
Cooper [7]. It consists of alternately solving two
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subproblems: allocation and location subprob-
lems. These subproblems respectively arise when
the facility locations and allocations between fa-
cility and customers are fixed. ALA heuristic
repeats alternating until the objective function
value does not change from one iteration to an-
other. This also indicates that facility locations
and allocation values do not significantly change
and the objective value becomes stable. It can
be observed that initialized from given facility lo-
cations, the CMWP-B reduces to solving a TP,
which is the “allocation” subproblem, in order
to determine allocations, i.e. flow between facili-
ties and customers. TP can be solved straightfor-
wardly using linear programming solvers. On the
other hand, with a given feasible shipment plan,
the CMWP-B can be decomposed into I single
facility WP-Bs so called the “location” subprob-
lems. Solving the resulting location subproblems,
i.e. the WP-Bs, is not trivial and our approach for
solving the location subproblems is summarized
in the following. Recall that the WP-B is a non-
convex problem and several solution approaches
can be used to solve ( [32, 33, 35]). Instead of an
exact solution procedure, which can be prohibi-
tive to use within an efficient heuristic approach,
we prefer to make use of the Weiszfeld’s [42] pro-
cedure that solves the unrestricted WP optimally.
Weiszfeld’s algorithm employs the gradient direc-
tion to update facility locations from one itera-
tion to the other and eventually converges to the
optimal facility locations. This procedure works
well on a convex problem like the WP. However,
there is no guarantee of optimality and it can-
not be directly used for the non-convex WP-B.
Nevertheless, observe that, when Weiszfeld’s al-
gorithm ends up with a solution x∗ that is within
the feasible location space outside of the polyhe-
dral barriers, i.e. x∗ ∈ X , then it is also opti-
mal for the WP-B. Otherwise, when Weiszfeld’s
algorithm terminates with a solution x∗ that is
within a polyhedral barrier p, then, the facility lo-
cation can be approximated by choosing the clos-
est point x̂ on the border of the barrier p. In
other words, our solution approach finds a so-
lution for the location subproblems that yields
approximate (or hopefully optimal) facility loca-
tions. This procedure is illustrated with Figure
2. This improvement heuristic solves the location
and allocation subproblems as described until the
objective value remains the same from one itera-
tion to another. This heuristic is named as ALA
with barriers (ALAB) heuristic. ALAB heuristic
is frequently resorted within our DB heuristics.

The DB-I heuristic works as follows. First, the
DA formulation is solved using the set of candi-
date facility locations consisting of customer loca-
tions. The DA formulation yields the facility loca-
tions which are used to initialize the improvement
heuristic. Second, the ALAB heuristic is used to
enhance the solution initialized with the facility
locations obtained in the first phase. Then, the
best solution found is reported as the outcome of
the DB-I heuristic. Note that applying the ALAB
heuristic in the second phase of the DB-I heuris-
tic usually improves the initial solution obtained
from the DA formulation.

4.2. A Lagrangean Relaxation (LR)
Scheme: DB-II Heuristic

The DA formulation can be intractable for large
problems and thus computationally very expen-
sive to solve exactly. Therefore, it may be better
to use an approximate solution approach. To this
end, a LR scheme and subgradient optimization is
employed to compute good feasible solutions for
the DA. The demand constraints (9) are relaxed
with Lagrangean multipliers µj to obtain the La-
grangean subproblem of DA, namely the LDA.

LDA(µ):

minZLDA(µ) =
I

∑

i=1

J
∑

j=1

K
∑

k=1

(cijk − µj)wijk

+
J
∑

j=1

µjqj (13)

s.t. (8), (10), (11), (12),

wijk ≤ min{si, qj} i = 1, . . . , I;

j = 1, . . . , J ; k = 1, . . . ,K. (14)

Observe that constraints (14) are introduced as
basic upper bounds on the flow quantities to the
LDA formulation. Clearly, these constraints are
redundant for the DA formulation. However, they
may significantly improve the optimal objective
value, say Z∗

LDA(µ), of the Lagrangean subprob-
lem LDA. The last term of the objective func-
tion (13) is constant and LDA(µ) can be further
decomposed over the facilities. That is to say,
solving the following subproblems for each facil-
ity i = 1, . . . , I is equivalent to solving the La-
grangean subproblem LDA(µ)
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(a) Case-I: x∗ is outside the barrier region (b) Case-II: x∗ is inside the barrier region

Figure 2. Two possible cases for the output of a Weiszfeld-like procedure.

LDAi(µ):

minZLDAi
(µ) =

J
∑

j=1

K
∑

k=1

cijkwijk (15)

s.t.

J
∑

j=1

wijk = siuik k = 1, . . . ,K, (16)

K
∑

k=1

uik = 1, (17)

wijk ≤ min{si, qj} j = 1, . . . , J ;

k = 1, . . . ,K, (18)

wijk ≥ 0 j = 1, . . . , J ;

k = 1, . . . ,K, (19)

uik ∈ {0, 1} k = 1, . . . ,K. (20)

where the unit costs cijk are determined as cijk =
(cijk − µj) with a given Lagrange multiplier vec-
tor µ. The resulting subproblem LDAi(µ) can be
solved by an inspection procedure for each candi-
date facility location k. Note that, when facility i
is placed at a candidate location k, then LDAi(µ)
further reduces to the following problem

LDAik(µ):

minZLDAik
(µ) =

J
∑

j=1

cijkwijk (21)

s.t.
J
∑

j=1

wijk = si (22)

wijk ≤ min{si, qj}

j = 1, . . . , J, (23)

wijk ≥ 0 j = 1, . . . , J. (24)

LDAik(µ) is a continuous bounded knapsack
problem that can be optimally solved in polyno-
mial time [45]. This approach requires sorting of
the cost coefficients for each candidate location

k. Hence, we need to run a sorting procedure K
times. The least cost candidate point k∗ is cho-
sen as the optimal location of facility i, and thus
for the subproblem LDAi(µ). Now, the optimal
value of LDAi(µ) is calculated as Z∗

LDAi
(µ) =

mink

{

Z∗
LDAik

(µ)
}

. It is conceivable that the val-

ues of binary variables are set as uik∗ = 1 for the
least cost candidate location k∗ and uik = 0 for
k = 1, . . . ,K and k 6= k∗. Once all subprob-
lems LDAi(µ) are solved, for a given Lagrange
multiplier vector µ, the optimal value of the La-
grangean subproblem LDA(µ) is determined as

Z∗
LDA(µ) =

∑I
i=1 Z

∗
LDAi

(µ) +
∑J

j=1 µjqj . Notice

that Z∗
LDA(µ) constitutes a lower bound on the

optimal value of the DA for any Lagrange mul-
tiplier vector µ. The best lower bound can be
obtained by solving the Lagrangean dual prob-
lem maxµ{Z

∗
LDA(µ)} that is accomplished using

subgradient algorithm by Held et al. [46]. For
the sake of brevity, we do not give details of
the subgradient algorithm. The subgradient al-
gorithm calculates upper bounds during its run,
and hence, feasible solutions for the CMWP-B.
For that purpose, the ALAB heuristic is used.
The values of binary variables uik are used to
determine the locations of each facility for each
solution of the resulting Lagrangean subproblem
LDA(µ) with given multiplier values µ. Lastly,
the DB-II heuristic reports the best feasible solu-
tion obtained from the subgradient algorithm.

4.3. A Tabu Search Algorithm: DB-III
Heuristic

Inspired with the promising results obtained by
using the customer locations as the set of candi-
date facility location, the DB-III heuristic consists
of applying a TS algorithm on the set of candidate
facility locations. A simple neighborhood search
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structure can be defined by exchanging the loca-
tion of a facility i′ at a candidate location k′ with
another one in order to move from one feasible so-
lution to another one. This yields a feasible solu-
tion for the CMWP-B. Further, feasible solutions
can be improved by applying a ALAB heuristic.

The suggested TS algorithm basically exchanges
the location of a facility with another candidate
location at each iteration. The selected candi-
date location is declared as tabu for that facility
and its status can not be revoked during the tabu
tenure. A greedy strategy of selecting the closest
candidate location is applied to move from the
current feasible solution to a neighbor solution.
To increase the intensity of the neighbor search
the closest N neighbor feasible solutions can be
checked and the best feasible solution is picked
as the new feasible solution. The TS algorithm
searches over the candidate location set and re-
ports the best solution found. For further details
on TS we refer to the work by Glover and La-
guna [47].

The TS algorithm uses a tabu list T that keeps
record of candidate facility locations which are
declared as tabu for a duration (tabu tenure) say
α iterations for each facility i. Each facility i is
associated with a set of candidate locations which
are declared as tabu. A tabu declared candidate
location k for a facility i can not be in the current
solution until the tabu tenure record, represented
as T (i, k), decreases to zero. Let t denote the cur-
rent iteration number and θ stand for the maxi-
mum number of iterations completed by the TS,
namely, the iteration limit of the TS. At each it-
eration, a facility i∗ is chosen and a non-tabu can-
didate location k∗ with T (i∗, k∗) = 0 is declared
as tabu for i∗. The facility i∗ is determined with
respect to their facility index in the order from
smallest facility index to largest facility index. In
other words, if facility i is selected at iteration t
then facility i+1 is the next facility to be selected
at iteration t+ 1. Note that, when i∗ = I for the
selected facility, the facility to be declared as tabu
is the one with index number 1 at the next tabu
iteration. Once tabu facility i∗ is set at iteration t,
the candidate point k∗ is searched over the closest
neighbors of the current candidate location, say
k′, of facility i∗. Clearly, all facilities other than
i∗ maintain their facility locations determined at
previous iteration t − 1 and the new feasible so-
lution only changes the location of facility i∗ at
iteration t. Let k′(1) be the closest candidate loca-

tion to k′, k′(2) denote the second closest candidate

location to k′, and so forth. The upper bound
obtained at tabu iteration t and the best upper

bound found so far are respectively represented
with Zt

UB and Zbest
Tabu. The upper bound Zt

UB is
determined as the lowest upper bound value ob-
tained by exchanging k′ with the candidate loca-
tions of the set {k′(1), k

′

(2), . . . , k
′

(N)} one by one

from the closest (k′(1)) to farthest (k′(N)) neigh-

bor candidate location. Here, N is the number
of neighbor solutions checked (or the width of the
neighborhood) and k′(N) is the N th closest can-

didate location to k′. This strategy is followed
as long as Zt

UB does not improve the best upper

bound Zbest
Tabu. When an improvement is obtained,

the neighborhood search is stopped. The best
upper bound Zbest

Tabu is updated whenever the im-
provement occurs and the TS proceeds to the next
iteration t+1 with the next facility. For example,
when the feasible solution obtained by exchanging
k′ with the closest candidate location k′(1) yields

a better upper bound than the best upper bound
Zbest
Tabu, then Zt

UB is calculated with candidate lo-

cation k′(1) for facility i∗ and Zbest
Tabu is updated. In

addition, the current tabu solution is updated so
that facility i∗ is located on the candidate loca-
tion k′(1). Similarly, such an approach is followed

until N th closest candidate location whenever an
improvement is achieved. If there is no improve-
ment for the best upper bound Zbest

Tabu after the

exchange of N th closest candidate location k′(N),

then facility i∗ is located at the candidate loca-
tion which gives the lowest objective value among
these N neighbor candidate locations.

Selection of the candidate location k∗ of facility
i∗ to move to another neighbor solution requires
further attention. The tabu status of candidate
locations terminates after a while and it is likely
that the same candidate location is selected repet-
itively. To avoid such a case, a tabu frequency list
(FL) keeps record of the total number of times a
candidate point k is declared tabu for a facility i
within the TS algorithm. FL(i, k) stands for the
FL, and initially, FL(i, k) = 0 for all i = 1, . . . , I;
k = 1, . . . ,K. When a candidate location k for fa-
cility i∗ is tested within the neighborhood search
described at an iteration, FL(i∗, k) is increased by
one. The candidate location k which has the high-
est FL(i∗, k) value is excluded from the neighbor-
hood search in the next iteration. Then the set
of neighbor candidate locations does not contain
a tabu declared candidate location or the most
frequent candidate location for i∗. Therefore, this
strategy favors diversification of the solutions dur-
ing the TS. The upper bound Zt

UB obtained

at iteration t is associated with a solution vector
(k1, k2, . . . , kI) which represents the candidate lo-
cations of each facility in the solution. Here, k1
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Algorithm 1: Tabu Search Algorithm

Step 1. (Initialization): Find initial upper bound Z0
UB and its associated solution vector of

candidate locations (k1, k2, . . . , kI)0. Set Zbest
Tabu = Z0

UB and iteration counter t = 1. Set
FL(i, k) = 0 for i = 1, . . . , I; k = 1, . . . ,K. Set T (i, ki) = α and FL(i, ki) = 1 for each facility
i = 1, . . . , I.
Step 2. For facility i = 1, . . . , I,
(i) determine the neighborhood set Ki as Ki = {ki(1), k

i
(2), . . . k

i
(N)} so that T (i, ki(n)) = 0 for

n = 1, . . . , N and FL(i, ki(n)) < max{FL(i, k)} for n = 1, . . . , N ; k = 1, . . . ,K.

(ii) for neighbor n = 1, . . . , N , set (k1, k2, . . . , ki, . . . , kI)t = (k1, k2, . . . , ki = ki(n),

. . . , kI)(t−1) and find its associated objective value as Z
ki
(n)

UB .

(iii) if Z
ki
(n)

UB < Zbest
Tabu then update Zbest

Tabu = Z
ki
(n)

UB , Zt
UB = Z

ki
(n)

UB . Set FL(i, ki(n)) =

FL(i, ki(n)) + 1 and T (i, ki(n)) = α. Go to Step 4.

Step 3. If Zbest
Tabu does not improve, find k∗ such that k∗ = argmin

k∈Ki

{Z
ki
(n)

UB },

(k1, k2, . . . , ki, . . . , kI)t = (k1, k2, . . . , ki = k∗, . . . , kI)(t−1). Set FL(i, ki(n)) = FL(i, ki(n)) + 1

for n = 1, . . . , N and T (i, k∗) = α.
Step 4. Set t = t+ 1 and decrease each tabu tenure value T (i, ki) > 0 by one. If t = θ or
Zbest
Tabu does not improve for 30 consecutive iterations STOP and report Zbest

Tabu, otherwise go to
Step 2.

is the candidate location of the first facility, k2 is
the candidate location of the second facility and
so forth, in the solution at iteration t. A formal
outline of the suggested TS algorithm is given in
Algorithm 1.

5. Computational Experiments

In this section, first the test bed used in this work
is given. Second, the results obtained with our
DB heuristics are presented for the CMWP-B. A
Dell Precision T5810 workstation with Intel(R)
Xeon(R) E5-1650v3 processor of 3.50 GHz and 64
GB RAM operating within Microsoft Windows 7
Pro 64-bit environment is employed as our com-
puting platform. The callable library of Gurobi
5.6.3 with default settings is used to solve MILP
and LP formulations presented and all codes are
written in C++ programming language.

5.1. Test Bed

We have performed our computational experi-
ments on randomly generated test instances that
are produced using standard CMWP test in-
stances from the literature. Standard test in-
stances are taken from the works by Sherali et
al. [19] and Boyacı [48]. Recall that the CMWP
instances do not have barriers forbidding loca-
tion and travel. However, the CMWP-B can in-
herit facility capacities, customers’ demand and
location information from the CMWP instances.
We have generated convex polyhedral barriers for

each CMWP instance by considering the follow-
ing two issues. First, we ensure that barrier re-
gions do not contain any customer location inside.
Second, interior areas of barriers should not be
coinciding with others. Then, these barriers are
integrated with the data of the CMWP instances
resulting in CMWP-B test instances.

The optimal objective value of the CMWP con-
stitutes a lower bound on the CMWP-B. We have
employed the best known objective values of stan-
dard CMWP test instances as benchmark values
to make a comparison among the performance of
the suggested DB heuristics. These benchmark
values representing the best known objective val-
ues of the CMWP instances are reported in Table
1. The first column indicates the names of the
instances. Original instance numbers are used as
stated in the work by Sherali et al. [19]. We add a
prefix “S” before the corresponding instance num-
ber. For example, the CMWP instance number 10
in the work by Sherali et al. [19] is shown as S10.
11 CMWP test instances from Sherali et al. [19]
are considered. Analogously, a total of 40 CMWP
test instances from Boyacı [48], which have non-
unique cost values, are represented with a prefix
“B” followed by an instance number. The second
column stands for the size of the instance by giv-
ing the number of facilities and the number of cus-
tomers in parenthesis, respectively. The instances
which have the same number of facilities and cus-
tomers are distinguished by adding a suffix letter
starting from “a” to “e” in accordance with the
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original denomination presented in the reference
works. The last column includes the best known
objective values that are taken from the reference
works ( [19, 27, 48]. As a remark, these bench-
mark values are not necessarily optimal for the
CMWP as the latter two studies present heuristic
outcomes.

To construct barriers for each standard CMWP
test instance given, we have randomly generated
different number of extreme points and convex
polygons. P polygons are chosen from the set
P ∈ {1, 3, 5, 10} for the CMWP-B test instances.
When P = 1, that is a single polygon, the to-
tal number of extreme points, denoted as B, of
the polygon is determined within the set H =
{2, 3, 4, 5, 6, 7, 8, 9}. For P > 1, when there are
more than one polygon, B is calculated by mul-
tiplying the elements of H with the number of
polygons P . For example, for P = 3, B is chosen
such that B ∈ H = {6, 9, 12, 15, 18, 21, 24, 27}.
This makes a total of 4 × 8 = 32 combinations
of CMWP-B test instances which are generated
for each source instance of the CMWP. Further,
two different strategies are followed to generate
instances that are grouped as regular and ran-
dom instances. Regular instances contains poly-
gons with the same number of extreme points.
For example, an instance is called regular when
all barriers are triangles. On the other hand, ran-
dom instances contains polygons each of which
do not necessarily have the same number of ex-
treme points as long as their total does not ex-
ceed B. Shortly, each of regular and random in-
stance groups for the CMWP-B contain 4×8 = 32
test instances. This makes 11 × 32 × 2 = 704
and 40 × 32 × 2 = 1920 CMWP-B test instances
that are constructed using existing CMWP test
instances Sherali et al. [19] and Boyacı [48] in-
stances, respectively.

5.2. Computational Results

We have employed the best known values of the
CMWP as our benchmark values as given in Table
1 to compare the performance of our DB heuris-
tics. The percent deviations of the heuristics are
determined using the following formula.

100×
ZUB − Zbest

CMWP

Zbest
CMWP

(25)

Table 1. Benchmark values for the
standard CMWP test instances from
the literature.

Instance Size Benchmark
Name (I, J) Value

S6 (3,9a) 221.40
S7 (3,9b) 871.62
S8 (4,8) 609.23
S9 (5,15) 8169.79
S10 (5,20a) 12846.87
S11 (5,20b) 1107.18
S12 (5,30) 23990.04
S15 (5,10) 2595.47
S16 (6,10) 7797.21
S18 (8,10) 1564.46
S20 (10,10) 7719.00

B1 (5,20) 22146.54b

B2 (5,25) 38236.43b

B3 (5,30) 42899.92b

B4 (5,40) 104983.19b

B5 (5,50) 71433.35b

B6 (5,100a) 119564.85b

B7 (5,250) 891589.16b

B8 (6,20) 14693.26b

B9 (6,25) 19036.28b

B10 (6,30) 59665.36b

B11 (7,20) 15075.29b

B12 (7,25) 16086.30b

B13 (7,30) 33627.21b

B14 (8,20) 6499.80b

B15 (8,25) 9486.23b

B16 (8,30) 18081.73b

B17 (9,20) 6551.37b

B18 (9,25) 5983.27b

B19 (9,30) 10643.15b

B20 (10,20) 4702.16b

B21 (10,25) 3950.70b

B22 (10,30) 6863.79b

B23 (10,40) 37834.75b

B24 (10,50) 47125.8b

B25 (10,100) 171126.36b

B26 (20,40) 8240.14a

B27 (20,50) 13535.76b

B28 (20,250) 220033.88b

B29 (25,250a) 208587.12a

B30 (25,250b) 278454.58a

B31 (25,250c) 259745.76a

B32 (25,250d) 195125.60a

B33 (25,250e) 289012.15a

B34 (25,500a) 646653.93a

B35 (25,500b) 512483.15a

B36 (25,500c) 484237.33a

B37 (25,500d) 643832.22a

B38 (25,500e) 491602.33a

B39 (30,100) 26185.03b

B40 (50,250) 81055.87b
a Results from [27]
b Results from [48]
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where ZUB is the upper bound value found by the

suggested heuristic for the CMWP-B. Zbest
CMWP

is the best known objective value for standard
CMWP test instances as shown in Table 1.
Clearly, the formula (25) yields an upper bound
on the performance of the heuristics. The in-
stances are divided into two groups as small and
large instances depending on their number of fa-
cilities and customers. For example, large in-
stances contain I > 10 facilities to locate. In
addition, instances with J ≥ 100 customers are
also considered as large instances.

The upper bounds are determined with the ALAB
heuristic as described in Section 4.1 for our DB
heuristics. The DB-I heuristic employs the ALAB
heuristic as an improvement step by using the fa-
cility locations obtained after the proposed MILP
formulation is solved. For the DB-II heuristic, an
initial upper bound is needed to increase the ef-
ficiency of the subgradient algorithm. Initially,
facilities are assumed to have unlimited capacity
and they can meet all customer demand. Then,
facilities are assigned to the candidate locations
from which they serve the customers with least
total cost. Once the corresponding candidate
locations are fixed as the starting facility loca-
tions, the ALAB heuristic is run initialized from
those facility locations. Lastly, the resulting up-
per bound is used as the initial upper bound of
the subgradient algorithm for the DB-II heuris-
tic. Besides, the ALAB heuristic is systemati-
cally run (i.e. once in ten iterations) to update
best upper bound found within the subgradient
algorithm. Finally, the ALAB heuristic is applied
on the best solution found by the TS algorithm
within the DB-III heuristic.

Table 2 gives the outcomes of the DB heuristics on
both random and regular CMWP-B test instances
generated from the instances by Sherali et al. [19].
The first three columns explain instance proper-
ties. The first column gives the name of the stan-
dard CMWP instance as mentioned. (I, J) stands
for the number of facilities and customers in the
second column. The third column states the total
number of barrier regions P in the instances. “%
Dev.” and “CPU” denote the percent deviation
calculated by the formula (25) and the CPU time
of the corresponding DB heuristic in seconds, re-
spectively. To be precise, the cells under these
columns are the average of 8 test instances hav-
ing different number of total extreme points from
the set H depending on the number of barriers
P . We should emphasize that all instances in Ta-
ble 2 are small instances. The last row indicates
the average of each column. Starting with column
4, six columns are consecutively dedicated to the

outcomes of the DB heuristics for random and
regular test instances. Best percent deviations
at each row are marked in bold characters. On
these instances, we observed that, DB-I heuris-
tic outperforms both DB-II and DB-III heuristics
in terms of accuracy. Indeed, the DB-I heuris-
tic yields outstanding accuracy for both random
and regular test instances. Using LR scheme as
in the DB-II heuristic increases the efficiency and
yields outcomes in almost half time of the DB-I
heuristic. Additionally, the DB-II heuristic pro-
duces similar accuracy to the DB-I heuristic in 12
out of 44 cases of random instances. This value
is 11 out of 44 cases when regular instances are
considered.

The tabu tenure parameter α for the DB-III
heuristic is set to α = max{I, 20} in the light of
our preliminary experiments. A maximum num-
ber of tabu iterations θ is set to 300. Another
stopping condition of 30 non-improving tabu iter-
ations is also imposed to avoid from unnecessary
computations for the DB-III heuristic. A neigh-
borhood search width denoted with N is empir-
ically determined as N = min{⌈J/3⌉, 30}. Here,
⌈a⌉ is the smallest integer value that is larger than
or equal to a. These TS settings are employed in
all of our computational experiments. Unfortu-
nately, the performance of the DB-III heuristic
is not promising on these small instances. Nev-
ertheless, running time of the DB-III heuristic is
shorter than the DB-I heuristic on the average for
small instances.

Although the instances based on Sherali et al. [19]
are small instances, their sizes are of limited va-
riety. Therefore, Table 3 shows additional results
obtained for random and regular CMWP-B in-
stances (small instances) based on Boyacı [48] in-
stances. Diversity of these instances is higher
than the ones by Sherali et al. [19]. Table 3 can be
read similar to Table 2 since they share the same
structure. The results of Boyacı [48] instances
are similar to Sherali et al. [19] instances and
strengthen the success of the DB-I heuristic for
small instances. The DB-I heuristic is the winner
for both random and regular CMWP-B instances
over all test instances in terms of accuracy. In
particular, the DB-I heuristic yields percent devi-
ations with a difference of 10% more than that of
the closest approach, the DB-II heuristic, on the
average for small instances. For these small in-
stances, it becomes evident that the efficiency of
the DB-I heuristic decreases drastically, i.e. 110.6
and 108.96 seconds on the average for random and
regular instances, respectively. The performance
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Table 2. The performance of the DB heuristics over random and regular CMWP-B instances
based on Sherali et al. [19] instances.

Instance Random CMWP-B Instances Regular CMWP-B Instances
Name Size DB-I DB-II DB-III DB-I DB-II DB-III

(I, J) P % Dev. CPU % Dev. CPU % Dev. CPU % Dev. CPU % Dev. CPU % Dev. CPU
S6 (3,9) 1 0.27 0.05 0.27 0.24 6.64 0.16 0.51 0.33 0.51 0.24 5.54 0.13

3 0.48 0.16 0.48 0.29 24.44 0.16 0.36 0.39 0.37 0.24 17.07 0.13
5 0.27 0.33 0.45 0.29 6.34 0.17 0.72 0.56 0.72 0.23 13.51 0.16
10 0.27 0.23 0.28 0.35 1.96 0.20 0.20 0.22 0.26 0.30 7.03 0.19

S7 (3,9) 1 0.57 0.02 0.57 0.05 4.35 0.18 0.53 0.02 0.53 0.05 4.14 0.17
3 1.89 0.03 1.89 0.06 6.95 0.18 1.29 0.02 1.29 0.04 6.03 0.20
5 0.24 0.02 0.24 0.06 5.06 0.21 1.26 0.02 1.26 0.05 10.27 0.20
10 0.34 0.03 0.34 0.05 4.42 0.20 1.04 0.04 1.04 0.05 7.47 0.23

S8 (4,8) 1 0.34 0.06 0.34 0.30 32.06 0.19 0.22 0.41 0.22 0.29 32.44 0.18
3 0.69 0.47 0.69 0.29 33.77 0.17 0.09 0.52 0.09 0.28 35.85 0.18
5 0.42 0.08 0.42 0.29 30.89 0.20 0.34 0.62 0.34 0.27 32.42 0.19
10 0.33 0.32 0.33 0.32 30.78 0.25 0.72 0.42 0.72 0.28 29.74 0.23

S9 (5,15) 1 0.31 0.25 1.30 0.10 33.97 0.52 0.25 0.65 1.21 0.10 42.65 0.44
3 0.46 0.65 1.25 0.10 35.38 0.54 0.66 1.01 2.63 0.15 29.94 0.48
5 0.20 0.56 1.24 0.11 36.96 0.46 0.19 0.95 1.25 0.11 40.13 0.50
10 0.47 0.74 1.46 0.10 42.03 0.49 0.54 1.25 1.47 0.10 44.45 0.48

S10 (5,20) 1 0.00 0.37 1.81 0.31 4.16 0.39 0.05 0.99 2.34 0.31 3.22 0.44
3 0.26 0.75 1.36 0.31 4.60 0.39 0.10 1.29 2.43 0.32 4.32 0.40
5 0.69 0.91 2.16 0.35 4.72 0.39 0.45 0.68 1.89 0.31 4.47 0.41
10 1.11 0.69 3.23 0.34 5.30 0.47 0.86 0.63 2.96 0.31 5.54 0.45

S11 (5,20) 1 0.04 0.51 0.04 0.43 51.89 0.68 0.05 0.89 0.05 0.50 60.21 0.79
3 0.05 0.95 0.83 0.47 56.74 0.70 0.43 0.90 0.43 0.50 63.36 0.80
5 2.00 1.18 2.00 0.47 52.39 0.75 1.34 0.77 1.34 0.52 67.39 0.71
10 0.15 0.72 0.15 0.49 53.14 1.08 0.40 0.90 0.40 0.52 75.35 0.77

S12 (5,30) 1 0.09 1.84 5.46 0.48 19.49 0.88 0.20 2.49 4.83 0.60 20.60 0.90
3 0.16 2.09 5.90 0.50 17.59 0.96 0.07 2.43 5.16 0.56 18.85 0.84
5 0.02 3.68 5.50 0.54 20.28 0.95 0.08 2.52 5.11 0.55 17.63 0.90
10 0.11 2.13 6.72 0.55 14.22 1.04 0.28 2.59 4.87 0.58 20.82 1.00

S15 (5,10) 1 0.00 0.10 2.32 0.36 123.50 0.29 0.00 0.25 2.33 0.32 125.95 0.34
3 0.00 0.09 2.33 0.30 124.69 0.37 0.00 0.29 2.38 0.32 127.35 0.42
5 0.21 0.45 2.54 0.35 129.09 0.32 0.02 0.28 2.35 0.25 130.11 0.36
10 0.02 0.27 2.35 0.37 123.87 0.42 0.08 0.24 2.41 0.36 123.51 0.42

S16 (6,10) 1 0.00 0.51 1.65 0.31 54.28 0.22 0.01 0.53 1.66 0.28 56.84 0.23
3 0.02 0.12 1.67 0.28 50.54 0.24 0.22 0.90 1.87 0.32 58.82 0.28
5 0.02 0.61 1.68 0.32 59.27 0.24 0.05 0.45 1.71 0.37 73.10 0.28
10 0.21 0.47 1.70 0.38 45.93 0.26 0.55 0.47 2.20 0.40 54.90 0.28

S18 (8,10) 1 0.24 0.36 82.75 0.27 101.38 0.26 0.22 0.56 86.94 0.30 108.18 0.28
3 0.14 0.29 67.41 0.31 100.41 0.27 0.22 0.78 80.52 0.29 117.53 0.30
5 0.37 0.82 69.61 0.30 91.55 0.30 0.53 0.58 75.48 0.34 96.01 0.29
10 0.11 0.57 48.99 0.32 102.53 0.34 0.08 0.67 46.85 0.30 115.58 0.34

S20 (10,10) 1 0.43 0.40 18.82 0.22 61.25 0.45 0.77 0.57 19.16 0.22 50.91 0.48
3 0.32 0.22 18.62 0.22 50.76 0.58 0.62 1.09 19.04 0.24 56.04 0.61
5 0.60 0.54 18.92 0.22 53.93 0.55 1.03 0.76 19.60 0.23 51.51 0.49
10 0.33 0.47 18.73 0.26 46.57 0.57 0.07 0.67 18.57 0.24 37.40 0.56

Average 0.35 0.59 9.25 0.30 44.55 0.42 0.40 0.76 9.74 0.30 47.82 0.42

of the DB-II heuristic using LR scheme outper-
forms the DB-I heuristic in CPU times. More-
over, the DB-II heuristics yields the best results
in 18 out of 88 cases for the random instances.
Analogously, the DB-II heuristic finds the best
results in 17 out of 88 cases for the regular in-
stances. The DB-II heuristic is slightly more effi-
cient than the DB-III heuristic with CPU times of
0.75 (0.74) and 0.98 (0.98) seconds on the average,
respectively, for random (regular) instances. The
accuracy of the DB-III heuristic is poor for small

instances. The efficiency of the DB-I heuristic de-
teriorates especially for the instances with more
than 30 customers (or similarly 30 candidate facil-
ity locations). The DB-II and DB-III heuristics
show different behavior than the DB-I heuristic
does since they are not significantly affected from
number of customers. Observe that increasing the
number of facilities deteriorates the CPU time of
all DB heuristics.

Table 4 presents the results of the large CMWP-
B instances based on Boyacı [48] instances. The
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Table 3. The performance of the DB heuristics over small sized random and regular CMWP-B
instances based on Boyacı [48] instances.

Instance Random CMWP-B Instances Regular CMWP-B Instances
Name Size DB-I DB-II DB-III DB-I DB-II DB-III

(I, J) P % Dev. CPU % Dev. CPU % Dev. CPU % Dev. CPU % Dev. CPU % Dev. CPU
B1 (5,20) 1 0.05 0.34 0.05 0.39 32.18 0.33 0.17 0.34 0.17 0.41 38.30 0.33

3 0.54 0.37 0.54 0.34 37.42 0.36 0.46 0.33 0.46 0.35 38.98 0.36
5 0.40 0.31 0.40 0.39 38.94 0.38 0.78 0.51 0.78 0.47 34.55 0.38
10 0.78 0.38 0.78 0.47 36.49 0.42 0.39 0.47 0.39 0.51 36.85 0.42

B2 (5,25) 1 0.00 0.70 3.76 0.60 51.09 0.52 0.00 0.83 3.37 0.56 58.36 0.52
3 0.67 0.75 8.27 0.50 63.57 0.54 0.78 0.87 7.08 0.51 56.15 0.54
5 0.44 0.81 8.49 0.57 57.21 0.60 0.68 0.88 9.85 0.53 53.32 0.60
10 0.74 0.77 9.19 0.63 57.23 0.65 0.66 1.12 11.14 0.59 61.46 0.65

B3 (5,30) 1 0.20 2.76 0.20 0.58 47.59 0.62 0.20 2.50 0.20 0.52 47.79 0.62
3 0.42 2.21 0.42 0.57 46.91 0.74 0.74 5.28 0.74 0.53 49.04 0.74
5 0.92 4.37 0.92 0.56 54.74 0.77 0.44 4.98 0.44 0.60 44.22 0.77
10 0.43 5.12 0.43 0.60 53.33 1.01 0.86 6.21 0.86 0.70 48.66 1.01

B4 (5,40) 1 0.02 3.02 0.05 0.32 21.15 1.04 0.07 2.99 0.10 0.28 21.45 1.04
3 0.19 3.10 0.22 0.29 22.98 1.23 0.58 3.31 0.61 0.27 26.89 1.23
5 0.59 2.80 0.62 0.28 27.10 1.22 0.23 3.23 0.26 0.31 21.80 1.22
10 0.32 2.85 0.35 0.34 27.77 1.34 0.36 3.01 0.39 0.34 33.58 1.34

B5 (5,50) 1 0.03 101.95 5.32 1.04 15.12 1.26 0.03 116.17 4.76 0.87 14.56 1.26
3 0.16 76.65 5.12 0.94 12.92 1.34 0.23 82.50 6.33 0.95 13.04 1.34
5 0.16 63.15 5.14 1.02 13.31 1.38 0.20 49.95 6.69 0.98 12.62 1.38
10 0.34 63.81 4.32 1.06 13.54 1.51 0.32 44.87 2.80 1.12 12.81 1.51

B8 (6,20) 1 0.31 0.59 0.31 0.53 68.57 0.50 0.19 0.48 0.19 0.48 58.26 0.50
3 0.32 0.56 0.32 0.65 64.36 0.54 0.00 0.57 0.00 0.57 70.93 0.54
5 0.42 0.56 0.42 0.54 52.49 0.63 0.53 0.54 0.53 0.57 61.18 0.63
10 0.23 0.56 0.23 0.54 73.76 0.58 0.35 0.61 0.35 0.77 68.48 0.58

B9 (6,25) 1 0.03 1.05 4.10 0.47 124.74 0.53 0.21 1.06 5.37 0.51 112.04 0.53
3 0.54 0.99 5.82 0.52 111.94 0.67 0.92 1.02 8.54 0.44 105.25 0.67
5 0.36 1.11 3.33 0.51 105.92 0.59 0.73 1.06 7.58 0.51 81.73 0.59
10 0.38 1.17 5.16 0.54 94.46 0.75 0.91 1.10 4.31 0.61 70.42 0.75

B10 (6,30) 1 0.00 8.24 7.50 0.62 28.19 0.80 0.05 8.21 5.41 0.68 35.84 0.80
3 0.57 19.68 18.18 0.61 44.18 0.87 0.30 16.25 12.86 0.62 35.18 0.87
5 0.66 10.77 15.38 0.66 36.87 0.84 0.57 19.02 10.88 0.70 36.86 0.84
10 0.24 13.75 15.67 0.77 29.06 1.03 0.59 17.23 12.53 0.69 36.15 1.03

B11 (7,20) 1 0.04 0.76 0.09 0.54 108.15 0.46 0.06 0.75 0.21 0.67 87.65 0.46
3 0.02 0.82 0.02 1.44 82.21 0.51 0.01 0.82 0.06 1.18 93.72 0.51
5 0.05 0.74 7.28 0.74 92.82 0.64 0.02 0.78 0.07 1.10 90.46 0.64
10 0.16 0.83 0.16 1.43 87.46 0.74 0.02 0.84 0.02 1.13 89.41 0.74

B12 (7,25) 1 0.00 1.39 0.17 0.25 105.95 0.63 0.00 1.20 0.17 0.24 95.98 0.63
3 0.07 1.20 0.30 0.30 93.29 0.68 0.13 1.26 0.40 0.29 92.26 0.68
5 0.17 1.16 0.40 0.33 89.13 0.73 0.13 1.22 0.30 0.38 77.31 0.73
10 0.19 1.36 0.55 0.38 83.14 0.83 0.18 1.49 0.38 0.28 85.83 0.83

B13 (7,30) 1 0.04 16.59 0.04 1.00 76.97 0.77 0.02 13.80 0.02 0.99 83.92 0.77
3 0.18 8.93 0.18 1.02 71.56 0.89 0.33 13.29 0.33 1.03 78.50 0.89
5 0.29 13.54 0.29 0.91 88.40 0.81 0.27 7.47 0.27 0.89 87.11 0.81
10 0.36 11.81 0.36 0.96 86.16 0.95 0.72 18.39 0.72 0.96 81.93 0.95

B14 (8,20) 1 0.30 5.39 4.50 0.48 133.92 0.63 0.10 7.61 4.30 0.44 115.08 0.63
3 0.46 5.31 4.13 0.47 117.73 0.63 0.81 3.42 6.07 0.48 97.48 0.63
5 0.50 4.43 4.59 0.50 105.46 0.75 0.64 5.58 4.21 0.49 107.66 0.75
10 0.43 4.26 4.77 0.49 120.21 0.80 0.13 7.06 4.06 0.51 103.52 0.80

B15 (8,25) 1 0.03 2.01 3.55 0.87 65.21 0.71 0.14 6.83 3.67 0.87 68.04 0.71
3 0.21 5.41 3.77 0.80 67.40 0.77 0.36 2.23 3.79 0.84 74.58 0.77
5 0.17 1.95 3.76 0.84 65.58 0.79 0.28 3.35 3.94 0.80 67.69 0.79
10 0.36 2.04 3.75 1.05 67.55 0.89 0.15 1.91 4.03 0.92 68.80 0.89

B16 (8,30) 1 0.08 51.08 10.58 0.75 45.20 1.00 0.04 39.32 10.36 0.73 34.97 1.00
3 0.52 31.69 14.88 0.76 49.86 0.86 0.76 38.38 13.66 0.83 53.35 0.86
5 0.37 43.56 14.77 0.80 30.17 0.93 0.42 36.88 11.79 0.83 40.73 0.93
10 0.27 42.10 8.35 0.88 39.20 1.28 0.49 43.64 11.31 0.86 52.64 1.28

B17 (9,20) 1 0.04 9.82 42.06 0.55 220.47 0.84 0.11 8.80 44.80 0.55 228.22 0.84
3 0.13 7.01 39.32 0.56 204.10 0.67 0.20 16.08 44.82 0.56 188.51 0.67
5 0.57 6.32 33.91 0.62 186.02 0.68 0.29 13.87 45.44 0.57 169.32 0.68
10 0.25 15.25 33.06 0.66 214.30 0.96 0.28 4.69 45.34 0.59 186.90 0.96

B18 (9,25) 1 0.00 45.28 12.98 0.78 158.12 0.78 0.00 44.64 14.78 0.72 200.06 0.78
3 0.24 34.22 13.33 0.71 178.78 0.80 0.43 35.12 12.70 0.80 228.81 0.80
5 0.03 33.45 16.84 0.68 167.18 0.92 0.11 45.52 12.41 0.69 244.27 0.92
10 0.15 45.24 15.98 0.75 157.24 1.08 0.06 40.49 28.64 0.69 175.83 1.08

B19 (9,30) 1 0.03 42.40 0.77 0.77 134.87 1.18 0.04 47.03 0.59 0.78 142.30 1.18
3 0.44 43.16 0.89 0.74 143.19 1.06 0.25 45.49 1.11 0.79 123.20 1.06
5 0.11 42.03 1.22 0.74 115.09 1.45 0.10 39.37 0.64 0.75 122.89 1.45
10 0.35 23.60 2.79 0.86 123.19 1.57 0.11 38.27 2.10 0.77 109.46 1.57

B20 (10,20) 1 0.01 24.28 2.19 0.58 135.01 0.65 0.04 24.88 2.01 0.57 150.63 0.65
3 0.23 23.92 9.23 0.54 156.90 0.69 0.19 24.32 2.95 0.55 165.59 0.69
5 0.35 23.60 9.64 0.59 134.63 0.70 0.28 24.63 7.31 0.60 144.17 0.70
10 0.19 22.88 2.24 0.63 118.57 0.89 0.29 25.04 2.62 0.65 130.06 0.89

B21 (10,25) 1 0.00 47.80 115.53 0.61 246.99 1.02 0.00 35.73 131.34 0.62 205.23 1.02
3 0.02 46.10 127.92 0.61 215.16 1.12 0.04 45.53 151.11 0.60 237.05 1.12
5 0.04 42.90 107.31 0.68 252.52 1.05 0.09 45.24 153.95 0.60 177.75 1.05
10 0.26 36.21 109.13 0.75 178.67 1.44 0.24 42.55 183.06 0.72 243.54 1.44

B22 (10,30) 1 0.00 62.66 13.94 1.12 205.34 1.09 0.00 81.07 15.82 0.95 158.65 1.09
3 0.03 122.41 13.92 1.02 137.33 1.06 0.33 79.10 31.12 0.99 150.42 1.06
5 0.09 70.16 11.64 1.13 147.51 1.23 0.04 86.41 13.43 1.07 156.84 1.23
10 0.31 56.70 19.67 1.09 183.74 1.36 0.38 67.46 10.02 1.06 177.48 1.36

B23 (10,40) 1 0.10 456.79 3.54 1.10 38.53 1.40 0.06 321.95 2.08 1.16 34.11 1.40
3 0.18 296.80 2.08 1.20 38.00 1.37 0.21 418.63 2.79 1.15 36.06 1.37
5 0.15 432.46 2.59 1.24 29.16 1.49 0.14 547.25 2.80 1.19 35.61 1.49
10 0.33 369.49 2.21 1.34 31.96 1.81 0.49 319.49 3.15 1.23 37.22 1.81

B24 (10,50) 1 0.17 1964.71 10.03 1.68 53.50 2.54 0.03 1357.01 8.91 1.63 53.16 2.54
3 0.16 1676.72 8.91 1.68 63.20 2.62 0.15 1626.71 9.73 1.64 54.25 2.62
5 0.22 1537.81 10.12 1.74 58.06 2.81 0.27 1691.68 7.83 1.60 61.16 2.81
10 0.43 1417.33 9.82 1.87 60.08 3.60 0.17 1689.67 9.43 1.86 67.56 3.60

Average 0.25 110.60 11.67 0.75 91.20 0.98 0.29 108.96 13.81 0.74 91.16 0.98
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structure of Table 4 is similar to Table 2 and Ta-
ble 3. We have imposed an additional CPU time
limit of 3600 seconds for large instances. The DB-
I heuristic outperforms the others in 26 (28) out
of 72 cases for random (regular) test instances.
However, the efficiency of the DB-I heuristic sig-
nificantly diminishes on large instances. Only in-
stances B6 with 5 facilities and 100 customers can
be solved within CPU time limits. Moreover, the
DB-I heuristic can not produce a solution for 20
out of 72 cases that correspond to the instances
with 25 facilities and 500 customers for both ran-
dom and regular instances. On the other hand,
our findings are outstanding for the DB-II heuris-
tic on large instances. The DB-II heuristic yields
the best outcome on 46 (42) out of 72 cases for
large random (regular) test instances. Clearly, the
computational requirements of the DB-II heuris-
tic is quite reasonable for large instances when
compared to the DB-I heuristic. Lastly, we have
observed that the DB-III heuristic yields supe-
rior results in 2 out of 72 cases on regular in-
stances. The DB-III performs even faster than
the DB-II heuristic. Therefore, it can be used
as a compromise for larger instances where both
DB-I and DB-II heuristics require prohibitive so-
lution times. Finally, we should point on the DB-
III heuristic performs almost twice faster than the
DB-II heuristic does on large instances in average.

6. Conclusion

In this work, we have focused on the capaci-
tated multi-facility Weber problem with polyhe-
dral barriers (CMWP-B). We have suggested a
mathematical formulation for the CMWP-B and
its discrete equivalent that is a MILP problem.
Discretization based heuristic procedures for the
CMWP-B have been proposed. We have carried
out extensive computational experiments on ran-
domly generated test instances that are based on
standard CMWP instances. The proposed meth-
ods compute upper bounds for the optimal objec-
tive value of the CMWP-B.

The first discretization based heuristic solves the
mixed integer linear programming formulation us-
ing the customer locations as the set of candidate
facility locations. Its efficiency is improved by us-
ing a Lagrangean relaxation scheme and subgra-
dient algorithm that resulted in the second dis-
cretization based heuristic. Lastly, the third dis-
cretization based heuristic employs a tabu search
algorithm using a neighborhood search over cus-
tomer locations. Among the discretization based

heuristics, the first one yields the highest accu-
racy. However, its performance is limited with rel-
atively small instances. As a remedy, we have ap-
plied a Lagrangean relaxation scheme within the
second discretization based heuristic which con-
stitutes a compromise between accuracy and effi-
ciency. The performance of the third discretiza-
tion based heuristic is usually poor, however, its
performance is promising for large instances. Im-
plementing exact solution procedures can be a
good direction of research for the CMWP-B in the
future. Efforts to provide an effective branch and
bound algorithm is of high importance for this
type of location-allocation type problems. Last
but not least, a probabilistic extension of the
CMWP-B, where the customer locations and/or
their demand quantities are stochastic, is a worth-
while open research area.
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Table 4. The performance of the DB heuristics over large sized random and regular CMWP-B
instances based on Boyacı [48] instances.

Instance Random CMWP-B Instances Regular CMWP-B Instances
Name Size DB-I DB-II DB-III DB-I DB-II DB-III

(I, J) P % Dev. CPU % Dev. CPU % Dev. CPU % Dev. CPU % Dev. CPU % Dev. CPU
B6 (5,100a) 1 0.03 1828.94 1.03 2.28 7.22 3.74 0.07 1871.62 0.66 2.17 5.85 3.74

3 0.20 1886.21 1.55 2.46 7.08 3.80 0.08 2014.49 1.27 2.19 9.48 3.80
5 0.13 1547.83 1.25 2.41 7.19 3.32 0.15 2198.07 0.83 2.63 7.13 3.32
10 0.29 1639.21 1.35 2.72 6.67 3.93 0.31 2301.38 0.97 2.57 8.93 3.93

B7 (5,250) 1 1.75 3630.16 6.74 13.46 8.05 5.48 1.21 3626.48 6.01 14.43 7.72 5.48
3 1.01 3630.67 6.08 14.20 7.37 6.20 1.19 3625.06 5.72 14.10 7.36 6.20
5 1.39 3628.52 5.06 13.38 7.23 6.14 1.06 3638.15 7.14 14.19 6.95 6.14
10 2.01 3626.56 7.27 14.89 7.07 6.72 0.99 3624.78 6.36 13.86 7.29 6.72

B25 (10,100) 1 1.82 3699.10 3.88 5.46 24.44 4.56 1.89 3602.56 4.57 4.91 22.57 4.56
3 1.52 3615.53 3.67 4.81 21.93 4.12 1.89 3604.93 2.92 5.18 24.27 4.12
5 1.12 3657.24 4.34 5.22 23.86 4.33 1.59 3649.64 2.35 5.41 24.04 4.33
10 2.89 3521.21 4.40 5.48 24.32 5.11 2.50 3605.03 4.17 4.97 23.01 5.11

B26 (20,40) 1 9.72 3639.06 56.09 1.86 239.90 3.45 8.50 3625.53 48.80 1.85 236.09 3.45
3 7.01 3632.89 64.83 1.76 281.70 3.36 10.09 3633.84 63.08 1.95 242.18 3.36
5 11.61 3631.01 58.21 1.96 231.54 3.49 10.98 3624.91 56.91 2.00 254.30 3.49

10 10.59 3622.99 62.21 2.23 236.63 4.27 8.53 3643.25 52.23 2.28 246.29 4.27
B27 (20,50) 1 8.43 3619.96 77.15 2.45 144.96 4.36 7.56 3622.60 80.12 2.44 157.92 4.36

3 6.70 3625.67 86.18 2.39 142.29 4.27 8.36 3621.60 89.58 2.32 153.58 4.27
5 8.87 3633.69 68.75 2.51 153.49 5.09 12.48 3641.95 90.35 2.54 150.77 5.09
10 11.43 3624.86 96.97 2.79 150.03 5.42 9.01 3630.88 83.07 2.95 167.62 5.42

B28 (20,250) 1 11.10 3670.45 17.38 55.72 26.30 35.27 10.41 3669.79 15.64 57.16 25.29 35.27
3 18.03 3722.43 16.26 55.57 25.51 37.97 12.32 3636.56 20.10 52.61 26.26 37.97
5 11.89 3698.75 18.52 58.54 25.84 39.17 11.90 3664.88 17.01 55.20 25.24 39.17

10 17.40 3784.30 16.69 57.62 27.21 43.92 10.96 3640.60 20.02 54.30 26.56 43.92
B29 (25,250a) 1 23.68 3792.63 22.23 72.10 39.07 37.96 22.35 3835.17 20.47 67.38 37.49 37.96

3 24.00 3803.01 21.17 66.36 34.41 44.34 27.05 3786.01 20.52 70.57 34.44 44.34
5 25.23 3879.52 22.64 68.93 34.98 50.14 24.81 3800.52 22.33 69.41 35.26 50.14
10 23.71 3999.63 20.30 73.25 35.46 48.43 23.48 3784.19 22.37 73.74 36.97 48.43

B30 (25,250b) 1 9.63 3812.81 9.28 71.35 21.36 48.12 13.71 3796.26 8.84 73.82 20.61 48.12
3 11.03 3804.33 9.37 74.53 19.70 51.78 11.60 3790.43 9.17 65.78 18.27 51.78
5 13.04 3805.01 10.92 72.72 21.19 55.35 12.35 3802.08 9.00 66.38 17.56 55.35
10 12.04 3799.99 10.39 71.40 18.94 60.52 10.97 3800.07 10.52 72.73 19.11 60.52

B31 (25,250c) 1 10.84 3769.46 9.10 68.75 14.92 65.95 10.17 3770.65 9.13 68.55 18.49 65.95
3 11.17 3769.92 8.33 66.51 17.49 61.66 8.15 3767.76 8.02 65.22 15.87 61.66
5 12.66 3777.18 9.00 69.42 15.22 72.64 11.44 3787.90 8.70 68.70 17.15 72.64
10 9.70 3778.33 5.97 71.59 17.97 65.99 8.98 3771.89 7.36 70.61 14.40 65.99

B32 (25,250d) 1 22.66 3758.52 14.04 68.08 21.65 60.69 25.28 3761.29 12.91 72.25 23.98 60.69
3 20.44 3764.54 13.32 69.92 24.45 54.80 22.35 3771.12 11.92 75.27 25.50 54.80
5 21.90 3765.79 12.00 67.80 21.19 64.30 24.40 3748.71 14.67 74.33 23.63 64.30
10 24.61 3761.55 13.47 73.74 23.38 70.62 23.64 3768.80 13.36 72.50 24.48 70.62

B33 (25,250e) 1 13.72 3931.19 6.89 77.40 17.43 59.38 16.66 3847.32 5.55 68.52 15.59 59.38
3 13.80 3788.08 5.00 71.64 15.62 66.10 12.74 3862.72 5.58 72.49 17.48 66.10
5 13.32 3782.14 5.68 72.93 16.13 64.92 12.21 3938.20 5.38 73.00 17.25 64.92
10 12.46 3796.71 5.95 72.69 19.59 68.20 15.89 4070.35 4.81 75.19 15.81 68.20

B34 (25,500a) 1 N/A N/A 5.78 323.61 9.26 155.23 N/A N/A 5.24 328.38 8.71 155.23
3 N/A N/A 5.16 337.02 6.55 162.01 N/A N/A 5.70 309.09 5.61 162.01
5 N/A N/A 4.85 324.65 5.48 167.10 N/A N/A 4.87 309.49 5.14 167.10
10 N/A N/A 5.07 339.89 5.70 182.96 N/A N/A 5.30 323.41 4.86 182.96

B35 (25,500b) 1 N/A N/A 2.20 334.21 12.95 92.05 N/A N/A 2.76 318.95 12.32 92.05
3 N/A N/A 1.64 329.23 13.67 104.66 N/A N/A 3.61 336.81 13.52 104.66
5 N/A N/A 3.04 322.77 13.66 96.81 N/A N/A 2.84 346.44 13.63 96.81
10 N/A N/A 3.82 340.62 13.14 119.04 N/A N/A 2.48 330.88 12.51 119.04

B36 (25,500c) 1 N/A N/A 8.97 303.48 10.47 123.60 N/A N/A 8.44 318.49 11.78 123.60
3 N/A N/A 7.29 310.64 12.65 114.78 N/A N/A 8.55 314.52 10.74 114.78
5 N/A N/A 7.19 318.15 10.96 126.00 N/A N/A 7.16 324.89 13.20 126.00
10 N/A N/A 7.31 315.51 13.52 129.35 N/A N/A 8.13 311.83 10.78 129.35

B37 (25,500d) 1 N/A N/A 2.78 319.46 7.40 161.42 N/A N/A 3.23 332.95 7.74 161.42
3 N/A N/A 3.12 329.97 8.07 168.51 N/A N/A 3.24 329.30 8.16 168.51
5 N/A N/A 2.69 335.53 7.33 171.57 N/A N/A 3.00 322.69 8.03 171.57
10 N/A N/A 3.47 308.40 7.00 191.51 N/A N/A 3.31 323.25 7.83 191.51

B38 (25,500e) 1 N/A N/A 4.96 313.73 10.22 110.78 N/A N/A 4.44 317.81 9.72 110.78
3 N/A N/A 4.43 323.08 10.01 113.92 N/A N/A 3.61 324.16 9.37 113.92
5 N/A N/A 5.15 308.20 9.43 120.62 N/A N/A 5.40 328.98 9.95 120.62
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M. Hakan Akyüz received a PhD degree from the
Department of Industrial Engineering at Boğaziçi Uni-
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