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Abstract. Recently, Artificial Neural Networks (ANN), which is mathematical modeling 

tools inspired by the properties of the biological neural system, has been typically used in 

the studies of hydrological time series modeling. These modeling studies generally include 

the standart feed forward backpropagation (FFBP) algorithms such as gradient-descent, 

gradient-descent with momentum rate and, conjugate gradient etc. As the standart FFBP 

algorithms have some disadvantages relating to the time requirement and slow 

convergency in training, Newton and Levenberg-Marquardt algorithms, which are 

alternative approaches to standart FFBP algorithms, were improved and also used in the 

applications. In this study, an application of Levenberg-Marquardt algorithm based ANN 

(LM-ANN) for the modeling of monthly inflows of Demirkopru Dam, which is located in 

the Gediz basin, was presented. The LM-ANN results were also compared with gradient-

descent with momentum rate algorithm based FFBP model (GDM-ANN). When the 

statistics of the long-term and also seasonal-term outputs are compared, it can be seen that 

the LM-ANN model that has been developed, is more sensitive for prediction of the 

inflows. In addition, LM-ANN approach can be used for modeling of other hydrological 

components in terms of a rapid assessment and its robustness. 
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1.  Introduction 

The application of water resource engineering 

methods to evaluate the potential of water 

resource and the decision making strategies of 

water resource management, such as 

droughtflood analysis, irrigation, reservoir 

performances based on probability of failure and, 

the development of integrated river basin models 

under the certain climate scenarios, needs the 

forecasting of streamflow data and modeling of 

rainfall-runoff relations. In this context, the 

examination of hydrological processes and 

causalities of these processes deepens our 

understanding of modeling. Especially, the recent 

and apparent impacts of climate change have also 

popularized these models.  

 

 A basin can be considered as a system that 

transforms the rainfall to runoff. The modeling of 

this system can be set up to obtain the relation of 

the transformation by making simplifying 

assumptions because a basin has very 

complicated and uncertain components. There are 

different classifications presented in the literature 

to qualify basin models which include system 

definitions, area-time scales and solution 

techniques. But in general, there are three main 

approaches in representing the basin systems: 

white-box models (physical based distributed 

models), the gray-box models (conceptual 

models) and the blackbox models [1]. The white 

and gray-box models aim to simulate physical 

creation mechanism in the ways of each of theirs 

components, such as surface, subsurface and 

groundwater flow, infiltration, percolation, and 
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evapotranspiration. The relevant parameters of 

these components for a certain basin are 

determined by different optimization techniques. 

However, in terms of uncertainties, data 

requirements and complexities of model 

parameters, they can not use in some 

applications. Because of uncertainties and 

complexities in these modeling studies, the basin 

may be also considered as the black-box models 

which are applied to associate basin inputs and 

desired outputs without detailed consideration 

about the physical processes of the phenomena. 

In this context, conventional statistical models 

are commonly used in applications which contain 

regression analyses, curve fitting approaches and 

stochastic autoregressive models [2-9]. In 

addition to these, artificial neural networks 

(ANNs) are also employed to streamflow 

modeling [10-15]. The ANNs can be considered 

as complex and nonlinear regression models 

structured between basin inputs (precipitation, 

temperature, evaporation etc.) and basin output 

“streamflow” data.  Although there are several 

ANN techniques, feed forward backpropagation 

(FFBP) algorithm based models used in 

applications typically. A number of ANN studies 

have been reported in literature. Some of them 

are given. Minns and Hall (1996) prepared a 

FFBBP algorithm based ANN model by using 

synthetic data set to forecast streamflows. 

Campalo et al.(1999) developed an ANN model 

to analyze and forecast the behavior of the river 

Tagliamento, in Italy [16]. Mendez et al. (2004), 

Kisi (2005) and Okkan and Mollamahmutoglu 

(2010a) investigated the performance of ANN 

and autoregressive models in prediction of 

streamflow [15, 17, 18]. They were shown that 

ANN methods yielded better results than 

autoregressive models. Cigizoglu (2003) also 

used an autoregressive model which was 

employed to generate synthetic monthly flows 

[14]. These generated values were used as the 

training sets of ANNs to forecast the observed 

Goksu River monthly mean flows in the East 

Mediterranean part of Turkey. According to this, 

the forecasting results were compared with the 

ANN performance when only a limited number 

of observed flows were employed in the training 

data sets. Increasing the data sets in the training 

stage improved the forecasting performance 

significantly. In addition to FFBP algorithms, 

Generalized Regression Neural Networks [19, 

20] and Radial Basis Neural Networks [21-23] 

studies were also used in streamflow predictions. 

Briefly, all of these studies shown that the ANN 

is probably the most successful black box tool 

which is capable of modeling complex and 

uncertain relationships between input and output 

variables without the detailing of the physical 

process. 

 In the study presented, an application of 

Levenberg-Marquardt algorithm based ANN 

(LM-ANN) for the modeling of monthly inflows 

of Demirkopru Dam, which is located in the 

Gediz Basin, was presented. The LM-ANN 

results were also compared with gradient-descent 

with momentum rate algorithm based FFBP 

model (GDM-ANN). 

 

2.The Multilayer Neural Networks 

The basic concept of the multilayer neural 

networks is that they are typically made up of 

single neurons. And in the multilayer neural 

networks, the neurons are organized in the form 

of layers (Figure 1).  

 The first and last layer of multilayer neural 

networks is called the input and the output layers 

respectively.The input layer does not perform any 

computations, but only serves to feed the input 

data to the hidden layer which is between the 

input and output layers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A multilayer neural network structure 

[18] 

 

 In general, there can be any number of hidden 

layers in the multilayer neural networks 

structures. However, from practical applications, 

only one or two hidden layers are used. In 

addition to this, the number of hidden layers and 

also the number of neurons of hidden layers can 

be determined by trial and error [24-26]. 
 There are also three important components of 

a multilayer neural network structure: weights, 

summing function and activation function. The 

importance and functionality of the inputs on 
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neural network models are obtained with weights 

(W). 

 So the success of the model depends on the 

precise and correct determination of weight 

values. The summing function (net) acts to add 

all outputs; that is, each neuron input is 

multiplied by the weights and then summed. 

After computing the sum of weighted inputs for 

all neurons, the activation function f (.) serves to 

limit the amplitude of these values.  The 

activation functions are usually continuous, non-

decreasing and bounded functions.  

 Various types of the activation function are 

possible but generally sigmoid function is 

preferred in applications [26].  This activation 

function generates outputs between 0 and 1 as the 

input signal goes from negative to positive 

infinity. 

(.)

1
(.)

1
f

e



  (1) 

 In addition to the structure and its components 

of multilayer neural networks, the running 

procedure is also important which involves 

typically two phases; forward computing and 

backward computing.  

 In forward computing, each layer uses a 

weight matrix (W
 (v)

, for v =1, 2) associated with 

all the connections made from the previous layer 

to the next layer (Figure 1). The hidden layer has 

the weight matrix 
(1) hxnW R , the output layer’s 

weight matrix is 
(2) mxhW R . Given the network 

input vector 
1nxx R , the output of the hidden 

layer 
1

,1

hx

outx R can be written as 

(1) (1) (1) (1)

,1 [ ] [ ]outx f net f W x      (2) 

which is the input to the output layer. The output 

of the output layer, which is the response (output) 

of the network 
1

,2

mx

outy x R  , can be written 

as 

 
(2) (2) (2) (2)

,2 ,1[ ] [ ]out outy x f net f W x        (3) 

Substituting (Eq.2) into (Eq.3) for xout,1 gives the 

final output y = xout,2 of the network as  

           
(2) (2) (1) (1)[ [ ]]y f W f W x   (4) 

 After the phase of forward computing, 

backward computing which depending on the 

algorithms to adjust weights is used in the 

multilayer neural networks. The process of 

adjusting these weights to minimize the 

differences between the actual and the desired 

output values is called training or learning the 

network.  If these differences (error) are higher 

than the desired values, the errors are passed 

backwards through the weights of the network. In 

ANN terminology, this phase is also called the 

backpropagation algorithm. Once the comparison 

error is reduced to an acceptable level for the 

whole training set, the training period ends, and 

the network is also tested for another known 

input and output data set in order to evaluate the 

generalization capability of the ANN [24, 26]. 

 Depending on the techniques to train ANN 

models, different back propagation algorithms 

have been developed. In this study, the 

Levenberg-Marquardt algorithm (LM-ANN) was 

used for training of the network. The Levenberg-

Marquardt algorithm is a second order nonlinear 

optimization technique that is usually faster and 

more reliable than any other standart back 

propagation techniques [27-29] and it is similar 

to Newton’s method [30, 31]. 

 

3. The Levenberg-Marquardt Algorithm 

The Levenberg-Marquardt optimization 

algorithm represents a simplified version of 

Newton’s method [31] applied to the training 

multilayer neural networks [30, 32]. Consider the 

multilayer neural network shown in Figure 1, the 

running of the network training can be viewed as 

finding a set of weights that minimized the error 

(ep) for all samples in the training set (Q).  If the 

performances function is a sum of squares of the 

errors as 

2 2

1 1

1 1
( ) ( ) ( ) ,

2 2

P P

p p p

p p

E W d y e P mQ
 

    
                                                                                                                                

(5) 

where Q is the total number of training samples, 

m is the number of output layer neurons, W 

represents the vector containing all the weights in 

the network, yp  is the network output, and dp   is 

the desired output. 

 When training with the Levenberg-Marquardt 

optimization algorithm, the changing of weights 

ΔW can be computed as follows 

 

             
1 [ ]T T

k k k k kW J J I J e         (6) 

where J is the Jacobian. matrix, I is the identify 

matrix, µ is the Marquardt parameter which is to 

be updated using the decay rate β depending on 

the outcome. In particular, µ is multiplied by the 

decay rate β (0<β<1) whenever E(W) decreases, 

while µ is divided by β whenever E(W) increases 

in a new step (k). 

 The LM-ANN training process can be 

illustrated in the following pseudo-codes, 
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1. Initialize the weights and µ (µ = 0.001 is 

appropriate). 

2. Compute the sum of squared errors over all 

inputs, E(W). 

3. Compute the Jacobian matrix J. 

4. Solve Eq.6 to obtain the changing of 

weights ΔW. 

5. Recompute the sum of squared errors E(W) 

using 
1

( 1) [ ]T T

k k k k k k kW W J J I J e 

     as the 

trial W, and judge 

 

IF trial E(W) < E(W) in Step 2, THEN 
1

( 1)

( 1)

[ ]

( 0.1)

T T

k k k k k k k

k k

W W J J I J e

   







  

 
 

go back to Step 2. 

ELSE 

( 1) /k k     

go back to Step 4. 

END IF 

 

4. Application 

The application area covers the Demirkopru 

Dam’s basin which is located in the Aegean 

region of Turkey. The study region has typical 

Mediterranean climate characteristics.  

 Demirkopru Dam’s basin is also called the 

Upper Gediz which has four rivers (Demirci, 

Deliinis, Selendi and Murat) located upstream of 

the dam with a total drainage area of 6590 km
2
 

(Figure 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 The streamflow and the meteorological 

stations in the study area 

 

 LM-ANN modeling was applied on the 

observed data of selected 5 meteorological 

stations and 4 streamflow gauging stations   

(Table 1). 

 

Table 1 Selected meteorological and streamflow 

gauging stations in the study area 

 

 For the study region, the monthly data set of 

streamflows (10
6
 m

3
) at each station was obtained 

from EIE (the General Directorate of Electrical 

Power Resources Survey and Development 

Administration of Turkey) and then summed. 

Thus, monthly inflows of Demirkopru dam was 

determined for the period from 1977 to 2006. The 

monthly data sets of precipitation at Demirci, 

Icikler, Kiransih, Fakili and Gediz meteorological 

stations were obtained from DMI (the State 

Meteorological Organization of Turkey) and DSI 

(the General Directorate of State Hydraulic 

Works of Turkey) and the monthly mean areal 

precipitation values determined from these 

meteorological stations by using Thiessen 

polygons. The monthly data sets of temperature 

at Demirci and Gediz meteorological stations 

were also obtained from DMI (the State 

Meteorological Organization of Turkey) and the 

monthly mean areal temperature values computed 

by using arithmetical mean values from these 

meteorological stations for the period from 

January 1977 to December 2006.   

 In the modeling application, 30 years (January 

1977-December 2006) input-output data were 

used and divided into training and testing periods 

by proportions of 2/3 (January 1977- December 

1996) and 1/3 (January 1997-December 2006), 

respectively. Before presenting the input-output 

data to ANN, the all data set were scaled to the 

range 0-1 so that the different input signal had the 

same numerical range. The training and the 

testing subsets were scaled to the range of 0-1 

using the equation zt = (xt-xmin)/(xmax-xmin), where 

xt is the unscaled data, zt is scaled data, and xmax 

and xmin are the maximum and minimum values 

Type of Stations Station Names Station Numbers 

Meteorological 

Demirci DMI 17746  

İcikler DSI 05-018  

Kiransih DSI 05-016 

Fakili DSI 05-012 

Gediz DMI 17750 

Streamflow 

Demirci  EIE 522 

Deliinis  EIE 515 

Selendi  EIE 514 

Gediz EIE 523 
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of the unscaled data, respectively. Then, the 

output values of the networks, which were in the 

range of 0-1, were converted to real-scaled values 

using the equation xt = zt (xmax - xmin) + xmin. 

Because of the scaling range, the sigmoid 

function was selected as the activation function 

which generates outputs between 0 and 1. 

 In training, the number of hidden layers, the 

number of the neurons in the hidden layers and 

Marquardt parameters were determined after 

trying various network structures. The network 

structure providing the best result, i.e., the 

minimum root mean square errors, RMSE (Eq. 7), 

and the maximum determination coefficients, R
2
 

(Eq. 8) was also employed for the testing period. 

         
2

1

1
( )

T

t t

t

RMSE d y
T 

     (7) 

 

2 2
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( ) ( )
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T T

t mean t t

t t

T

t mean

t

d d d y

R

d d

 



  





 


   (8) 

where T is the number of training or testing 

samples, yt  is the network output, dt   is the 

observed (desired) data in the t
th
 time period, and 

dmean is the mean over the observed periods. 

 The modeling study started with the network-

input data consisting of the concurrent monthly 

rainfall and temperature and the corresponding 

inflows at Demirkopru Dam as an output from 

the network. The maximum possible model 

determinations (R
2
) and the minimum root mean 

square errors (RMSE) obtained with two inputs 

and one output, network was 70.94 % and 37.74 

(10
6
 m

3
) and 61.17 % and 46.09 (10

6
 m

3
) for the 

training and testing periods respectively. The 

number of neurons in the hidden layer was tried 

between 2 and 20 and the one with 12 neurons 

gave the best performance on the testing data. To 

develop the performance of the LM-ANN model, 

antecedent rainfalls were included in the input. 

The best performance for the model 

determinations was obtained with 9 neurons in 

the hidden layer with a concurrent monthly 

rainfall, temperature and three antecedent 

rainfalls used as input. With these inputs, 

determinations of 93.31 % and 82.19 % were 

obtained for the training and testing periods 

respectively. When two and three antecedent 

rainfalls were added to the model, the 

performance of training period improved, but in 

terms of root mean square errors, the 

performance for the testing period was found to 

be deteriorating. Thus, the model (Model I) 

which used concurrent rainfall, temperature and 

one antecedent rainfall as input was found to be 

sufficient and suitable than the others.  

 To improve the performance even further, it 

was required to use antecedent inflow values as 

input. According to this, the best performance 

(Model II) was obtained using one antecedent 

inflow, in addition to the concurrent rainfall, 

temperature and one antecedent rainfall, as input 

to the network. With these inputs and 3 neurons 

in the hidden layer, determinations of 93.74 % 

and 84.16 % and root mean square errors of 

17.71 (10
6
 m

3
) and 25.77 (10

6
 m

3
) were obtained 

for the training and testing periods respectively. 

When two antecedent rainfalls were added to 

Model II, the performance for the testing period 

was also found to be deteriorating. The results of 

all of these experiments are summarized in Table 

2. The best performances of the LM-ANN 

models (I and II) during the training and testing 

periods are shown in Figure 3 and Figure 4. 
 

Table 2 The comparing of LM-ANN model 

performances with different inputs  

(µ0=0.001; β=0.1) 

 

Inputs h 

R2 

% 

RMSE 

106 m3 

Training Testing Training Testing 

Rt - Tt 12 70.94 61.17 37.74 46.09 

Rt -Tt - Rt-1 

(Model I) 
3 79.17 75.34 31.95 34.37 

Rt - Tt - Rt-1 - 

Rt-2 
7 88.55 77.73 23.99 35.34 

Rt - Tt - Rt-1 -  

Rt-2 - Rt-3 
9 93.31 82.19 18.13 36.49 

Rt - Tt - Rt-1-   
Qt-1         

(Model II) 

3 93.74 84.16 17.71 25.77 

Rt -Tt - Rt-1-      

Qt-1-Rt-2 
7 94.49 85.92 16.48 26.43 

 
(h: The number of neurons in the hidden layer; R: Rainfall; T: 

Temperature; Q: Inflow; (Model I): The best LM-ANN model which 
used the concurrent rainfall, temperature and one antecedent 

rainfall data as input; (Model II): The best LM-ANN model which 

used the concurrent rainfall, temperature, one antecedent rainfall 
and one antecedent inflow data as input.) 

 

The results of suitable models are provided in 

Figure 5 as box-plots in order to compare the 

minimum, maximum and the median values of 

the observed and the predicted monthly inflows 

in the testing periods. Furthermore, the mean 

values of the observed and the predicted monthly 

inflows in the testing periods are also shown as a 

bar diagram in Figure 6. 
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Figure 3 The scatter plots (a) and time series plots (b) of LM-ANN Model I which used 

the concurrent rainfall, temperature and one antecedent rainfall data as input 

(µ0=0.001; β=0.1) 
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Figure 4. The scatter plots (a) and time series plots (b) of LM-ANN Model II which 

used the concurrent rainfall, temperature, one antecedent rainfall and one antecedent 

inflow data as input (µ0=0.001; β=0.1) 
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 When the box-plots were examined, in terms 

of the median values of the observed and the 

predicted monthly inflows, the all models were 

fitted well. But the results of some months 

(especially November and December) in Model 

II which used the one antecedent inflow data as 

input was much better than the Model I. 

 When the box-plots were also compared, in 

terms of the extreme (maximum and minimum) 

values of the observed and the predicted monthly 

inflows, it was noticed that there were different 

results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 For example the extreme values of March 

were fitted by Model I. However, the results of 

November and December in Model II were much 

better than the Model I as well as in terms of 

monthly means (See Figure 6). 

 In the study, LM-ANN Model I results were 

also compared by using gradient-descent with 

momentum rate algorithm based FFBP approach 

(GDM-ANN). The best performance of GDM-

ANN model was determined with 3 neurons in 

the hidden layer.  By using the same inputs as 

Model I, the determinations of 73.12 % and 62.20 

% were computed for the training and testing 

periods respectively (See Figure 7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Box-plots of the observed and the predicted monthly inflows of Model I-II 

in the testing periods. 

 

Figure 6  Bar diagram of the observed and the predicted monthly mean inflows for the testing 

periods. 
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Table 3 The Results of LM-ANN and GDM-

ANN that used the concurrent rainfall, 

temperature and one antecedent rainfall data as 

input 

Algorithm 

Iterations Time  R2 

(Testing) 

RMSE 

(Testing) 

(k) seconds % 106m3 

LM-ANN 

(Model I) 
10 0.47 75.34 34.37 

GDM-ANN 10000 172.35 62.20 42.63 

 
In Table 3, the iteration numbers, times 

(seconds), RMSE, and determination coefficients 

(R
2
) for testing periods are shown for each 

algorithm.  From Table 3, it is obvious that 

GDM-ANN algorithm takes high number of 

iterations (k) and time (on a PC-Pentium IV) in 

training process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusions 

From the overall studies above, the availability of 

Levenberg-Marquardt algorithm based multilayer 

artificial neural networks for monthly inflows 

modeling was examined and the following 

evaluations were made. 

 

 In modeling the monthly inflows with 

artificial neural networks, the optimum 

number of antecedent rainfalls constituting the 

input should be examined. The results of 

testing periods showed that correlated inputs 

variables (Rt, Rt-1 and Rt-3) may reduce the 

performance and also the generalization 

capabilities of the LM-ANN. 

 

 For the different monthly modeling studies, to 

improve the model performances even further, 

   (b) 

In
fl

o
w

s
 (

1
0

6
m

3
) 

In
fl

o
w

s
 (

1
0

6
m

3
) 

Training 

Test 

Figure 7 The scatter plots (a) and time series plots (b) of GDM-ANN model which 

used the concurrent rainfall, temperature and one antecedent rainfall data as input 

(learning rate=0.30; momentum rate=0.9) 

 

G
D

M
-A

N
N

 (
1
0

6
m

3
) 

  Observed (10
6
m

3
) 

Training 

R
2
 = 73.12% 

RMSE = 36.42 
(10

6
m

3
) 

 

Testing 

(a) 

G
D

M
-A

N
N

 (
1
0

6
m

3
) 

  Observed (10
6
m

3
) 

R
2
 = 62.20% 

RMSE = 42.63 
(10

6
m

3
) 

 



62  Vol.1, No.1, (2011) © IJOCTA 

it may be required to use antecedent inflow 

values as input. 

 

 Further, the time required for training by the 

LM-ANN is not only the lowest but also only 

a fraction of the time taken by GDM-ANN 

algorithms. 

 

 This was also proved with this study, that 

LM-ANN is the one of the most successful 

black box techniques which is capable of 

rainfall-runoff modeling without the detailing 

of the physical process and can be also used 

for modeling of other hydrological 

components in terms of a rapid assessment 

and its robustness. 
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