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1. Introduction

Neutral functional-differential equations with pro-
portional delays represent a specific form of delay
differential equations. Such equations arise in var-
ious fields of science and engineering and play a
significant role in the mathematical modeling of
real-world phenomena [1]. Clearly, most of these
equations cannot be solved with well-known exact
methods. For this reason, it is necessary to design
efficient numerical treatment to approximate so-
lutions. Ishiwata et al. used the rational approx-
imation method and the collocation method to
obtain numerical solutions of NFDEs with pro-
portional delays [2,3]. Hu et al. applied linear
multi step methods to obtain numerical solutions
for NFDEs [4]. Wang et al. obtained approximate
solutions for NFDEs by continuous Runge-Kutta
methods and one-leg-θ method [5-7]. Chen and
Wang applied the variational iteration method
for solving NFDEs with proportional delays [8].
Biazar and Ghanbari applied the homotopy per-
turbation method to obtain numerical solution of
NFDEs with proportional delays [9] and so on
[10,11].

Homotopy analysis method (HAM) is proposed
by Liao [12,13]. This method has been success-
fully employed to handle a wide variety of sci-
entific and engineering applications. Alomari et
al. used modified HAM for solution of delay dif-
ferential equation in [14]. Kumar and Rashidi
applied fractional homotopy analysis transform
method to obtain approximate analytical solu-
tion of nonlinear homogeneous and nonhomoge-
neous time-fractional gas dynamics equations in
[15]. Abbasbandy employed HAM to find a fam-
ily of travelling-wave solutions of the Kawahara
equation in [16]. Jafari and Seifi used HAM for so-
lution of linear and nonlinear fractional diffusion-
wave equation in [17]. Sakar and Erdogan applied
the HAM and Adomian’s decomposition method
for solving the time-fractional Fornberg-Whitham
equation in [18]. HAM is different from the per-
turbation methods it provides the convenient way
to control and adjust the convergence region and
convergence rate of the series solution. However,
for some type of auxiliary operator, in other words
some type of base functions, it is generally time-
consuming to get high order approximation, and
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very large terms appearing in high order approx-
imation [19]. The homotopy-series solution is not
only dependent upon t but also the convergence-
control parameter ~. Convergence-control param-
eter ~ which supplies us a convenient way to guar-
antee the convergence of homotopy-series solu-
tion. When the approximations contain unknown
convergence-control parameters and other physi-
cal parameters, it is time-consuming to compute
the square residual error at high-order of approx-
imations. To avoid the time-consuming calcula-
tion, we will employ averaged square residual er-
ror function [19,20].

The aim of this paper is to extend the homotopy
analysis method with residual error function to
obtain the numerical solution of the following neu-
tral functional-differential equations with propor-
tional delays [8,9],

(u(t) + a(t)u(pnt))
(n) =

n−1
∑

k=0

bk(t)u
(k)(pkt)

+ βu(t) + f(t), t ≥ 0 (1)

with the initial conditions

n−1
∑

k=0

ciku
(k) (0) = λi, i = 0, 1, ..., n− 1. (2)

Here, a(t) and bk(t), (k = 0, 1, ..., n− 1) are given
analytical functions, and β, pk, cik, λi denote
given constant with 0 < pk < 1, (k = 0, 1, ..., n).

This paper is organized as follows: In Section
2, homotopy analysis method with residual error
function is presented. Section 3 is devoted to the
convergence analysis of the method. Section 4
contains numerical comparisons between the re-
sults obtained by the homotopy analysis method
in this work and some existing methods. Finally,
concluding remarks are given in the last section.

2. Homotopy analysis method with

residual error function

We consider the following nonlinear differential
equation

N [u(t)] = (u(t) + a(t)u(pnt))
(n) − βu(t)

−
n−1
∑

k=0

bk(t)u
(k)(pkt)− f(t) = 0 (3)

where, N is a nonlinear differential operator, t

denotes independent variable, u (t) is an unknown

function. By means of generalizing the traditional
homotopy method, Liao [12] constructs the so-
called zero-order deformation equation

(1− p)L[φ(t; p)− u0(t)] = p~H(t)N [φ(t; p)] (4)

here, p ∈ [0, 1] is the embedding parameter, ~ 6= 0
is a non-zero auxiliary parameter, H (t) 6= 0 is
non-zero auxiliary function, L is an auxiliary lin-
ear operator. u0 (t) is the initial guess of u (t) and
φ (t; p) is unknown function, respectively. It is im-
portant that one has great freedom to choose aux-
iliary things such as ~ and L in homotopy analysis
method. Obviously, when p = 0 and p = 1 , it
holds

φ (t; 0) = u0 (t) , φ (t; 1) = u (t) , (5)

respectively. Thus, as p increases from 0 to 1,
the solution φ (t; p) varies from the initial guesses
u0 (t) to the solution u (x, t). Expanding φ (t; p)
in Taylor series with respect to p, we have

φ (t; p) = u0 (t) +
∞
∑

m=1

um (t) pm, (6)

where

um (t) =
1

m!

∂mφ (t; p)

∂pm
|p=0 . (7)

If the auxiliary linear operator, the initial guess,
the auxiliary operator ~, and the auxiliary func-
tions are so properly chosen, then the series Eq.(6)
converges at p = 1 and

φ (t; 1) = u0 (t) +
∞
∑

m=1

um (t) , (8)

which must be one of the solutions of the original
nonlinear equations, as proved by Liao [12]. Ac-
cording to Eq.(7), the governing equations can be
deduced from zeroth-order deformation equation
Eq.(4).
Define the vector

−→un = {u0 (t) , u1 (t) , ..., un (t)} . (9)

Differentiating Eq.(4)m-times with respect to the
embedding parameter p and then setting p =
0 and finally dividing them by m!, we obtain
the mth-order deformation equation, with the as-
sumption H (t) = 1,
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L [um (t)− χmum−1 (t)] = ~Rm(−→u m−1), (10)

where,

Rm(−→u m−1) =
∞
∑

m=1

1

(m− 1)!

∂m−1N [φ(t; p)]

∂pm−1
|p=0

and

χm =

{

0, m ≤ 1,
1, m > 1.

The mth-order approximation series solution is
given as

u (t) =
m
∑

k=0

uk (t). (11)

It is clear from Eq.(11) that u (t) contains un-
known convergence-control parameter ~ which de-
termine the convergence region and rate of the
homotopy-series solution.

2.1. Selection of optimal value of ~ with

residual error function

As given by Liao [19], at the mth-order of approx-
imation, one can define the exact square residual
error as,

∆m =

∫

Ω

(

N

(

m
∑

i=0

ui (t)

))2

dt. (12)

Here, ∆m contains ~ unknown convergence-
control parameter. For mth-order approximation,
optimal values of the convergence-control param-
eter ~ is given by the minimum of ∆m, namely

d∆m

d~
= 0. (13)

However, it is proven by Liao [19] that the exact
residual error ∆m defined by Eq.(13) needs too
much CPU time to calculate even if the order of
approximation is not very high. Thus, to greatly
decrease the CPU time, we use here the so-called
averaged square residual error

√
Em defined by

Em =
1

n+ 1

n
∑

j=0

(

N

(

m
∑

i=0

ui

(

j

n
, ~

)

))2

. (14)

3. Convergence analysis and error

estimate

In this section we present convergence analysis
and error estimate for our method.

Theorem 1. If the homotopy series Eq.(8) con-

verges, then
∞
∑

m=1
Rm(−→u m−1(t)) = 0.

Theorem 2. If the homotopy series Eq.(8) con-
verges, it must be the solution of original nonlin-
ear Eq.(3).

The proofs of Theorem 1. and Theorem 2. can
be found in [12].

Theorem 3. Let the solution components un (t)
be defined in Banach space (C[0, 1], ‖.‖). Then
the series solution

∑∞
n=0 un(t) defined in Eq.(11)

converges to the solution of Eq.(3), if ∃ 0 < γ < 1
such that ‖un+1‖ ≤ γ‖un‖, ∀n ≥ n0, for some
n0 ∈ N .

Proof. Assume that (C [0, 1] , ‖.‖) is the Banach
space, the space of all continuous functions on
[0, 1]. Define that {Sn} is the sequence of partial
sums of the series Eq.(11) as,



























S0 = u0(t),
S1 = u0(t) + u1(t),
S2 = u0(t) + u1(t) + u2(t),
...
Sn = u0(t) + u1(t) + u2(t) + ...+ un(t).

We need to show that {Sn}∞n=0 is a Cauchy se-
quence in Banach space (C[0, 1], ‖.‖). For this
purpose, we consider,

‖Sn+1 − Sn‖ = ‖un+1(t)‖
≤ γ ‖un (t)‖
≤ γ2 ‖un−1(t)‖
≤ ... ≤ γn+1 ‖u0 (t)‖ . (15)

For every, n,m ∈ N , n ≥ m, by using Eq.(15)
and triangle inequality successively, we have,

‖Sn − Sm‖ = ‖(Sn − Sn−1) + . . .+ (Sm+1 − Sm)‖
≤ ‖(Sn − Sn−1)‖+ ‖(Sn−1 − Sn−2)‖
+ ...+ ‖(Sm+1 − Sm)‖
≤ γn‖u0(t)‖+ γn−1‖u0(t)‖
+ ...+ γm+1‖u0(t)‖

=
1− γn−m

1− γ
γm+1‖u0(t)‖. (16)
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Since 0 < γ < 1, we have 1− γn−m < 1; then,

‖Sn − Sm‖ ≤ γm+1

1− γ
max

∀t∈[0,1]
‖u0 (t)‖ .

Since u0 (t) is bounded,

lim
n,m→∞

‖Sn − Sm‖ = 0.

Therefore, {Sn}∞n=0 is a Cauchy sequence in the
Banach space (C[0, 1], ‖.‖), so the series solution
defined in Eq.(11), converges. This completes the
proof. �

Theorem 4. Assume that the series solution
∑∞

n=0 un(t) defined in Eq.(11), is convergent
to the solution u(t). If the truncated series
∑m

n=0 un(t) is used as an approximation to the so-
lution u(t) of Eq.(3), then the maximum absolute
truncated error is estimated as,

∥

∥

∥

∥

∥

u (t)−
m
∑

n=0

un (t)

∥

∥

∥

∥

∥

≤ γm+1

(1− γ)
‖u0 (t)‖ . (17)

Proof. From Theorem 3. and Eq.(16), we have

‖Sn − Sm‖ =
1− γn−m

1− γ
γm+1 ‖u0 (t)‖ ,

for n ≥ m. Now, as n → ∞ then Sn → u (t). So,

‖u (t)− Sm‖ ≤ γm+1

(1− γ)
‖u0 (t)‖ .

Since 0 < γ < 1, we have 1−γn−m < 1. Herewith
the above inequality becomes,

∥

∥

∥

∥

∥

u (t)−
m
∑

n=0

un (t)

∥

∥

∥

∥

∥

≤ γm+1

(1− γ)
‖u0 (t)‖ . (18)

This completes the proof. �

Remark 1. If we define for every j ∈ N ∪ {0},
the parameters,

γj =

{

‖uj+1‖
‖uj‖

, ‖uj‖ 6= 0

0, ‖uj‖ = 0

then the solution
∑∞

n=0 un(t) of Eq.(3) converges
to an exact solution u(t), when 0 ≤ γj < 1, ∀j ∈
N ∪ {0}. Moreover, as stated in Theorem 4., the
maximum absolute truncation error is estimated
to be,

∥

∥

∥

∥

∥

u (t)−
∞
∑

n=0

un(t)

∥

∥

∥

∥

∥

≤ 1

1− γ
γi+1 ‖u0(t)‖ ,

where

γ = max {γj , j = 0, 1, ..., i}.

4. Numerical examples

Now, we apply the homotopy analysis method
with residual error function which presented in
Section 2-3 to some NFDEs with proportional de-
lay.

Example 1. We consider the following first-
order NFDE with proportional delay [8,9]:

u′(t) = −u(t) +
1

2
u(

t

2
) +

1

2
u′(

t

2
), 0 ≤ t ≤ 1, (19)

with initial condition,

u (0) = 1. (20)

The exact solution is u (t) = exp (−t) [8].

We select auxiliary linear operator,

L (φ (t; p)) =
dφ (t; p)

dt
, (21)

with property

L (c1) = 0, (22)

in which c1 is an integral constant to be deter-
mined by initial condition Eq.(20).

Furthermore, Eq.(19) suggest that we define a
nonlinear operator as

N [φ(t; p)] =
dφ(t; p)

dt
+ φ(t; p)

− 1

2
φ(

t

2
; p)− 1

2

dφ( t2 ; p)

dt
. (23)

From mth-order deformation equation we can ob-
tain following components,

u1 (t) =
1

2
~t,

u2 (t) =
1

2
~t+

3

16
~
2t2 +

1

4
~
2t,

...

Then the solution is,

u (t) = u0 (t) +
n
∑

m=1

um (t), (24)
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where n is the number of terms.

We define the following residual error function,

r7(t, ~) =
7
∑

m=1

u′m(t, ~) +
7
∑

m=1

um(t, ~)

− 1

2

7
∑

m=1

um(
t

2
, ~)

− 1

2

7
∑

m=1

u′m(t, ~), (25)

for obtaining optimal value of ~. Figure 1(b)
shows averaged square residual error function for
the 7th-order approximation, i.e.,

√

Em =





1

201

200
∑

j=0

r7

(

j

200
, ~

)2




1/2

(26)

with respect to ~ for t ∈ [0,1].

To determine the region of validity of the
convergence-control parameter ~, we plot the val-
ues of u′ (0.2), and u′′ (0.2) in Figure 1(a). It ap-
pears that ~ should at least lie within the inter-
val [−2,−1]. For the best possible value within
this region, the averaged square residual error at
the 7th-order approximation was evaluated from
Eq.(26) which gives rise to the optimal value ~

of ~ = -1.18613, resulting in a averaged square
residual error 4.27 × 10−4. For 10th-order ap-
proximation we found ~ = −1.12058 and averaged
square residual error 5.20 × 10−5. The accuracy
is improved by optimal choice of ~. In Table 1,
we compare the absolute errors of the homotopy
analysis method (n = 7 and n = 10) with those
of the Runge-Kutta method (R-K) of [1,8], varia-
tional iteration method (VIM) [8] with ni = 7 and
the one-leg θ method [5,6] with θ = 0.8, where
h = 0.01 and homotopy perturbation method
(HPM) [9] with n = 7.

Table 1. Comparison of absolute errors for Example 1.

t R-K [8] One-leg-θ [8] VIM [8] HPM [9] HAM (n = 7) HAM (n = 10)

0.1 4.55E-4 2.57E-3 7.43E-4 6.73E-4 1.59E-4 2.32E-5
0.2 8.24E-4 8.86E-3 1.42E-3 1.16E-3 2.74E-4 4.00E-5
0.3 1.12E-3 1.72E-2 2.02E-3 1.50E-3 3.54E-4 5.18E-5
0.4 1.33E-3 2.66E-2 2.58E-3 1.73E-3 4.08E-4 5.97E-5
0.5 1.52E-3 3.63E-2 3.07E-3 1.86E-3 4.39E-4 6.44E-5
0.6 1.66E-3 4.58E-2 3.52E-3 1.94E-3 4.53E-4 6.69E-5
0.7 1.75E-3 5.47E-2 3.93E-3 1.95E-3 4.52E-4 6.75E-5
0.8 1.81E-3 6.29E-2 4.30E-3 1.93E-3 4.34E-4 6.68E-5
0.9 1.84E-3 7.02E-2 4.64E-3 1.89E-3 3.96E-4 6.52E-5
1.0 1.85E-3 7.66E-2 4.94E-3 1.82E-3 3.32E-4 6.30E-5

(a) Sub-figure 1 (b) Sub-figure 2

Figure 1. ~ curves for 7th-order of approximation of Example 1. (a) and 7th-order averaged
square residual error for Example 1. (b).
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Example 2. Consider the second-order NFDE
with proportional delay [8,9]:

u′′(t) =
3

4
u(t) + u(

t

2
) + u′(

t

2
) +

1

2
u′′(

t

2
)

− t2 − t+ 1, 0 ≤ t ≤ 1, (27)

with initial conditions,

u (0) = u′ (0) = 0, (28)

which has the exact solution u (t) = t2 [8].

We select auxiliary linear operator,

L (φ (t; p)) =
d2φ (t; p)

dt2
, (29)

with property

L (c1 + c2t) = 0, (30)

in which c1 and c2 are integral constants to be
determined by initial condition Eq.(28).
Furthermore, Eq.(27) suggest that we define a
nonlinear operator as

N [φ(t; p)] =
d2φ(t; p)

dt2
− 3

4
φ(t; p)− φ(

t

2
; p)

− dφ( t2 ; p)

dt
− 1

2

d2φ( t2 ; p)

dt2

+ t2 + t− 1. (31)

Frommth-order deformation equation, we can ob-
tain following components,

u1 (t) =
1

12
~t4 +

1

6
~t3 − 1

2
~t2,

u2 (t) =
1

12
~t4 +

1

6
~t3 − 1

2
~t2 − 13

5760
~
2t6

− 3

320
~
2t5 +

5

48
~
2t4 +

5

24
~
2t3 − 1

4
~
2t2,

...

We define the following residual function,

r6(t, ~) =
6
∑

m=1

u′′m(t, ~)− 3

4

6
∑

m=1

um(t, ~)

−
6
∑

m=1

um(
t

2
, ~)−

6
∑

m=1

u′m(
t

2
, ~)

− 1

2

6
∑

m=1

u′′m(
t

2
, ~) + t2 + t− 1, (32)

for obtaining optimal value of ~. Figure 2(b)
shows averaged square residual error function for
the 6th-order approximation, i.e.,

√

Em =





1

501

500
∑

j=0

r6

(

j

500
, ~

)2




1/2

(33)

with respect to ~ for t ∈ [0,1].

To determine the region of validity of the
convergence-control parameter ~, we plot the val-
ues of u′ (0.1), and u′′ (0.1), in Figure 2(a). It
appears that ~ should at least lie within the in-
terval [−2,−1]. For the best possible value within
this region, the averaged square residual error at
the 6th-order approximation was evaluated from
Eq.(33) which gives rise to the optimal value ~ of
~ = -1.49346, resulting in a averaged square resid-
ual error 8.16× 10−4. For 10th-order approxima-
tion we found ~ = −1.45885 and averaged square
residual error 5.93 × 10−6. In Table 2, we com-
pare the absolute errors of the homotopy analysis
method (n = 6 and n = 10) with those of the
Runge-Kutta method of [1,8], variational itera-
tion method [8] with ni = 6 and the one-leg θ

method [5,6] with θ = 0.8, where h = 0.01 and
homotopy perturbation method [9] with n = 6.

Example 3. Consider the third-order neutral
functional differential equation with proportional
delay [8,9]:

u′′′(t) = u(t) + u′(
t

2
) + u′′(

t

3
) +

1

2
u′′′(

t

4
)

− t4 − t3

2
− 4

3
t2 + 21t, 0 ≤ t ≤ 1 (34)

with initial conditions,

u (0) = u′ (0) = u′′ (0) = 0, (35)

which has the exact solution u (t) = t4 [8].

We select auxiliary linear operator,

L (φ (t; p)) =
d3φ (t; p)

dt3
, (36)

with property

L
(

c1 + c2t+ c3t
2
)

= 0, (37)

in which c1, c2 and c3 are integral constants to be
determined by initial condition Eq.(35). Further-
more, Eq.(34) suggest that we define a nonlinear
operator as

N [φ(t; p)] =
d3φ(t; p)

dt3
− dφ( t2 ; p)

dt
− 1

2

d3φ( t4 ; p)

dt3

− φ(t; p) + t4 +
t3

2
+

4

3
t2 − 21t. (38)
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From mth-order deformation equation we can ob-
tain following components,

u1 (t) =
1

210
~t7 +

1

240
~t6 +

1

45
~t5 − 7

8
~t4,

...

We define the following residual function,

r4(t, ~) =
4
∑

m=1

u′′′m(t, ~)−
4
∑

m=1

um(t, ~)

−
4
∑

m=1

u′m(
t

2
, ~)−

4
∑

m=1

u′′m(
t

3
, ~)

− 1

2

4
∑

m=1

u′′′m(
t

4
, ~) + t4 +

t3

2

+
4

3
t2 − 21t, (39)

for obtaining optimal value of ~. Figure 3(b)
shows averaged square residual error function for
the 4th-order approximation, i.e.,

√

Em =





1

101

100
∑

j=0

r4

(

j

100
, ~

)2




1/2

(40)

with respect to ~ for t ∈ [0,1].

To determine the region of validity of the
convergence-control parameter ~, we plot the val-
ues of u′ (0.2), and u′′ (0.2) in Figure 3(a). It
appears that ~ should at least lie within the in-
terval [−1.5,−0.5]. For the best possible value
within this region, the averaged square residual
error at the 4th-order approximation was evalu-
ated from Eq.(40) which gives rise to the optimal
value ~ of ~ = -1.0932155, resulting in a averaged
square residual error 1.77 × 10−5. For 7th-order
approximation we found ~ = −1.08382 and aver-
aged square residual error 2.05×10−8. In Table 3,
we compare the absolute errors of the homotopy
analysis method (n = 4 and n = 7) with those
of the Runge-Kutta method of [1,8], variational
iteration method [8] with ni = 4 and the one-leg
θ method [5,6] with θ = 0.8, where h = 0.01 and
homotopy perturbation method [9] with n = 5.

Table 2. Comparison of absolute errors for Example 2.

t R-K [8] One-leg-θ [8] VIM [8] HPM [9] HAM (n = 6) HAM (n = 10)
0.1 1.00E-3 6.10E-3 1.67E-4 1.67E-4 2.82E-6 2.25E-8
0.2 2.02E-3 2.58E-2 7.15E-4 7.15E-4 1.22E-5 9.81E-8
0.3 3.07E-3 6.47E-2 1.73E-3 1.72E-3 3.03E-5 2.44E-7
0.4 4.17E-3 1.37E-1 3.30E-3 3.30E-3 6.07E-5 4.90E-7
0.5 5.34E-3 2.81E-1 5.55E-3 5.55E-3 1.08E-4 8.69E-7

(a) Sub-figure 3 (b) Sub-figure 4

Figure 2. ~ curves for 6th-order of approximation of Example 2. (a) and 6th-order averaged
square residual error for Example 2. (b).
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Table 3. Comparison of absolute errors for Example 3.

t R-K [8] VIM [8] HPM [9] HAM (n = 4) HAM (n = 7)
0.1 4.97E-5 2.46E-8 2.50E-8 3.35E-10 1.20E-13
0.2 4.43E-4 4.03E-7 4.09E-7 5.03E-9 2.00E-12
0.3 1.57E-3 2.09E-6 2.12E-6 2.36E-8 1.10E-11
0.4 3.85E-3 6.80E-6 6.90E-6 6.84E-8 3.00E-11
0.5 7.78E-3 1.71E-5 1.73E-5 1.50E-7 1.00E-10
0.6 1.39E-2 3.64E-5 3.69E-5 2.76E-7 2.00E-10
0.7 2.28E-2 6.96E-5 7.06E-5 4.42E-7 5.00E-10
0.8 3.53E-2 1.23E-4 1.24E-4 6.37E-7 7.00E-10
0.9 5.19E-2 2.03E-4 2.06E-4 8.47E-7 1.10E-9
1.0 7.34E-2 3.21E-4 3.25E-4 1.07E-6 1.60E-9

(a) Sub-figure 5 (b) Sub-figure 6

Figure 3. ~ curves for 4th-order of approximation of Example 3. (a) and 4th-order averaged
square residual error for Example 3. (b).

5. Conclusion

In this paper, we have demonstrated the suitabil-
ity of the homotopy analysis method with resid-
ual error function for solving neutral functional-
differential equations with proportional delays.
We obtain high-accuracy approximate solutions
after only a few iterations. The numerical results
also show that the HAM with residual error func-
tion is more effective than Runge-Kutta method,
HPM, VIM and other methods for solving NFDEs
with proportional delays.
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