
 

75 
 

     Corresponding Author: rawatkamini@gmail.com 

 

 

 

 

 

A Modified Cellular Automaton Model in Lagrange Form                     

with Velocity Dependent Acceleration Rate  
 

K. Rawat
a

, V. K. Katiyar
b
 and P. Gupta

 c
 

 
a

Department Mathematics, Indian Institute of Technology, India-247667 

Email: rawatkamini@gmail.com 
b

 Department Mathematics, Indian Institute of Technology, India-247667 

Email: vktmafma@iitr.ernet.in 
c 
Department Mathematics, Indian Institute of Technology, India-247667 

Email: pratibhag@rediffmail.com 

 

(Received March 23, 2011; in final form June 23, 2011) 

 
Abstract. Road traffic micro simulations based on the individual motion of all the involved 

vehicles are now recognized as an important tool to describe, understand and manage road 

traffic. With increasing computational power, simulating traffic in microscopic level by 

means of Cellular Automaton becomes a real possibility. Based on Nasch model of single 

lane traffic flow, a modified Cellular Automaton traffic flow model is proposed to simulate 

homogeneous and mixed type traffic flow. The model is developed with modified cell size, 

incorporating different acceleration characteristics depending upon the speed of each 

individual vehicle. Comparisons are made between Nasch model and modified model. It is 

observed that slope of congested branch is changed for modified model as the vehicle that 

are coming out of jam having dissimilar acceleration capabilities, therefore there is not a 

sudden drop in throughput near critical density c . 
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1. Introduction 

Traffic flow problems have attracted 

considerable attention of researchers because 

of manifold increase in traffic density in 

cities [1]. Broadly there are two different 

approaches for dealing with traffic flow. 

Macroscopic traffic simulation models 

incorporate analytical models that deal with 

average traffic stream characteristics such as 

flow, speed, density etc. On the other hand 

microscopic traffic simulation models 

consider the characteristics of individual 

vehicles, and their interactions with other 

vehicles in traffic stream. These models 

required a large computational power to deal 

with the realistic traffic flow. Cremer and 

Ludwing introduced a new type of 

microscopic model for vehicular traffic, 

which is capable of reproducing measured 

macroscopic behavior [2].  

This is known as Cellular Automata (CA) 

model. Evolutionary properties of CA are the 

properties that are affected by rules. Out of 

256 different rules, the rule-184 CA, which 

is one of the elementary CA, was proposed 

by Wolfram [3]. Rule-184 CA model is 

known to represent the minimal model for 

movement of vehicles in one lane and shows 

a simple phase transition from free to 

congested state of traffic flow.  

 The first traffic cellular automaton model, 

Nagel-Schrekenberg model known as Nasch 

model, successfully reproduces typical properties 

of real traffic [4]. There has been continuous 
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evolution of CA models for traffic flow to 

examine and study the various traffic features 

under realistic conditions [5]. In recent year CA 

models have been used to model complex traffic 

systems such as ramps and crossings [6] and 

signal controlled traffic system [7, 8]. In the 

recent years some attempts have made to 

implement CA models for heterogeneous traffic 

by modifying cell size and updating CA rules for 

traffic flow [9]. Mallikarjuna and Rao studied the 

suitability of different available CA based 

models for mixed traffic [10]. Reduced cell size 

is used to incorporate real traffic situations in a 

single lane traffic CA model in our previous 

paper [11]. The study shows the effect of s-t-s 

rule along with anticipation rule over throughput 

in Nasch model with reduced cell size and 

variable acceleration rate.  

 In the present paper single lane traffic 

Cellular Automaton model based on Nasch 

model is discussed. Cell size is reduced and 

acceleration rate is changed such that it depends 

upon the speed of each individual vehicle. Under 

this fine discretization we can describe the 

vehicle moving process more properly.  The cell 

size is actual vehicle dimension plus the safe 

distance with the leading vehicle in jam 

condition. Physical length of these vehicles is 

given in Table 1. Slow-to-Start rule used in 

Lagrange model for single lane traffic simulation 

is implemented to velocity dependent 

acceleration rate CA model [12]. S-t-s rule in 

Lagrange model is applicable to all vehicles in 

traffic stream. We investigate the effect of s-t-s 

rule over throughput and a comparison between 

Nash model and modified model is carried out 

using simulation. 

 

Table 1. Physical length of vehicle 

 

 

 

 

 

 

2. Basic concept and early work 

2.1. Cellular Automata 

CA consists of finite, regular grid of cells, each 

in one of the finite number of states. The grid can 

be of any number of finite dimensions. For each 

cell there is neighborhood that locally determines 

the evolution of the cell. The size of the 

neighborhood is the same for each cell in the 

lattice. A one-dimensional Cellular Automata 

consists of a line of sites with each site carrying a 

value 0 or 1. The site value evolves 

synchronously in discrete time steps according to 

the value of their nearest neighborhood. These 

values are updated in a sequence of discrete time 

space according to finite fixed rules. Each time 

the rules are applied to the whole grid and a new 

generation is produced. With the help of Cellular 

Automata microscopic and macroscopic traffic 

flow parameters and their interaction can be 

studied, driver’s behavior can be incorporated 

properly through probability. 

 

2.2. Nagel Schrekenberg model for traffic flow 

Nagel-Schrekenberg model popularly known as 

Nasch model is one dimensional Cellular 

Automata model for single lane. This model 

explicitly includes a stochastic noise terms to it’s 

rules. In Nasch model road is subdivided into 

cells of same size ( x =7.5 meters). Each cell is 

either empty or occupied by 1 vehicle with a 

discrete speed v  varying from 0 to maxV , with 

maxV  the maximum speed of vehicle. In this 

model vehicles are assumed as anisotropic 

particles, i.e. they only respond to frontal stimuli. 

The motion of the vehicle is described by the 

following rules: 

 

Rule1: Acceleration: vi
(1)=min vi

(0)+1,Vmax  

Rule2: Deceleration: vi
(2)=min vi

(1), xi+1
t- xi

t-1  

Rule3: Randomization: vi
(3)=max vi

(2)-1, 0  

With randomization parameter p ; 

Rule4: Movement: xi
t+1= xi

t+ vi
(3) 

 

 

 

 

S.No. 
Type of 

vehicle 

Actual 

length in 

meters 

Design 

length in 

meters 

Cell 

size 

in 

cells 

1. 
Light 

vehicle 
3.72 6 10 

2. 
Heavy 

vehicle 
7.5 10 20 
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 Where 11 

t

i

t

i xx , the number of empty 

cells in front of i
th

 vehicle at time t  and is called 

distance headway.
t

ix  is the position of the i
th
 

vehicle at time t . A time step of sec,1t  the 

typical reaction time of driver with a maximum 

speed maxV = 5 cells/time step i.e.135 Km./Hour 

is taken in this model. Nasch model contains the 

rule of randomization that introduces stocasticity 

in the system. At each time step a random 

number between 0 and 1 is drawn from a uniform 

distribution. This number is then compared with 

a stochastic noise parameter p between 0 and 1; 

as a result there is a probability p , that a vehicle 

will slowdown it’s velocity by 1. 

 

2.3. Slow-to-start rule in Nasch model 

In order to obtain a correct behavioral picture of 

traffic flow breakdown and stable jam, it is 

necessary that a vehicle’s minimum headway or 

reaction time should be smaller than it’s escape 

time from a jam. This reduced outflow can be 

accomplished by making vehicles wait a short 

while longer before accelerating again from 

stand still. As such they are said to be slow-to 

start. 

 

2.3.1 Takayasu Takayasu (T
2
) model 

Takayasu and Takayasu proposed TCA model 

that incorporated a delay in acceleration for 

stopped vehicles [13]. According to s-t-s rule 

given in this model, a vehicle with a space gap of 

just one cell will remain stop in next time step 

with slow-to-start probability q .In T
2
 model, 

Acceleration rule i.e. rule 1 of Nasch model is 

modified as: 

 

If  vi
(0)=0  and  xi+1

t- xi
t-1=1 

 

Rule1: Acceleration: vi
(1)=min vi

(0)+1,Vmax  

 

with probability (1- q ) 

 

The rest of the features of the T
2
 model are 

exactly the same as NaSch model. 

 

2.3.2 Benjamin-Johnson-Hui model 

Benjamin, Johnson and Hui constructed 

another type of TCA model, using a s-t-s that 

is temporal in nature [14]. In this model 

Nasch model is extended with a rule that 

adds a small delays to a stopped vehicle that 

is pulling away from the downstream front of 

a queue. According to this model, only those 

vehicles which stopped due to a vehicle 

ahead of them and is not stopped due to 

randomization will remain stopped in next 

time step with a s-t-s probability q . 

Mathematicaly this rule is represented as: 

 

If  vi
(0)=0  and  xi+1

t- xi
t-1-1=0 

 

vi
(1)=vi

(2)=vi
(3)=0 with s-t-s probability 𝑞 

            

2.3.3 Velocity Dependent Randomization 

(VDR) Model 

In VDR model, the s-t-s rule is generalized by 

applying an intuitive s-t-s rule for stopped 

vehicles [15]. According to VDR model only 

those vehicles which had 0 speed in previous 

time step either blocked by leading vehicle or 

due to random deceleration will remain 

stationary in next time step with s-t-s probability

q . Depending on their speed, vehicles are 

subject to different randomizations. Typical 

metastable behavior results when s-t-s 

probability q is much higher than braking 

probability p , meaning that stopped vehicles 

have to wait longer before they can continue 

their journey. In VDR model, to implement slow-

to-start effects, rule 3 i.e. randomization rule of 

Nasch model is modified as: 

 

Rule3: Randomization: If  vi
 0  t-1 =0 

 

vi
 3  t =0  

                          

Rest of the rules are same as in Nasch model. 

 

3. Modified cell size and variable acceleration 

rate 

In Nasch model and other previous models a 

definite cell size of 7.5 meter was taken for all 

type of vehicles and acceleration rate is assumed 

to be constant i.e. 1 cell/sec
2  

for all type of 

vehicles. This means all the vehicles on the road 

have the same acceleration rate, which does not 

correspond with real situation. When modeling 

realistic traffic stream that consists of different 
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type of vehicles, having variable speed and 

acceleration, finer discretisation is useful. Cell 

size is reduced and acceleration rate is chosen 

such that it depends upon the speed of each 

individual vehicle. Under this fine discretization 

we can describe the vehicle moving process more 

properly. Cell size is reduced to 0.5 meters and a 

light vehicle occupies 10 cells with 60Vmax   

cells which correspond to 108 km/h whereas 

heavy vehicle occupies 20 cells with  40Vmax   

cells which corresponds to 72 km/h. With these 

characteristics, distance headway for i
th 

light 

vehicle is  101 

t

i

t

i xx  and for i
th
 heavy 

vehicle is 201 

t

i

t

i xx .  

Rule 1 i.e. acceleration rule of Nasch model is 

modified as: 

 

}maxVa,
(t)
imin{v

δt/3)(t
iv:onAccelerati:Rule1 


  

Where acceleration a is determined as follows: 

If 
thn vehicle is light vehicle:  

 

a     

2

max
V

nv   if   ,

30

max
V

2

max
V

nv

4

max
V

if,

20

max
V

4

max
V

nvif,

15

max
V







 

 

 

If 
thn vehicle is heavy vehicle:  

 

 

a     

4

max
V

nvif,

60

max
V

4

max
V

nvif,

30

max
V





 

 

 

 

 

4. Velocity dependent acceleration rate CA 

model with implementation of s-t-s rule 

In section 3 different type of s-t-s rules that have 

been implemented to Nasch model is discussed. 

Here we investigate the effect of implementation 

of s-t-s rule given in Lagrange model with 

anticipation parameter 1S  over throughput in 

a stochastic CA model with reduced cell size and 

velocity dependent acceleration rate. We choose 

s-t-s rule described in Lagrange traffic flow 

model in the present study for the reason that it 

does not affect only stationary vehicles but all 

the vehicles with s-t-s probability q .  

 

Rule1: Acceleration: vi
(1)=min vi

(0)+a,Vmax  

Rule2(a): Slow to Start Rule: 

 vi
(2)=min  vi

(1), xi+1
t+1- xi

t-1-sz  

with s-t-s probability q  

 

Rule2(b): Deceleration Rule: 

 vi
(3)=min vi

(2), xi+1
t- xi

t-sz  

with braking probability p  

 

Rule3: Randomization Rule:  

vi
(4)=max vi

(3)-1, 0  

 

Rule4: Movement: xi
t+δt= xi

t+ vi
(4) 

 

In these rules 
t

ix  is Lagrange variable that 

denotes the position of i
th
 vehicle at time t. sz is 

the size of vehicle in term of cells whether it is 

light or heavy vehicle and is given in table 1. We 

use parallel scheme where these rules are applied 

all vehicles simultaneously. 
)4(

iv  becomes 
)0(

iv  in 

the next time step. Rule 2(a) states that slow to 

start effect is on with probability q . 
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5. Numerical Simulation 

The basic feature of this model is the relation 

between density and flow i.e. vq  , where   

is the average velocity. Under the periodic 

boundary conditions, the number of vehicles N  

is conserved. The road is divided into L  

identical cells. In the present model cell size is 

modified. The length of each cell is 0.5 meters. 

The time interval t  is taken 1 second, the 

typical driver’s reaction time. In our simulation 

process, the number of cells is 10,000 i.e. 

equivalent to a 5 Km .road. When we started to 

perform numerical simulation, all vehicles with 

given density were initially arranged randomly 

on the whole lane. Figure 1 is the flow chart 

showing how the vehicles set their velocity 

according as the new updated rules. After a 

transient period of 10,000 time steps, we 

recorded value of traffic flow q  (No. of vehicles 

moving ahead per unit time step) at different 

densities    for various values of q  (slow to 

start probability) keeping braking probability 

.1.0p   

The computational formulas used in numerical 

simulation are given as follows: 

 

𝑝 𝑖 =
1

𝑇
  𝑛𝑖 𝑡                             (1)

𝑇

𝑡=1

 

 

𝑞 𝑖 =
1

𝑇
  𝑚𝑖 𝑡                             (2)

𝑇

𝑡=1

 

 

 

 

 

 

 

Figure 1. Flow chart for setting vehicle 

movement 

 

 

         Start 

Get velocity by applying modified acceleration rule 1 

Get velocity by applying s-t-s rule 2 (a) 

  Y 

Get velocity by applying deceleration rule 2 (b) 

      Is Rand ( ) < q 

 

Finish 

N 

Generate random number 

      Is Rand ( ) < p 

 

Generate random number 

Move forward with updated velocity by applying rule 4 

Get velocity by applying randomization rule 3 

  Y 

N 

Input v, Vmax 
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Figure 2 (a). Flow-density relationship of 

modified CA model at different values of s-t-s 

probability q . 
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Figure 2 (b). Flow-density relationship of Nasch 

CA model at different values of s-t-s probability q .  

 

Where 1)( tni  if i
th
 vehicle moves ahead at a 

given time step other wise 0. Density and flow is 

measured averaged over a time period ofT . 

 

 

6. Results and Discussions 

Figure 2(a) is the fundamental diagram of 

modified CA model with homogeneous traffic 

which incorporates slow-to-start behavior in 

single lane traffic flow. For comparison 

fundamental diagram of Nasch model is shown 

in Figure 2(b). Parameter p , probability of 

stochastic braking that measures intrinsic 

fluctuations among vehicles is taken 0.1. When 

8.0q , free flow break down occurs at low 

density ( 14.0 ).  For s-t-s probability

0.0q , the point of maximum throughput 

shifted to density 18.0 . With higher values 

of parameter q , there will always be jam in high 

density region, which does not contribute to flux, 

as a result flow decreases linearly with density 

 .  Figure 2(b) shows steeper free flow 

branches in comparison to Figure 1 (a) because 

of variable acceleration rate. Vehicles that are 

coming out of jam have variable acceleration 

rates depending upon their speed. It is also found 

by fundamental diagrams of two models, that 

modified model leads lower value of maximum 

flow than obtained from Nasch model. It is due 

to that for modified model maximum speed limit 

maxV  is 60cells/s which corresponds to a speed 

limit of 108 km/h. Whereas in Nasch model this 

maximum speed limit maxV  is 5 cells/s which 

corresponds to 135 km/h. 

Figure 3 (a) and 3(b) are the plot of average 

velocity against density for modified model with 

homogeneous traffic and Nasch model 

respectively at different values of s-t-s 

probability q  . In absence of s-t-s rule, average 

speed converges to maximum speed maxV in free 

flow regime. Once density   surpasses critical 

density ( 18.0c ), average speed becomes 

decreasing function of density. Speed variance 

near critical density is observed more in case of 

Nasch model than in modified model. This is 

again dissimilar acceleration rate of vehicles 

coming out from a jam. Fall in average velocity 

near critical density occurs more drastically in 

Nasch model than in modified model. The spatio 

temporal pattern with different values of 

parameter q is presented in Figure 4(a)-4(f). It is 

found that as q  increases, small jams on the road 

transform into wide jams. This is to say that 

more vehicles will stop forming successive jams 

and free flow transforms into stop and go jam. 
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With further increase in density, there are series 

of jam forming on the road increases. In high 

density region, as outflow from a jam is not very 

large, the small width jams can not dissolve and 

merge into a wide jam.  

Throughput and maximum flow maxq  of single 

lane decreases in presence of 10% heavy vehicle 

as shown in Figure 5(a). It is attributed to the 

large size of heavy vehicle and their low speed 

limit and therefore low acceleration rate. Fall in 

Average speed of traffic stream observed even in 

free flow regime as shown in Figure 5 (b). This 

effect is due to mixed type traffic. Same effect is 

observed in spatio temporal pattern given in 

Figure 6(a)-6(d). Jams become wider because of 

low speed limit of heave vehicles.  
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Figure 3 (a). Average velocity-density 

relationship of modified CA model at different 

values of s-t-s probability q . 

 

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

A
v
e
r
a
g
e
 V

e
lo

c
it

y
(C

e
ll

s
/s

)

Density

 q = 0.0

 q = 0.1

 q = 0.3

 q = 0.5

 q = 0.7

Figure 3 (b). Average velocity-density 

relationshipof Nasch model at different values of 

s-t-s probability q . 
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                                                        Space 

 

 

 

 

 

 

 

 

                                    

(a) 0.0q   
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(b) 0.5q   

 

                     

 

 

 

 

 

 

 

(c) 0.8q   

 

Figure 4. Spatio temporal pattern of simulation 

of velocity dependent acceleration rate CA 

model with one type of vehicle at 0.34ρ   
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Figure 5. Spatio temporal pattern of simulation  

Of velocity dependent acceleration rate CA 

model with one type of vehicle.at 0.57ρ   
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Figure 6 (a). Flow-Density Relationship of 

modified CA model with 10% heavy vehicle at 

different values of s-t-s probability q . 
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Figure 6 (b). Average velocity-Density 

relationship of modified CA model with 10% 

heavy vehicle at different values of s-t-s 

probability q .       

 

                                                                

7. Conclusion 

Effect of slow-to-start behavior among vehicles 

on a single lane road using one dimensional TCA 

model based on Nasch model is discussed in 

present paper.  Cell size is reduced and velocity 

dependent acceleration rate is taken into account 

to simulate homogeneous and mixed type traffic 

flow. Simulation result shows that S-t-s rule 

incorporated in present study along with variable 

acceleration rate can reproduce jammed flow in 

high density region. S-t-s effect over traffic flow 

is realistic in the manner that it affects all the 

vehicles. Comparisons have been made between 

modified model and Nasch model and traffic 

flow mechanism has been analyzed. Furthermore 

it is observed that fundamental diagram obtained 

by numerical simulation of Nasch model are 

steeper than that of modified model indicating 

that vehicles coming out from a jam have 

variable acceleration capabilities depending upon 

their speed, as a result there is not a sudden drop 

in throughput near critical density. Present model 

is rather powerful in dealing with realistic traffic 

flow phenomena, because it takes into account 

velocity dependent acceleration rate. Simulating 

traffic flow by small cell size CA model captures 

minute variability in real traffic flow.  
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Figure 7. Spatio temporal pattern of simulation 

of modified CA model with 10% heavy vehicle 

at 0.4ρ  . 
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Figure 8. Spatio temporal pattern of simulation 

of modified CA model with 10% heavy vehicle 

at 0.6ρ        
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