An International Journal of Optimization
and Control: Theories & Applications
Vol.1, No.1, pp.3-15 (2011) © IJOCTA
ISSN 2146-0957, http://www.ijocta.com

1JOCTA

al

and Contr
uuuuuu & Applications
2010

Solutions to Diffusion-Wave Equation in a Body with a Spherical
Cavity under Dirichlet Boundary Condition

Yuriy Povstenko®?

“Institute of Mathematics and Computer Science,
Jan Dhugosz University in Czestochowa-POLAND
Email: j.povstenko@ajd.czest.pl

bDepartment of Computer Science,
European University of Informatics and Economics (EWSIE)
in Warsaw-POLAND

(Received March 21, 2011; in final form May 27, 2011)

Abstract. Non-axisymmetric solutions to time-fractional diffusion-wave equation with a source
term in spherical coordinates are obtained for an infinite medium with a spherical cavity. The
solutions are found using the Laplace transform with respect to time t, the finite Fourier trans-
form with respect to the angular coordinate ¢, the Legendre transform with respect to the spatial
coordinate p, and the Weber transform of the order n+1/2 with respect to the radial coordinate
r. In the central symmetric case with one spatial coordinate r the obtained results coincide with

those studied earlier.
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1. Introduction

Fractional order partial differential equation,
in particular, the time-fractional diffusion-
wave equation are of great interest in studies of
important physical phenomena in amorphous,
colloid, glassy and porous materials, in frac-
tals, percolation clusters, random and disor-
dered media, in comb structures, dielectrics,
semiconductors, polymers, biological systems,
in geology, geophysics, medicine, economy, fi-
nance, etc. (see, for example, Bagley and
Torvik [1], Carpinteri and Cornetti [2], Magin
[3], Mainardi [4, 5], Metzler and Klafter [6, 7],
Povstenko [8], Rabotnov [9, 10], Rossikhin and
Shitikova [11], Uchaikin [12], West et al. [13],
Zaslavsky [14] and references therein).

A survey of results in the field of fractional
diffusion equation can be found in the book
of Kilbas et al. [15] (see also [16]). Different

Corresponding author. Email: j.povstenko@ajd.czest.pl.

3

formulations of the fractional order diffusion-
wave equations were reviewed by Herzallah et
al. [17]. The sequential fractional differential
equations were considered by Miller and Ross
[18], Podlubny [19], Klimek [20], Baleanu et al.
[21]. The asymptotic behavior for the solution
of fractional differential equations in the non-
linear case was studied by Baleanu et al. [22].

At first, we recall the main ideas of fractional
calculus [15, 19, 23]. It is common knowledge
that by integrating n — 1 times by parts the
calculation of the n—fold primitive of a func-
tion u(t) can be reduced to the calculation of
a single integral
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where n is a positive integer, I'(n) is the
gamma function.

The notion of the Riemann—Liouville frac-
tional integral is introduced as a natural gen-
eralization of the repeated integral I™u(t) writ-
ten in a convolution type form:

Pu(t) = F(la) /O (t =) u(r)dr, a> 0.
(2)

The Riemann—Liouville derivative of the
fractional order « is defined as left-inverse to
the fractional integral I, i.e.

D%, u(t) = DM I"ou(t)

_ﬁ 1/t(t_ )n—a—l ( )d
Tan [ Tn—a) Jo & Hrer|s
n—1<a<n.

3)

There are other possibilities to introduce
fractional derivatives. Ome of the alternative
definitions was proposed by Caputo:

u(t) = I~ Dru(t)

1 ! n—a—1 dnu(T>
- T(n—a) /0 (t=7) drn an,

n—1<a<n.

(4)

The Caputo fractional derivative is a regu-
larization in the time origin for the Riemann—
Liouville fractional derivative by incorporating
the relevant initial conditions [24]. In this pa-
per we shall use the Caputo fractional deriva-
tive omitting the index C'. The major utility of
this type fractional derivative is caused by the
treatment of differential equations of fractional
order for physical applications, where the ini-
tial conditions are usually expressed in terms
of a given function and its derivatives of inte-
ger (not fractional) order, even if the governing
equation is of fractional order [19, 25].

If care is taken, the results obtained using
the Caputo formulation can be recast to the
Riemann-Liouville version and vice versa ac-
cording to the following relation [23]:

Dippu(t) = Déu(t)

+7§tkauk(0+) (5)
—I(k—a+1) ’

n—1<a<n.

Previously, in studies concerning the time-
fractional diffusion-wave equation in cylindri-
cal or spherical coordinates only one or two
spatial coordinates have been considered [8,
16, 26-43]. If the mass (or heat) exchange
between a body and an environment is uni-
form over the whole surface, then the axisym-
metric or central-symmetric problems are ob-
tained. In reality, an assumption of uniformity
of exchange with environment (an assumption
of axis-symmetry or central-symmetry) is only
a rough approximation. In this paper, we in-
vestigate solutions to equation

(6)

in an infinite medium with a spherical cavity
in spherical coordinate system in the case of
three spatial coordinates r, u, and ¢.

Consider the time-fractional diffusion-wave
Eq.(6) with a source term in spherical coordi-
nates r, 6, and ¢:

0%u u 2 ou 1 0/ ou
W:a[aﬂ+ra¢~+ﬂsmeae(81neag
@ gj;} +Q(r,0,p,1), (7)
R<r<oo, 0<6<m,
0<@<2m, 0<t<oo,
0<a<2.

Change of variable y = cos € in Eq.(7) leads
to the following equation

)
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@_a @_Fgaiu_i_ig (1_ 2)

ote | or2  ror  r?2ou a ou
n 1 0%u
r2 (1= p?) 0p?

}+Q<r,u,¢,t>, (8)

R<r<oo, —-1<pu<l,
0<p<2r, 0<t< oo,
O0<a<2.

For Eq.(8) the initial and boundary condi-
tions are prescribed:

t=0: u=f(r,p,p), 0<a<2, (9)
ou

t=0: Zr=Frue), 1<as2 (10)

r=R: u=g(ue,t), 0<a<2 (11)

The solution to the initial-boundary-value
problem Egs.(8)-(11) can be written in the fol-
lowing form

’ =/Ot/02ﬂ/_11/:cz<p,<,w)

X gQ(T,M,QO7p,C,¢,t - 7-) ,02 dpdqude

+/0t/02w/llg<c,¢,r>

X gg(r?/J’SO7C7 gbat_’r) dcdﬁde (12)

+/02W/_11/:f(p,é,¢)

x G(r, 1, 0, p,C, ¢, t) p* dpdC dg

[ Fes

X gF(Ta W, o, p, C? ¢> t) p2 d,O dC d¢

Further, we investigate the fundamental
solutions Gq(r, i, @, p,(, ¢,t) to the source
problem (section 3), G¢(r,u, ¢, p, ¢, ¢,t) to
the first Cauchy problem (section 5) and

Gr(r, p, @, p,C,0,t) to the second Cauchy
problem (section 6) under zero Dirichlet
boundary condition as well as the fundamen-
tal solution Gy(r, 1, ,(,¢,t) to the Dirichlet
problem under zero source term and zero ini-
tial conditions (section 4).

2. Basic tools

Integral transforms technique allows us to re-
move the partial derivatives from the consid-
ered equation and to obtain the correspondent
algebraic equation in a transform domain. In
this section, we recall integral transforms used
in the paper (for details see, e.g., books of Deb-
nath and Bhatta [44], Doetsch [45], Galitsyn
and Zhukovsky [46], Ozigik [47], and Sneddon
[48]). All the integral transforms are denoted
by the asterisk.

2.1. Laplace transform

The Laplace transform is defined as

LA{u(t)} =u*(s) = /Ooo u(t)e tdt, t >0,
(13)

where s is the transform variable.
The inverse Laplace transform is carried out
according to the Fourier—-Mellin formula

L7 {u(s)} = u(t)

1 c+1i00
=5 u*(s)etds, t>0,
i

(14)

where ¢ is a positive fixed number. The trans-
form u*(s) is assumed analytical for Res > ¢,
all the singularities of w*(s) must lie to the
left of the vertical line known as the Bromwich
path of integration.

The Laplace transform rule for the fractional
integral Eq.(2) has the following form:

L{Pu(t)} = Sia w(s). (15)

The Riemann-Liouville fractional derivative
of the order n—1 < a < n for its Laplace trans-
form requires knowledge of the initial values of
the fractional integral I~ and its derivatives
of the order k =1,2,...,n—1 [15, 23]
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LA{Dgru(t)} = s%u*(s)

n—1
- Z Dkfn_au(0+)8n_l_k.
k=0
(16)

The Caputo fractional derivative of the or-
der n — 1 < a < n for its Laplace transform
rule requires the knowledge of the initial values
of the function u(t) and its integer derivatives
of order k=1,2,...,n—1

du(t) ] . .
E{ o }—s u*(s)
n—1 (17)
— Z u(k)(0+)so‘_1_k.
k=0

Below the following formula for the inverse
Laplace transform [15, 19, 23]

[ 8278 _ N
£ 1{sa+b}:t6 lEavﬁ(_bt ) (18)

is used. Here FE,g(z) is the generalized
Mittag—Leffler function in two parameters «
and B, which is described by the series rep-
resentation [49]

n

> z
EO[,B(’Z) = n50w7 a > 0, B > 0
(19)

2.2. Finite Fourier transform for
2m-periodic functions

Consider series development of the 27-periodic
function in the interval [0, 27]

1 > .
u(p) = 500 + Z (@m cos mep + by, sinme) ,

m=1
(20)
where
1 27
am = / u(n) cos mn dn,
™ Jo
1 27
b, = / u(n) sin ma dn, (21)
™ Jo
m=20,1,2,...

Now we insert the coefficients (21) into the
Eq.(20), thus obtaining

2w
u(e) = 5o [ utndy

[e=]

3| -

oo 2
+23° [ utw) costmte =l

m=1
(22)

or

1 0 , 2
u(p)=— > /0 u(n) cosfm(p —n)] dn,
m=0
(23)
where the prime near the summation symbol
denotes that the term with m = 0 should be
multiplied by 1/2.

Eq.(23) can be considered as the integral
transform

Flu(p)} =u(p,m)

27
:/0 u(n) cos[m(p —n)]dn,

and its inverse

F ut(pm)} = ule) = = 3w (o m).

This transform is used for solving equations
in polar, cylindrical, and spherical coordinates,
as the following equation

f{dQ“} — —m?u*(p,m)

a2 (26)

is fulfilled.

2.3. Legendre transform

The Legendre transform is applied to solve
equations in spherical coordinates and reads:

P{u(p,m)} = u*(n,m)

(27)

1
= [ i) PG
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where P"(u) is the associated Legendre func-
tion of the first kind of degree n and order m.
The inverse Legendre transform has the form

P {u* (n,m)} = ulp,m)

=241 (n-m) .

n>m.
(28)

The importance of this integral transform
results from the following equation:
'}
(29)

0 9y Ou m?
Plan |0 g T

= —n(n+ 1)u*(n,m).

2.4. Weber transform

The Weber integral transform of order v is de-
fined as

Wilu(r)} = u™(§)
- (30)
= / K, (r,R,&)u(r)rdr
R

having the inverse

W, Hu' (©)} = u(r)

N /ooo K, (r, R, €)u*(€) £ d€.
(31)

The significance of the Weber transform for
problems in the domain R < r < oo is due to
the following formula

d*u 1du 2 9 x
WV{(W+T(17“_7"QU}__§U (&)

+Ru(r) 2B B8 g;R’ 3
du(r)
dr

_RKV(Rv Ra 5)

(32)

The specific expression of the kernel
K,(r,R,€) depends on the boundary condi-
tions at » = R. For Dirichlet boundary condi-
tion considered in the present paper, the kernel
is chosen as

KI/(T7 R? 5)

L OYu(RE) — Yy (rE) Iy (RE) D

© VT2(RE) + Y2(RE)

9

where J,(r) and Y, (r) are the Bessel functions
of the first and second kind, respectively.
Since

aI{ll(rv Ra 5)
or

_ L (rYu(RE) — Y, (r€) o (RE) ¢
VI2(RE) + Y2(RE)

(34)

and (see Galitsyn and Zhukovsky [46],
Abramowitz and Stegun [50])

Ju(2)Y, (2) = Yu(2)J, (2) = —, (35)
then
d?u  1d 2 .
R e

u(R).

7 /T2(RE) + V2(RE)

3. Fundamental solution to the
source problem

Consider the time-fractional diffusion equation
with a source term being the time and space
delta pulse applied at a point with the spatial
coordinates p, ¢, and ¢
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*Gq _ ,[PGq 299
ot or2 r Or

L19 [(1—u2) ag@]

r2 op op
+r2(11—M2) 8825?} 7
+%5(r_p)5(u—4)5(s0—¢) 6+(1),
R<r<oo, —1<p<l1,
0<p<2rm, 0<t<oo
0<a<2,

under zero initial and boundary conditions

t=0: Go=0, O<a<2 (38
9G4

t=0: —=0 1 <2 39
at Y <a—7 ( )

It should be noted that the three-
dimensional Dirac delta function in Carte-
sian coordinates d(x)d(y)d(z) after pass-
ing to spherical coordinates takes the form
122 64+(r), but for the sake of simplicity we
have omitted the factor 47 in the solution (12)

as well as the factor -~ in the source term in

4m
Eq.(37).

In the source term, we have inserted the con-
stant multiplier ()y to obtain the non dimen-
sional quantity Gg (see Eq.(55)) which is dis-
played in Figures for non dimensional values of
parameters describing the problem.

Let us introduce the new looked-for function
v = T Gg for which we have the following
initial-boundary-value problem:

o _ [P Lo 1
are N2 roar w2’
1 0 oy OV
— (1= -
+'r20u[( Mﬁu]
1 0%v
41
T2 6’@2} ()
Qo
+ =575 0(r—p)o(u—C)6(p — ¢) 6,.(1),
r3/
R<r<oo, —-1<pu<1,
0<p<2r, 0<t<o0
0<a<?2
and
t=0: v=0, 0<a<?2, (42)
Ov
=0: —= 1 <2 4
t=0: — =0, <a<2, (43
r=R: v=0, 0<a<2. (44)

Now we shall use the integral transform
technique. It should be emphasized that the
order of integral transforms is important. Ap-
plication of the Laplace transform (13) with
respect to time t gives

o s {62v*+1au* 1
SV =a

*

orz " r Or  4r? Y

1 0 9y OV*
*ﬂauﬁl‘“)au}

1 9%v* }
+

+7§/025(7“—p)5(u—05(90_¢)’
(45)
r=R: v =0 (46)
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The use of the finite Fourier transform (24)
with respect to the angular coordinate ¢ al-
lows us to remove the second derivative with
respect to this coordinate according to Eq.(26)

N Or? r Or 4r2
19 o O™

T o [(1 ) B ]

m2 )k

) o
Qo .

+ —75 0(r —p) d(p — C) cos[m(p — )],
r3/

(48)

The Legendre transform (27) with respect
to the spatial coordinate p taking into account
Eq.(29) leads to

82’1}*** 1 av*** (n+ 1/2)2
o kkx L B .
S A R r2 v
Qo 5 pm
+ 373 00 = p) Py(C) cosm(p — @),
(49)
r=R: v™ =0 (50)

To eliminate the differentiation with respect
to the radial coordinate r» we apply the Weber
transform (30) of the order n+1/2 with respect
to this coordinate. Thus in the transforms do-
main we get

kkskok
v =

Qo m 1
% Py (¢) cos[m(p — )] m

y Tns1/2(P8) Yog1/2(RE) — Yoy1/2(0€) Jny1/2(RE)
T2 1R + Y2, o(RE)

(51)

After inversion of integral transforms we
gain
Qo i zn:/2n+l (n—m)!
T A= 2 (n+m)!

X Pyt (n) By (C) cos[m(p — ¢)]

Go =

/oo tafl Ea,a (_a§2ta)
X 2 2
0 Jn+1/2(R£) + Yn+l/2(R£)

%[ /2(p) Va1 (RE)
— n+1/2(p€)Jn+1/2(R£)}
x [Jn+1/2(7“§)Yn+1/2(R§)

~Yu1/2(r€) Tns1/(RE)| € .
(52)

In the case m = 0, n = 0, taking into ac-
count that the Bessel functions of the order
one half can be represented as (see Abramowitz
and Stegun [50])

2r sinr
Jij2(r) = Vo o

(53)
2r cosr
Y] = —/—
1/2(7“) T r )
from (52) we get
Gg = 52 |t B (age?)
Trp Jo
(54)

x sin[(p — R)E] sin[(r — R)¢] dé.

The solution (54) coincides with the corre-
sponding fundamental solution to the axisym-
metric problem within the factor 47 which re-
flects integration with respect to p and ¢ over
the surface of the cavity.

Dependence of fundamental solution (52) on
the coordinates r, u, and ¢ is presented in Fig-
ures 1-3. In calculations we have introduced
non dimensional quantities:

_ R3

ta/2
Go = va .

R

Qo

Go, K= (55)
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0.5

0.4
0.3
0.2

0.1

0.0 | |
1.0 1.5 2.0 2.5 3.0 3.5

r/R

Figure 1. Dependence of the fundamental
solution Gg(r, 4, @, p, ¢, ¢, t) on the radial
coordinate r for u=0, p =0, p/R=2,( =0,
¢ =0, and kK = 0.5.

4. Fundamental solution to the
Dirichlet problem

We study the time-fractional diffusion-wave
equation

ot or2 r Or
1 0 oG
= (1= 2 =22
T op “ w) 8#]
1 %G,
T2 awz}’ (%)
R<r<oo, —1<u<l,
0<p<2r, 0O0<t<
0<a<?

under zero initial conditions

t=0: G,=0, O<a<2, (57)

99,

t=20:
ot

=0, 1l<a<2 (58)

and the prescribed boundary value of the
sought-for function

r=R: Gy=god(p—C)d(p—¢)di(t). (59)

1.0

Figure 2. Dependence of the fundamental
solution Gg(r, u, ¢, p, ¢, ¢, t) on the coordinate p
forr/R=2,¢0=0,p/R=2,(=0,¢=0, and

Kk =0.5.

0.5

0 /8 /4 3r/8 /2
@

Figure 3. Dependence of the fundamental
solution Gg(r, 1, ¢, p, ¢, ¢, t) on the angular
coordinate ¢ for r/R=2, 4t =0, p/R=2, (=0,
¢ =0, and kK = 0.5.

The integral transforms technique allows us
to remove the partial derivatives and to get
the expression for the auxiliary function v in
the transforms domain (from here on we use
only one asterisk for all the transforms):

2avV R 1
vt = = 2RD pre) cosfm(p — o) s

. (60)

1
T2 1 (RE) + Y2, o (RE)
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1.6 —

a=1

G, 04

0.0

—0.4

—0.8 | | |
1.0 1.5 2.0 2.5 3.0

r/R

Figure 4. Dependence of the fundamental
solution G4(r, 1, ¢, ¢, ¢,t) on the radial coordinate
rforu=0,¢=0,(=0,¢=0,and K =0.5.

Inversion of integral transforms gives

aVR m
Gy = — Wz\/gl)zz (20 + 1) n+m;

n=0 m=0

x Py () Py (C) cos[m(p — ¢)]

0o tafl Eaa( GEQta)
61
x/o T2 n(RE + Y2, ,(RE) (61)

X [Jn+1/2(7"§)yn+1/2(Rf)

Y1 /2(rE) Jns1 2 (RE) | € €.

In the case m = 0, n = 0 from (61) we get

algo [ o1 2
gg:er?/o t* " Eq o (—ag?t®)

(62)
R)EJEdE.

X sin[(r —

Eq.(62) was obtained in [37] (with accuracy
of the multiplier 47, which reflects integration
over the sphere surface).

Dependence of fundamental solution (61) on
the coordinates r, u, and ¢ is presented in Fig-
ures 4-6 with Gg =tGy/ 90.

1.00

0.00 |
0.0 0.2 0.4 0.6 0.8 1.0

14

Figure 5. Dependence of the fundamental
solution Gy(r, i, ¢, ¢, ¢,t) on the coordinate p for
r/R=2,¢0=0,(=0, =0, and k = 0.5.

5. Fundamental solution to the first
Cauchy problem

In this case we have the equation

Gy _ (261 209G
ot or2 r Or

+lﬁ [(1—/1?) 39}”]

2 0 ou
1 329f}
+ 63
r2 (1 — p?) Op? (63)
R<r<oo, —-1<u<l,
0<p<2r, 0<t<
0<a<?

under delta pulse initial condition

=00 G =205~ 0)atn—)ite -0,
0<a<2, (64)

_o. 995 _
t=0: —L=0 l<a<2 (65

and zero boundary value of the function

r=R: G;=0. (66)
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1.0 I
\ a=0.5

a=1 \
\
0.5 \
\
|
- \
G; 0.0 :
\
\

| a=15
0.5 — }

} o= 1.65

-1.0 \ I | |
0 /8 /4 37/8 /2 1.0 15 2.0 25 3.0 35
7 r/R
Figure 6. Dependence of the fundamental Figure 7. Dependence of the fundamental
solution G4 (r, p, ¢, ¢, ¢,t) on the angular solution G¢(r, i, ¢, p, ¢, ¢,t) on the radial
coordinate ¢ for r/R=2, pn =0, (=0, ¢ =0, coordinate r for u =0, p =0, p/R=2,( =0,
and k = 0.5. ¢ =0, and kK = 0.5.

The solution reads

~fo o 2n41 (n—m)!
gf_ﬁ\/ﬁ)%n; 2 (n+m)

X By () P (C) cos[m(e — )]

oy p—C
0 21 (RE+ Y7 (RE)
X {Jn+1/2(P§)Yn+1/2(R5)
- n+1/2(p§)Jn+1/2(R§):|
X [Jn+1/2(T§)Yn+1/2(Rf)

Y12 Ju 12 (RE) | € dg

with the particular case corresponding to m =

0,n=0:

Gy Jo /0 E, (—ag?t®)

B 2m2rp

x sin[(p — R)E] sin[(r — R)E] dE.

6. Fundamental solution to the
second Cauchy problem

In the case of the second Cauchy problem,
which is considered for the order of time de-
rivative 1 < a < 2, the initial value of the
time derivative of the sought-for function is
prescribed, and for the corresponding funda-
mental solution we have the equation

0°Gr :a{ang L2998

(67) ote Or? r Or
1 8 2 8gF
g |04 G
1 0?Gr
T 2) 04 } (69

R<r<oo, —1<pu<l,

0<p<2r, O0<t<oo

l<a<L?2,

under zero initial condition for the function

(68)

t=0: Gp=0, l<a<?2, (70)

Figure 7 shows dependence of the fundamen-
tal solution (67) on the radial coordinate r.

Here Qf = R3gf/f0.

the delta pulse initial condition for its time de-
rivative
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.. 9Gr I
t=0: —-=50r=p)dk=—0)ilp—2)
l<a<?2, (71)

2.0
15

Gr 10 -
0.5
0.0 ‘

10 15 20 25 30 35

Figure 8. Dependence of the fundamental
solution G (r, 1, v, p,, d,t) on the radial
coordinate r for u =0, 9y =0, p/R =2, ( =0,
¢ =0, and kK = 0.5.

and zero Dirichlet boundary condition
gr =0. (72)

The integrals transform technique leads to

Or =

Fy X~ 2n+1 (n—m)!
W\/ﬁ)r;)mzz:o 2 (n+m)!
X By () Py (€) cos[m(e — )]

y /OO t Eq 2 (—ag?t®)
0 JZ+1/2(R€) + Yn2+1/2(R5)

X [Jn+1/2 (pf)Yn+1/2(R§)
~You1/2(0) T2 (RE)]
X [Jn+1/2 (Tﬁ)Yn+1/2(R§)

V)21 1/ (RE) | € d
(73)

with the particular case corresponding to the
central symmetric case

__f /OotEag(—a£2to‘)
27%rp Jo ’

x sinf(p — R)€] sin[(r — R)¢] de.

Gr
(74)

As above, the remark about the factor 4w
concerns also Egs. (68) and (74).

Figure 8 shows dependence of the fundamen-
tal solution (73) on the radial coordinate r.
The non-dimensional quantity is introduced as
Gr = R3Grp/(tFy).

7. Conclusions

The non-axisymmetric solutions to the source,
Cauchy, and Dirichlet problems for time-
fractional diffusion-wave equation have been
found for a medium with a spherical cavity.
The obtained solutions satisfy the appropriate
initial and boundary conditions and reduce to
the solutions of classical diffusion equation in
the limit @« = 1. In the case 1 < a < 2,
the time-fractional diffusion-wave equation in-
terpolates the standard diffusion equation and
the classical wave equation. For 1 < a < 2 the
solutions to the fractional diffusion-wave equa-
tion feature propagating humps, underlining
the proximity to the standard wave equation
in contrast to the shape of curves describing
the subdiffusion regime (0 < a < 1).

In the case of the ballistic diffusion corre-
sponding to the wave equation (a = 2) the fun-
damental solution to the source problem con-
tains wave fronts described by the Dirac delta
function. Considering the radial direction for
0 < K < (p—r)/R, there are two wave fronts
at r/R = p/R—k and r/R = p/R + k which
are approximated by solutions to the diffusion-
wave equation in the case 1 < a < 2 (Figure
1). The similar situation takes place for coor-
dinates p and ¢ (see Figures 2 and 3): the sec-
ond wave front approximated by the solution
in the case 1 < a < 2 is located symmetrically
for negative values of these coordinates.

The behaviour of the solution towards the
first Cauchy problem is very interesting (Fig-
ure 7). In the case of the ballistic diffusion
there are also two wave fronts at r/R = p/R—k
and r/R = p/R + k but only the solution to
the classical diffusion equation (o = 1) has no
singularity at the point of application of the
Dirac delta pulse. Such a singularity appears
due to behavior of the Mittag-Leffler function
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E.(—x) for large values of the negative argu-
ment

1 1
Eo(—a) ~ s —

0 2 1.
=)z <a<2, a#

(75)

For 0 < a < 1 the solution tends to 400
when r — p, and for 1 < a < 2 the solution
approaches —oo when r — p (Figure 7).

For large values of the negative argument
the asymptotic of the Mittag-Leffler function

1 1
Eao(—2) ~ 5mo— —

1 2
F2—a) <a<2, (76)

results in singularity of the fundamental
solution to the second Cauchy problem at
r = p (Figure 8). It is seen from Figures
that the fundamental solutions to the first
and second Cauchy problems have singulari-
ties at the point of application of the delta
pulses, whereas the fundamental solutions to
the source and Dirichlet problems do not have
such singularities.
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