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Abstract. Non-axisymmetric solutions to time-fractional diffusion-wave equation with a source
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1. Introduction

Fractional order partial differential equation,
in particular, the time-fractional diffusion-
wave equation are of great interest in studies of
important physical phenomena in amorphous,
colloid, glassy and porous materials, in frac-
tals, percolation clusters, random and disor-
dered media, in comb structures, dielectrics,
semiconductors, polymers, biological systems,
in geology, geophysics, medicine, economy, fi-
nance, etc. (see, for example, Bagley and
Torvik [1], Carpinteri and Cornetti [2], Magin
[3], Mainardi [4, 5], Metzler and Klafter [6, 7],
Povstenko [8], Rabotnov [9, 10], Rossikhin and
Shitikova [11], Uchaikin [12], West et al. [13],
Zaslavsky [14] and references therein).

A survey of results in the field of fractional
diffusion equation can be found in the book
of Kilbas et al. [15] (see also [16]). Different

formulations of the fractional order diffusion-
wave equations were reviewed by Herzallah et
al. [17]. The sequential fractional differential
equations were considered by Miller and Ross
[18], Podlubny [19], Klimek [20], Băleanu et al.
[21]. The asymptotic behavior for the solution
of fractional differential equations in the non-
linear case was studied by Băleanu et al. [22].

At first, we recall the main ideas of fractional
calculus [15, 19, 23]. It is common knowledge
that by integrating n − 1 times by parts the
calculation of the n–fold primitive of a func-
tion u(t) can be reduced to the calculation of
a single integral

Inu(t) =
1

Γ(n)

∫ t

0
(t− τ)n−1u(τ) dτ, (1)
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where n is a positive integer, Γ(n) is the
gamma function.

The notion of the Riemann–Liouville frac-
tional integral is introduced as a natural gen-
eralization of the repeated integral Inu(t) writ-
ten in a convolution type form:

Iαu(t) =
1

Γ(α)

∫ t

0
(t− τ)α−1u(τ) dτ, α > 0.

(2)

The Riemann–Liouville derivative of the
fractional order α is defined as left-inverse to
the fractional integral Iα, i.e.

Dα
RLu(t) = DnIn−αu(t)

=
dn

dtn

[

1

Γ(n− α)

∫ t

0
(t− τ)n−α−1u(τ) dτ

]

,

n− 1 < α < n.
(3)

There are other possibilities to introduce
fractional derivatives. One of the alternative
definitions was proposed by Caputo:

Dα
Cu(t) = In−αDnu(t)

=
1

Γ(n− α)

∫ t

0
(t− τ)n−α−1dnu(τ)

dτn
dτ,

n− 1 < α < n.
(4)

The Caputo fractional derivative is a regu-
larization in the time origin for the Riemann–
Liouville fractional derivative by incorporating
the relevant initial conditions [24]. In this pa-
per we shall use the Caputo fractional deriva-
tive omitting the index C. The major utility of
this type fractional derivative is caused by the
treatment of differential equations of fractional
order for physical applications, where the ini-
tial conditions are usually expressed in terms
of a given function and its derivatives of inte-
ger (not fractional) order, even if the governing
equation is of fractional order [19, 25].

If care is taken, the results obtained using
the Caputo formulation can be recast to the
Riemann-Liouville version and vice versa ac-
cording to the following relation [23]:

Dα
RLu(t) = Dα

Cu(t)

+
n−1
∑

k=0

tk−α

Γ(k − α + 1)
uk(0+),

n− 1 < α < n.

(5)

Previously, in studies concerning the time-
fractional diffusion-wave equation in cylindri-
cal or spherical coordinates only one or two
spatial coordinates have been considered [8,
16, 26-43]. If the mass (or heat) exchange
between a body and an environment is uni-
form over the whole surface, then the axisym-
metric or central-symmetric problems are ob-
tained. In reality, an assumption of uniformity
of exchange with environment (an assumption
of axis-symmetry or central-symmetry) is only
a rough approximation. In this paper, we in-
vestigate solutions to equation

∂αu

∂tα
= a∆u (6)

in an infinite medium with a spherical cavity
in spherical coordinate system in the case of
three spatial coordinates r, µ, and ϕ.

Consider the time-fractional diffusion-wave
Eq.(6) with a source term in spherical coordi-
nates r, θ, and ϕ:

∂αu

∂tα
= a

[

∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2 sin θ

∂

∂θ

(

sin θ
∂u

∂θ

)

+
1

r2 sin2 θ

∂2u

∂ϕ2

]

+ Q(r, θ, ϕ, t), (7)

R < r < ∞, 0 ≤ θ ≤ π,

0 ≤ ϕ ≤ 2π, 0 < t < ∞,

0 < α ≤ 2.

Change of variable µ = cos θ in Eq.(7) leads
to the following equation
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∂αu

∂tα
= a

{

∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2
∂

∂µ

[

(

1 − µ2
) ∂u

∂µ

]

+
1

r2 (1 − µ2)

∂2u

∂ϕ2

}

+ Q(r, µ, ϕ, t), (8)

R < r < ∞, −1 ≤ µ ≤ 1,

0 ≤ ϕ ≤ 2π, 0 < t < ∞,

0 < α ≤ 2.

For Eq.(8) the initial and boundary condi-
tions are prescribed:

t = 0 : u = f(r, µ, ϕ), 0 < α ≤ 2, (9)

t = 0 :
∂u

∂t
= F (r, µ, ϕ), 1 < α ≤ 2, (10)

r = R : u = g(µ, ϕ, t), 0 < α ≤ 2. (11)

The solution to the initial-boundary-value
problem Eqs.(8)-(11) can be written in the fol-
lowing form

u =

∫ t

0

∫ 2π

0

∫ 1

−1

∫

∞

R
Q(ρ, ζ, φ, τ)

×GQ(r, µ, ϕ, ρ, ζ, φ, t− τ) ρ2 dρ dζ dφ dτ

+

∫ t

0

∫ 2π

0

∫ 1

−1
g(ζ, φ, τ)

×Gg(r, µ, ϕ, ζ, φ, t− τ) dζ dφ dτ (12)

+

∫ 2π

0

∫ 1

−1

∫

∞

R
f(ρ, ζ, φ)

×Gf (r, µ, ϕ, ρ, ζ, φ, t) ρ2 dρ dζ dφ

+

∫ 2π

0

∫ 1

−1

∫

∞

R
F (ρ, ζ, φ)

×GF (r, µ, ϕ, ρ, ζ, φ, t) ρ2 dρ dζ dφ.

Further, we investigate the fundamental
solutions GQ(r, µ, ϕ, ρ, ζ, φ, t) to the source
problem (section 3), Gf (r, µ, ϕ, ρ, ζ, φ, t) to
the first Cauchy problem (section 5) and

GF (r, µ, ϕ, ρ, ζ, φ, t) to the second Cauchy
problem (section 6) under zero Dirichlet
boundary condition as well as the fundamen-
tal solution Gg(r, µ, ϕ, ζ, φ, t) to the Dirichlet
problem under zero source term and zero ini-
tial conditions (section 4).

2. Basic tools

Integral transforms technique allows us to re-
move the partial derivatives from the consid-
ered equation and to obtain the correspondent
algebraic equation in a transform domain. In
this section, we recall integral transforms used
in the paper (for details see, e.g., books of Deb-
nath and Bhatta [44], Doetsch [45], Galitsyn

and Zhukovsky [46], Özişik [47], and Sneddon
[48]). All the integral transforms are denoted
by the asterisk.

2.1. Laplace transform

The Laplace transform is defined as

L{u(t)} = u∗(s) =

∫

∞

0
u(t) e−st dt, t ≥ 0,

(13)

where s is the transform variable.
The inverse Laplace transform is carried out

according to the Fourier–Mellin formula

L−1 {u∗(s)} = u(t)

=
1

2πi

∫ c+i∞

c−i∞
u∗(s) est ds, t ≥ 0,

(14)

where c is a positive fixed number. The trans-
form u∗(s) is assumed analytical for Re s > c,
all the singularities of u∗(s) must lie to the
left of the vertical line known as the Bromwich
path of integration.

The Laplace transform rule for the fractional
integral Eq.(2) has the following form:

L{Iαu(t)} =
1

sα
u∗(s). (15)

The Riemann-Liouville fractional derivative
of the order n−1 < α < n for its Laplace trans-
form requires knowledge of the initial values of
the fractional integral In−α and its derivatives
of the order k = 1, 2, . . . , n− 1 [15, 23]
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L{Dα
RLu(t)} = sαu∗(s)

−
n−1
∑

k=0

DkIn−αu(0+)sn−1−k.

(16)

The Caputo fractional derivative of the or-
der n − 1 < α < n for its Laplace transform
rule requires the knowledge of the initial values
of the function u(t) and its integer derivatives
of order k = 1, 2, . . . , n− 1

L
{

dαu(t)

dtα

}

= sαu∗(s)

−
n−1
∑

k=0

u(k)(0+)sα−1−k.

(17)

Below the following formula for the inverse
Laplace transform [15, 19, 23]

L−1

{

sα−β

sα + b

}

= tβ−1Eα,β(−btα) (18)

is used. Here Eα,β(z) is the generalized
Mittag–Leffler function in two parameters α
and β, which is described by the series rep-
resentation [49]

Eα,β(z) =
∞
∑

n=0

zn

Γ(αn + β)
, α > 0, β > 0.

(19)

2.2. Finite Fourier transform for

2π-periodic functions

Consider series development of the 2π-periodic
function in the interval [0, 2π]

u(ϕ) =
1

2
a0 +

∞
∑

m=1

(am cosmϕ + bm sinmϕ) ,

(20)

where

am =
1

π

∫ 2π

0
u(η) cosmη dη,

bm =
1

π

∫ 2π

0
u(η) sinmη dη, (21)

m = 0, 1, 2, . . .

Now we insert the coefficients (21) into the
Eq.(20), thus obtaining

u(ϕ) =
1

2π

∫ 2π

0
u(η) dη

+
1

π

∞
∑

m=1

∫ 2π

0
u(η) cos[m(ϕ− η)] dη

(22)

or

u(ϕ) =
1

π

∞
∑

m=0

′

∫ 2π

0
u(η) cos[m(ϕ− η)] dη,

(23)

where the prime near the summation symbol
denotes that the term with m = 0 should be
multiplied by 1/2.

Eq.(23) can be considered as the integral
transform

F{u(ϕ)} = u∗(ϕ,m)

=

∫ 2π

0
u(η) cos[m(ϕ− η)] dη,

(24)

and its inverse

F−1{u∗(ϕ,m)} = u(ϕ) =
1

π

∞
∑

m=0

′

u∗(ϕ,m).

(25)

This transform is used for solving equations
in polar, cylindrical, and spherical coordinates,
as the following equation

F
{

d2u

dϕ2

}

= −m2u∗(ϕ,m) (26)

is fulfilled.

2.3. Legendre transform

The Legendre transform is applied to solve
equations in spherical coordinates and reads:

P {u(µ,m)} = u∗(n,m)

=

∫ 1

−1
u(µ,m)Pm

n (µ) dµ,

(27)
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where Pm
n (µ) is the associated Legendre func-

tion of the first kind of degree n and order m.
The inverse Legendre transform has the form

P−1 {u∗(n,m)} = u(µ,m)

=
∞
∑

n=0

2n + 1

2

(n−m)!

(n + m)!
Pm
n (µ)u∗(n,m),

n ≥ m.
(28)

The importance of this integral transform
results from the following equation:

P
{

∂

∂µ

[

(

1 − µ2
) ∂u

∂µ

]

− m2

1 − µ2
u

}

= −n(n + 1)u∗(n,m).

(29)

2.4. Weber transform

The Weber integral transform of order ν is de-
fined as

Wν{u(r)} = u∗(ξ)

=

∫

∞

R
Kν(r,R, ξ)u(r) r dr

(30)

having the inverse

W−1
ν {u∗(ξ)} = u(r)

=

∫

∞

0
Kν(r,R, ξ)u∗(ξ) ξ dξ.

(31)

The significance of the Weber transform for
problems in the domain R ≤ r < ∞ is due to
the following formula

Wν

{

d2u

dr2
+

1

r

du

dr
− ν2

r2
u

}

= −ξ2u∗(ξ)

+Ru(R)
∂Kν(r,R, ξ)

∂r

∣

∣

∣

∣

∣

r=R

−RKν(R,R, ξ)
du(r)

dr

∣

∣

∣

∣

∣

r=R

.

(32)

The specific expression of the kernel
Kν(r,R, ξ) depends on the boundary condi-
tions at r = R. For Dirichlet boundary condi-
tion considered in the present paper, the kernel
is chosen as

Kν(r,R, ξ)

=
Jν(rξ)Yν(Rξ) − Yν(rξ)Jν(Rξ)

√

J2
ν (Rξ) + Y 2

ν (Rξ)
,

(33)

where Jν(r) and Yν(r) are the Bessel functions
of the first and second kind, respectively.

Since

∂Kν(r,R, ξ)

∂r

=
J

′

ν(rξ)Yν(Rξ) − Y
′

ν (rξ)Jν(Rξ)
√

J2
ν (Rξ) + Y 2

ν (Rξ)
ξ

(34)

and (see Galitsyn and Zhukovsky [46],
Abramowitz and Stegun [50])

Jν(z)Y
′

ν (z) − Yν(z)J
′

ν(z) =
2

πz
, (35)

then

W
{

d2u

dr2
+

1

r

du

dr
− ν2

r2
u

}

= −ξ2u∗(ξ)

− 2

π

1
√

J2
ν (Rξ) + Y 2

ν (Rξ)
u(R).

(36)

3. Fundamental solution to the

source problem

Consider the time-fractional diffusion equation
with a source term being the time and space
delta pulse applied at a point with the spatial
coordinates ρ, ζ, and φ
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∂αGQ

∂tα
= a

{

∂2GQ

∂r2
+

2

r

∂GQ

∂r

+
1

r2
∂

∂µ

[

(

1 − µ2
) ∂GQ

∂µ

]

+
1

r2 (1 − µ2)

∂2GQ

∂ϕ2

}

(37)

+
Q0

r2
δ(r − ρ) δ(µ− ζ) δ(ϕ− φ) δ+(t),

R < r < ∞, −1 ≤ µ ≤ 1,

0 ≤ ϕ ≤ 2π, 0 < t < ∞

0 < α ≤ 2,

under zero initial and boundary conditions

t = 0 : GQ = 0, 0 < α ≤ 2, (38)

t = 0 :
∂GQ

∂t
= 0, 1 < α ≤ 2, (39)

r = R : GQ = 0, 0 < α ≤ 2. (40)

It should be noted that the three-
dimensional Dirac delta function in Carte-
sian coordinates δ(x) δ(y) δ(z) after pass-
ing to spherical coordinates takes the form
1

4πr2
δ+(r), but for the sake of simplicity we

have omitted the factor 4π in the solution (12)
as well as the factor 1

4π in the source term in
Eq.(37).

In the source term, we have inserted the con-
stant multiplier Q0 to obtain the non dimen-
sional quantity ḠQ (see Eq.(55)) which is dis-
played in Figures for non dimensional values of
parameters describing the problem.

Let us introduce the new looked-for function
v =

√
r GQ for which we have the following

initial-boundary-value problem:

∂αv

∂tα
= a

{

∂2v

∂r2
+

1

r

∂v

∂r
− 1

4r2
v

+
1

r2
∂

∂µ

[

(

1 − µ2
) ∂v

∂µ

]

+
1

r2 (1 − µ2)

∂2v

∂ϕ2

}

(41)

+
Q0

r3/2
δ(r − ρ) δ(µ− ζ) δ(ϕ− φ) δ+(t),

R < r < ∞, −1 ≤ µ ≤ 1,

0 ≤ ϕ ≤ 2π, 0 < t < ∞

0 < α ≤ 2,

and

t = 0 : v = 0, 0 < α ≤ 2, (42)

t = 0 :
∂v

∂t
= 0, 1 < α ≤ 2, (43)

r = R : v = 0, 0 < α ≤ 2. (44)

Now we shall use the integral transform
technique. It should be emphasized that the
order of integral transforms is important. Ap-
plication of the Laplace transform (13) with
respect to time t gives

sαv∗ = a

{

∂2v∗

∂r2
+

1

r

∂v∗

∂r
− 1

4r2
v∗

+
1

r2
∂

∂µ

[

(

1 − µ2
) ∂v∗

∂µ

]

+
1

r2 (1 − µ2)

∂2v∗

∂ϕ2

}

+
Q0

r3/2
δ(r − ρ) δ(µ− ζ) δ(ϕ− φ),

(45)

r = R : v∗ = 0. (46)
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The use of the finite Fourier transform (24)
with respect to the angular coordinate ϕ al-
lows us to remove the second derivative with
respect to this coordinate according to Eq.(26)

sαv∗∗ = a

{

∂2v∗∗

∂r2
+

1

r

∂v∗∗

∂r
− 1

4r2
v∗∗

+
1

r2
∂

∂µ

[

(

1 − µ2
) ∂v∗∗

∂µ

]

− m2

r2 (1 − µ2)
v∗∗

}

(47)

+
Q0

r3/2
δ(r − ρ) δ(µ− ζ) cos[m(ϕ− φ)],

r = R : v∗∗ = 0. (48)

The Legendre transform (27) with respect
to the spatial coordinate µ taking into account
Eq.(29) leads to

sαv∗∗∗ = a

[

∂2v∗∗∗

∂r2
+

1

r

∂v∗∗∗

∂r
− (n + 1/2)2

r2
v∗∗∗

]

+
Q0

r3/2
δ(r − ρ)Pm

n (ζ) cos[m(ϕ− φ)],

(49)

r = R : v∗∗∗ = 0. (50)

To eliminate the differentiation with respect
to the radial coordinate r we apply the Weber
transform (30) of the order n+1/2 with respect
to this coordinate. Thus in the transforms do-
main we get

v∗∗∗∗ =
Q0√
ρ
Pm
n (ζ) cos[m(ϕ− φ)]

1

sα + aξ2

×
Jn+1/2(ρξ)Yn+1/2(Rξ) − Yn+1/2(ρξ)Jn+1/2(Rξ)

√

J2
n+1/2(Rξ) + Y 2

n+1/2(Rξ)
.

(51)

After inversion of integral transforms we
gain

GQ =
Q0

π
√
rρ

∞
∑

n=0

n
∑

m=0

′ 2n + 1

2

(n−m)!

(n + m)!

×Pm
n (µ)Pm

n (ζ) cos[m(ϕ− φ)]

×
∫

∞

0

tα−1Eα,α

(

−aξ2tα
)

J2
n+1/2(Rξ) + Y 2

n+1/2(Rξ)

×
[

Jn+1/2(ρξ)Yn+1/2(Rξ)

−Yn+1/2(ρξ)Jn+1/2(Rξ)
]

×
[

Jn+1/2(rξ)Yn+1/2(Rξ)

−Yn+1/2(rξ)Jn+1/2(Rξ)
]

ξ dξ.

(52)

In the case m = 0, n = 0, taking into ac-
count that the Bessel functions of the order
one half can be represented as (see Abramowitz
and Stegun [50])

J1/2(r) =

√

2r

π

sin r

r
,

Y1/2(r) = −
√

2r

π

cos r

r
,

(53)

from (52) we get

GQ =
Q0

2π2rρ

∫

∞

0
tα−1Eα,α

(

−aξ2tα
)

× sin[(ρ−R)ξ] sin[(r −R)ξ] dξ.

(54)

The solution (54) coincides with the corre-
sponding fundamental solution to the axisym-
metric problem within the factor 4π which re-
flects integration with respect to µ and ϕ over
the surface of the cavity.

Dependence of fundamental solution (52) on
the coordinates r, µ, and ϕ is presented in Fig-
ures 1–3. In calculations we have introduced
non dimensional quantities:

ḠQ =
R3

Q0
GQ, κ =

√
atα/2

R
. (55)
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Figure 1. Dependence of the fundamental
solution GQ(r, µ, ϕ, ρ, ζ, φ, t) on the radial

coordinate r for µ = 0, ϕ = 0, ρ/R = 2, ζ = 0,
φ = 0, and κ = 0.5.

4. Fundamental solution to the

Dirichlet problem

We study the time-fractional diffusion-wave
equation

∂αGg

∂tα
= a

{

∂2Gg

∂r2
+

2

r

∂Gg

∂r

+
1

r2
∂

∂µ

[

(

1 − µ2
) ∂Gg

∂µ

]

+
1

r2 (1 − µ2)

∂2Gg

∂ϕ2

}

, (56)

R < r < ∞, −1 ≤ µ ≤ 1,

0 ≤ ϕ ≤ 2π, 0 < t < ∞

0 < α ≤ 2,

under zero initial conditions

t = 0 : Gg = 0, 0 < α ≤ 2, (57)

t = 0 :
∂Gg

∂t
= 0, 1 < α ≤ 2, (58)

and the prescribed boundary value of the
sought-for function

r = R : Gg = g0 δ(µ−ζ) δ(ϕ−φ) δ+(t). (59)
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Figure 2. Dependence of the fundamental

solution GQ(r, µ, ϕ, ρ, ζ, φ, t) on the coordinate µ

for r/R = 2, ϕ = 0, ρ/R = 2, ζ = 0, φ = 0, and

κ = 0.5.
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Figure 3. Dependence of the fundamental

solution GQ(r, µ, ϕ, ρ, ζ, φ, t) on the angular

coordinate ϕ for r/R = 2, µ = 0, ρ/R = 2, ζ = 0,

φ = 0, and κ = 0.5.

The integral transforms technique allows us
to remove the partial derivatives and to get
the expression for the auxiliary function v in
the transforms domain (from here on we use
only one asterisk for all the transforms):

v∗ = − 2a
√
Rg0
π

Pm
n (ζ) cos[m(ϕ− φ)]

1

sα + aξ2

× 1
√

J2
n+1/2(Rξ) + Y 2

n+1/2(Rξ)
. (60)
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Figure 4. Dependence of the fundamental

solution Gg(r, µ, ϕ, ζ, φ, t) on the radial coordinate

r for µ = 0, ϕ = 0, ζ = 0, φ = 0, and κ = 0.5.

Inversion of integral transforms gives

Gg = −a
√
Rg0

π2
√
r

∞
∑

n=0

n
∑

m=0

′(

2n + 1
) (n−m)!

(n + m)!

×Pm
n (µ)Pm

n (ζ) cos[m(ϕ− φ)]

×
∫

∞

0

tα−1Eα,α

(

−aξ2tα
)

J2
n+1/2(Rξ) + Y 2

n+1/2(Rξ)
(61)

×
[

Jn+1/2(rξ)Yn+1/2(Rξ)

−Yn+1/2(rξ)Jn+1/2(Rξ)
]

ξ dξ.

In the case m = 0, n = 0 from (61) we get

Gg =
aRg0
2rπ2

∫

∞

0
tα−1Eα,α

(

−aξ2tα
)

× sin[(r −R)ξ] ξ dξ.

(62)

Eq.(62) was obtained in [37] (with accuracy
of the multiplier 4π, which reflects integration
over the sphere surface).

Dependence of fundamental solution (61) on
the coordinates r, µ, and ϕ is presented in Fig-
ures 4–6 with Ḡg = tGg/g0.

α = 0.5
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�
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�
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1.00
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0.0 0.2 0.4 0.6 0.8 1.0

µ

Figure 5. Dependence of the fundamental

solution Gg(r, µ, ϕ, ζ, φ, t) on the coordinate µ for

r/R = 2, ϕ = 0, ζ = 0, φ = 0, and κ = 0.5.

5. Fundamental solution to the first

Cauchy problem

In this case we have the equation

∂αGf

∂tα
= a

{

∂2Gf

∂r2
+

2

r

∂Gf

∂r

+
1

r2
∂

∂µ

[

(

1 − µ2
) ∂Gf

∂µ

]

+
1

r2 (1 − µ2)

∂2Gf

∂ϕ2

}

, (63)

R < r < ∞, −1 ≤ µ ≤ 1,

0 ≤ ϕ ≤ 2π, 0 < t < ∞

0 < α ≤ 2,

under delta pulse initial condition

t = 0 : Gf =
f0
r2

δ(r − ρ) δ(µ− ζ) δ(ϕ− φ),

0 < α ≤ 2, (64)

t = 0 :
∂Gf

∂t
= 0, 1 < α ≤ 2, (65)

and zero boundary value of the function

r = R : Gf = 0. (66)
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Figure 6. Dependence of the fundamental

solution Gg(r, µ, ϕ, ζ, φ, t) on the angular

coordinate ϕ for r/R = 2, µ = 0, ζ = 0, φ = 0,

and κ = 0.5.

The solution reads

Gf =
f0

π
√
rρ

∞
∑

n=0

n
∑

m=0

′ 2n + 1

2

(n−m)!

(n + m)!

×Pm
n (µ)Pm

n (ζ) cos[m(ϕ− φ)]

×
∫

∞

0

Eα

(

−aξ2tα
)

J2
n+1/2(Rξ) + Y 2

n+1/2(Rξ)

×
[

Jn+1/2(ρξ)Yn+1/2(Rξ)

−Yn+1/2(ρξ)Jn+1/2(Rξ)
]

×
[

Jn+1/2(rξ)Yn+1/2(Rξ)

−Yn+1/2(rξ)Jn+1/2(Rξ)
]

ξ dξ

(67)

with the particular case corresponding to m =
0, n = 0:

Gf =
f0

2π2rρ

∫

∞

0
Eα

(

−aξ2tα
)

× sin[(ρ−R)ξ] sin[(r −R)ξ] dξ.

(68)

Figure 7 shows dependence of the fundamen-
tal solution (67) on the radial coordinate r.
Here Ḡf = R3Gf/f0.
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B
B
B
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1.0 1.5 2.0 2.5 3.0 3.5

r/R

Figure 7. Dependence of the fundamental

solution Gf (r, µ, ϕ, ρ, ζ, φ, t) on the radial

coordinate r for µ = 0, ϕ = 0, ρ/R = 2, ζ = 0,

φ = 0, and κ = 0.5.

6. Fundamental solution to the

second Cauchy problem

In the case of the second Cauchy problem,
which is considered for the order of time de-
rivative 1 < α ≤ 2, the initial value of the
time derivative of the sought-for function is
prescribed, and for the corresponding funda-
mental solution we have the equation

∂αGF

∂tα
= a

{

∂2GF

∂r2
+

2

r

∂GF

∂r

+
1

r2
∂

∂µ

[

(

1 − µ2
) ∂GF

∂µ

]

+
1

r2 (1 − µ2)

∂2GF

∂ϕ2

}

, (69)

R < r < ∞, −1 ≤ µ ≤ 1,

0 ≤ ϕ ≤ 2π, 0 < t < ∞

1 < α ≤ 2,

under zero initial condition for the function

t = 0 : GF = 0, 1 < α ≤ 2, (70)

the delta pulse initial condition for its time de-
rivative



Solutions to Diffusion-Wave Equation in a Body with a Spherical Cavity ... 13

t = 0 :
∂GF

∂t
=

F0

r2
δ(r − ρ) δ(µ− ζ) δ(ϕ− φ),

1 < α ≤ 2, (71)

α = 1.65
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��	
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Figure 8. Dependence of the fundamental

solution GF (r, µ, ϕ, ρ, ζ, φ, t) on the radial

coordinate r for µ = 0, ϕ = 0, ρ/R = 2, ζ = 0,

φ = 0, and κ = 0.5.

and zero Dirichlet boundary condition

r = R : GF = 0. (72)

The integrals transform technique leads to

GF =
F0

π
√
rρ

∞
∑

n=0

n
∑

m=0

′ 2n + 1

2

(n−m)!

(n + m)!

×Pm
n (µ)Pm

n (ζ) cos[m(ϕ− φ)]

×
∫

∞

0

t Eα,2

(

−aξ2tα
)

J2
n+1/2(Rξ) + Y 2

n+1/2(Rξ)

×
[

Jn+1/2(ρξ)Yn+1/2(Rξ)

−Yn+1/2(ρξ)Jn+1/2(Rξ)
]

×
[

Jn+1/2(rξ)Yn+1/2(Rξ)

−Yn+1/2(rξ)Jn+1/2(Rξ)
]

ξ dξ

(73)

with the particular case corresponding to the
central symmetric case

GF =
F0

2π2rρ

∫

∞

0
tEα,2

(

−aξ2tα
)

× sin[(ρ−R)ξ] sin[(r −R)ξ] dξ.

(74)

As above, the remark about the factor 4π
concerns also Eqs. (68) and (74).

Figure 8 shows dependence of the fundamen-
tal solution (73) on the radial coordinate r.
The non-dimensional quantity is introduced as
ḠF = R3GF /(tF0).

7. Conclusions

The non-axisymmetric solutions to the source,
Cauchy, and Dirichlet problems for time-
fractional diffusion-wave equation have been
found for a medium with a spherical cavity.
The obtained solutions satisfy the appropriate
initial and boundary conditions and reduce to
the solutions of classical diffusion equation in
the limit α = 1. In the case 1 < α < 2,
the time-fractional diffusion-wave equation in-
terpolates the standard diffusion equation and
the classical wave equation. For 1 < α < 2 the
solutions to the fractional diffusion-wave equa-
tion feature propagating humps, underlining
the proximity to the standard wave equation
in contrast to the shape of curves describing
the subdiffusion regime (0 < α < 1).

In the case of the ballistic diffusion corre-
sponding to the wave equation (α = 2) the fun-
damental solution to the source problem con-
tains wave fronts described by the Dirac delta
function. Considering the radial direction for
0 < κ < (ρ − r)/R, there are two wave fronts
at r/R = ρ/R − κ and r/R = ρ/R + κ which
are approximated by solutions to the diffusion-
wave equation in the case 1 < α < 2 (Figure
1). The similar situation takes place for coor-
dinates µ and ϕ (see Figures 2 and 3): the sec-
ond wave front approximated by the solution
in the case 1 < α < 2 is located symmetrically
for negative values of these coordinates.

The behaviour of the solution towards the
first Cauchy problem is very interesting (Fig-
ure 7). In the case of the ballistic diffusion
there are also two wave fronts at r/R = ρ/R−κ
and r/R = ρ/R + κ but only the solution to
the classical diffusion equation (α = 1) has no
singularity at the point of application of the
Dirac delta pulse. Such a singularity appears
due to behavior of the Mittag-Leffler function
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Eα(−x) for large values of the negative argu-
ment

Eα(−x) ∼ 1

Γ(1 − α)

1

x
, 0 < α < 2, α 6= 1.

(75)

For 0 < α < 1 the solution tends to +∞
when r → ρ, and for 1 < α < 2 the solution
approaches −∞ when r → ρ (Figure 7).

For large values of the negative argument
the asymptotic of the Mittag-Leffler function

Eα,2(−x) ∼ 1

Γ(2 − α)

1

x
, 1 < α < 2, (76)

results in singularity of the fundamental
solution to the second Cauchy problem at
r = ρ (Figure 8). It is seen from Figures
that the fundamental solutions to the first
and second Cauchy problems have singulari-
ties at the point of application of the delta
pulses, whereas the fundamental solutions to
the source and Dirichlet problems do not have
such singularities.
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