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Thermally coupled magneto-hydrodynamics (MHD) studies the dynamics of
electro-magnetically and thermally driven flows, involving MHD equations cou-
pled with heat equation. We introduce a partitioned method that allows one
to decouple the MHD equations from the heat equation at each time step and
solve them separately. The extrapolated Crank-Nicolson time-stepping scheme
is used for time discretization while mixed finite element method is used for
spatial discretization. We derive optimal order error estimates in suitable norms
without assuming any stability condition or restrictions on the time step size.
We prove the unconditional stability of the scheme. Numerical experiments are
used to illustrate the theoretical results.

(cc)

1. Introduction

Thermally coupled magneto-hydrodynamics has
many applications including in electromagnetic
pumping design [35], electromagnetic filtration
[4], contact-less electromagnetic stirring [32] and
damping convective flow in metal-like melt [34].
Magnetohydrodynamics in general has broad
applications including fusion [19], underwater
propulsion [18], nuclear reactors [I3], metallurgy
[1,2L1T,13T] and astrophysics [30]. In all of these
applications, qualitative and quantitative under-
standing of the dynamics is important to achieve
optimal operating conditions. This has led to
considerable research efforts over the past three
decades into the development of theoretical, see
e.g 16,24 26, 27, 29] and efficient and accurate
computational techniques, see e.g. [8,0,20,21] for
MHD equations. Majority of the numerical anal-
ysis work done on the equations has been for
steady state equations. In [I7, 23] 25, B3], time
stepping schemes for unsteady MHD equations
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have been analyzed. However, these work consider
MHD equations where thermal effects are negli-
gible. Thermally coupled MHD equations model
a complex flow phenomena which is in general
three dimensional, highly nonlinear and repre-
sents multi-physics.

In this work, we propose and analyze a de-
coupled time stepping scheme for the thermally
coupled MHD equations. It uses a semi-implicit
Crank-Nicolson scheme, which combines an im-
plicit treatment of the second derivative terms,
a semi-implicit second order extrapolation of the
nonlinear convective terms and an explicit treat-
ment of the temperature coupling term in the
Navier-Stokes equations. The proposed scheme
solves the MHD equations and the heat equation
separately in each time step (without iteration)
allowing the possibility of optimizing the subprob-
lem’s respective physics. We show unconditional
stability of the scheme and provide a complete er-
ror analysis for fully discrete scheme using finite
element spatial discretization.
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The remaining of the paper is organized as fol-
lows: The continuum problem and some prelimi-
naries are presented in Section 2. In Section 3, we
present the decoupled time-stepping scheme and
analyze its stability, accuracy and convergence.
Finally, we present a numerical example that il-
lustrates our theoretical results.

2. Continuum problem and
preliminaries

To begin with,we present some notations and ba-
sic results that will be used throughout the article.

2.1. Continuum problem

The non-dimensional Boussinesq equations de-
scribing thermally coupled MHD equations are
(see for e.g. [15])

%—1; — PrgAu+ (u-V)u+ PryVp
— S(V xB) x B= PrgRabis + f; ,
98+ PrgVx(VxB)

— Vx(uxB)=0,

P — AO+u-VO=fy,
V-u = 0,
V-B = 0,

\

(1)

in (0, 7], where T denotes time and Q C R%(d =
2,3) a bounded region with Lipschitz-continuous
boundary I'. Moreover the different fields ap-
pearing in the equations are u(x,t¢) the fluid
velocity, B(x,t) the magnetic field, 6 the tem-
perature, p(x,t) the pressure, f the source and
i3 the unit basis vector. The non-dimensional
numbers that appear in the MHD equations are
S := PrgPrgH?, the Hartman number H, the
Rayleigh number Ra, the thermal Prandtl num-
ber Prg and the magnetic Prandtl number Prp.
The MHD system we consider is supplemented
with the initial conditions

up(x), 0(x,0) = Oy(x) and
By(x) in 2,

along with the boundary conditions

( ulr = g with frg-nds:O,
or = q,
B-njp = g¢with [qds=0,
Prg (VxB)xnp
— (uxB)xnlr=k
L withk-n=0, [ kds=0.

3)

2.2. Function spaces

For a Banach space X, we denote by LP(0,7; X)
the time-space function space endowed with the

T p .
vorm [|wl ooy = (fo lwlfde) " i 1<
p < oo and esssupycp ) |lw|x if p=oco.

We will often use the abbreviated notation
LP(X) := LP(0,T;X) for convenience. The
symbol C([0,T]; X) denotes the set of contin-
uous functions u : [0,7] — X endowed with
the norm |[lullcorx) = maxo<i<r [lut)|x -
For any integer k& > 1, let W*P(Q) be the
Sobolev space of functions in LP(Q2) with deriva-

tives up-to the k" order endowed with the
1

P

norm ||@||m,p = Z /Q|8§qb(x)|pdm where

laj<m

lee]
09 P(x) = gat g d(x) , @ = (a1, aq), @; 2
] g
d
0, |of := Zozi.
=1

We denote by H¥() the space W"2(Q2), when
p = 2, and drop the subscripts p(= 2) in referring
to the norm in H¥(Q). Moreover, we will use the
following simplified norm notations:

[ull := llullr2@)  and  [Julloc = [[ull oo (q) -

For g € H%(F) satisfying [g -n ds = 0
and ¢ € H%(F) satisfying [.q ds = 0, define
H}Lq(Q) = {v € HY(Q) v-nlp = q },
Vy,={veHY(Q): v[r=g, V:-v=0} and
qu(Q) ={0 e HY(Q) : Or=7q}.

We write V = Vo, HL(Q) = H}%O(Q) and V :=
{v e HY(Q) V.-v=0 in Q} Wein-
troduce the time discrete space [P(Z) associated
with LP(0,T;Z); IP(Z) is the space of Z-valued
sequences w := {wp;n = 1,..., N} with norm
|+ llin(z) defined by
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N
(AL [lwal )7 if 1 <p < oo

lwllip(z) == =1

| max, lwnllz if p=o0.

For later purposes, we recall the inequality
An|BIff < [V-B|*+|VxBJ|* VB € H, (), (4)
the Poincaré inequality
IVIZ < Al VVI? v € Hy(9),

the Gagliardo-Nirenberg interpolation inequality
3]

lully < ClIVulpllull~* Yu e WHP(Q) NL7(2)

for 0 <A <Tand =\
the Agmon’s inequality

%—é)—i—(l—/\)% and

1 1
lullee < Cllull} [ufl;  vu e H(Q) NH(Q).

We define the explicitly skew-symmetrized trilin-
ear forms

(u-V)w-v]dQ,
W} s,

a(u,v,w) = 3 [[(u-V)v-w—

= Jolu- V)v-w+1(V-u)v

for all u, v,w € H'(Q) with (u-n)v-w=0onT
and

ea(w,0,9) = 3
= o
for all u € HY(Q), 6,9 € HY(Q) with (u
Oon .

Moreover, we define the bilinear forms

(u- V)¢ 6] d
W)y 6] do

n)fy =

Jo [(w- V)0 —
[(u-V)0y + 5(V

b(v,r) = —/ ProrV -vdQ,
Q

e(d,v) = PrgRa/ fis - vdS1,
Q
and the trilinear form

d(B,C,v) ::/Bx (VxC)-vdQ.
Q

Notice that the trilinear form d(-,-,-) is skew-
symmetric with respect to the first and last ar-
guments, i.e., d(B,C,v) = —d(v,C,B).

We end this section with a result regarding the ex-
istence and uniqueness of solutions to the initial-
boundary value problem (1)-(3) whose proof can
be furnished by using Galerkin approximations,
a-priori estimates and compactness methods.

Proposition 1. Assume that the given func-
tions f, g, k, q, ¢, ug and By satisfy
f, e L20,T;H-Y(Q)), fo € L2(0,T; H™1(92)),
g € HY(0,T;Hz(T")), k € L*0,T; H"( ),
q¢ € HY0,T;Hz(T)), § € HY0,T;H2(T)),
Jrg -nds = 0, [pgqds = 0, k-njp =
0, ug € Vg.0, Bo € H7117q(.70)(9) and
0o € H'Y(,0)(). Then, the problem (1)-
(3) has at least one solution (u,p,8,B) such
that u € L>®(0,T;L%(Q)) N L*(0,T;Vy),
0 € L*0,T;HX(Q)) N L>(0,T;L*(Q)), B €
L>°(0,T;L%(Q)) N L*(0,T;H,, () and p €
L%(0,T; LE(Q)) . In two-spatial dimension (d =
2), these solutions are unique.

2.3. Properties of finite element spaces
and projections

In order to keep the exposition simple, we re-
strict our attention to convex polyhedral domains.
Let Tp, be a family of subdivisions (e.g. triangula-
tion) of Q C RY satisfying Q = UkeT;, K so that
diameter(K) < h and any two closed elements K3
and Ko € T, are either disjoint or share exactly
one face, side or vertex. Suppose further that 7, is
a shape regular and quasi-uniform triangulation.
That is, there exists a constant C' > 0 such that
the ratio between the diameter hyx of an element
K € T, and the diameter of the largest ball con-
tained in K is bounded uniformly by C, and hg is
comparable with the mesh size h = maxgeT;, hi
for all K € Tj, . For example, T, consists of trian-
gles for d = 2 or tetrahedra for d = 3 that are non-
degenerate as h — 0. We choose families of finite
dimensional spaces X, C H(Q), Y, C HL(Q),
Zyp C HY(Q) and Qp, C L*(Q), parameterized by
a parameter h such that 0 < h < 1. Let gy, qn
and g be approximations of g, ¢ and ¢, respec-
tively, such that there exists vy, € X, Cp € Yy,
and satisfying vplr = gn, Cp - nlr = ¢, and
Onlr = qn. We then define Xy, o, := X;, N ngh,
Yh,qh = {Ch S Yh(Q) Cy - 1’l|p = Qp },
Zh,'qvh = Zp N Hlah and Qp := Qp N L%(Q) . We
also define the discretely divergence free space is
given by

Vign = AVh € Xng, : (V- v, 1) = 0¥y € Qu}
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We set Vh = Vh,O; Yh = Yh,07 Zh = Zh70 and
Xn=Xpp.

We make the following assumptions on the finite
dimensional subspaces X, Yy, Zj, and Qp:

Assumption Al.

We have the approximation properties: there ex-
ists an integer k and a constant C, independent
of h, v, B, 8 and r, such that

inf (v —vall +AlIV(v = vi)ll] < CRFH |Vl

f
v X}

inf [|[B=By|+h[|V(B-B)[] < Ch“|Bles1
BreYy,
inf [|[0 — Onl| + RV (0 — 01)[I] < CH 0] ¢41
GhEZh
and

inf ||r —ry,|| < ChY|r
Jnt =l < Rl

forall v € HL(Q), B € HY(Q), 6 € HL(Q),
andr e HY(Q) 1<(<k.

Assumption A2. (Discrete inf-sup condition)
For every r, € @, there exists a nonzero func-
tion vy, € X3, and 8 > 0 such that

[, V- vi)| = BIVvplll[rall

with an inf-sup constant S > 0 that is indepen-
dent of the mesh size h.

Assumption A3. For any integers [ and m
(0 <1 <m < 1) and any real numbers p and
q (1 <p<gq<o0)it holds that

[hlmg < chl=m TPy |1y ey, € X,

There are many conforming finite element spaces
satisfying the assumptions (A1)-(A3). One may
choose, for example, the Taylor-Hood element
pair for the velocity and pressure (i.e, piecewise
quadratic polynomial for velocity and piecewise
linear polynomial for pressure), and piecewise
quadratic polynomials for the magnetic field and
temperature. Then, hypothesis (A1)-(A3) hold
with k = 2.

We define Stokes, Maxwell and Ritz projections as
follows: Given (u,p) € H(Q) x LZ(2), 0 € H'(Q)
and B € H'(Q), we define the Stokes projection

(Ppu, Pip) € Xpq, X Qp as the solution of the
problem

Pro(V(u— Piu), Vvy) + b(vh, (p — P;p))
= 0 VVh S Xh,

b(u—Piu,rp) = 0 VrpeQy,
(5)

the Maxwell projection ;"B € Y} 4, as the so-
lution of the problem

(Vx(B—-F"B),V x¢,)
+ (V-(B=F"B),V-¢,) (6)
= 0 V¢, eYy,

and the Ritz projection P60 € Zj, 5, as the solu-
tion of the problem

(V(0 = P0),Vipn) =0 Vo € Zp,  (7)

We have the following convergence and bounded-
ness results for these projections.

Lemma 1. Suppose that assumptions (A1)-(A2)
hold with a positive integer k, and that (u,p) €
HML X (L3(Q) N HF(Q)), 6 € H*1(Q) and B €
HY(Q). Then, for any h € (0,ho] the Stokes
projection (P;u, PPp) of (u,p) satisfies

k
lu = Prully + [lp = Bipll < ch”([lullra + llpllx)

®)
the Mazwell projection P;"B of B satisfies
IB — "Bl < ch¥[[Bll141, (9)
and the Ritz projection P]8 of 0 satisfies
16 — P76l < ch™[|0]lg1 - (10)

Moreover, suppose that assumption (A3) holds.
Then, Pju, P"B and P;0 satisfy

[ Prullec + | PRullis < c(llallz + [Ipll),  (11)
[P Blloc + [|Py"Bll1,3 < ¢[|Bll2,  (12)

and
[1P70loc + 124 011,3 < c[|0]]2- (13)
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Proof. The proof of (8)-(10) follows by the regu-
larity properties of the Stokes, Maxwell and Ritz
projections and by duality argument. In order to
prove (11)-(13), we first notice that Gagliardo-
Nirenberg’s inequality yields

V216152

Therefore the apprommatlon properties (8)-(1)
together with Agmon’s inequality yield the de-
sired result. O

Let At denote the step size for ¢ so that ¢, =
nAt, n = 0,1,2,...,N. For notational conve-

nience, we denote ¢" := ¢(t,,), D(P") := ¢n+;;¢n,
¢n+1/2 — ¢n+1 + ¢" and I(¢n+1/2) = " +
3"t — 30" 2, [5l14].

Lemma 2. If ¢(t) is smooth enough, then

(i)l /2 Htnr1/2) 1%

< | 922 dt
(i0) 06 (tns1je) — D(6(tn))]?
< GO [ 193 (n)| dt

(@ Z(P(tngry2)) —  Pltngry2)llF

< (A2 [ 02e(1)]13 dt.

Moreover, let Pyu be the Stokes projection of u,
P"B the Mazwell projection of B and P/ the
Ritz projection of 0. If assumptions (A1)-(A2)
hold with a positive integer k, then

()[D(altnr) = Pultnsr))ll

— \/% (atu7atp)||L2(tn7tn+1;Hk+1><Hk)7

() PB(tnt1)

P'B(tn41)) |l
B||L2(tn,tn+1;Hk+1) )

Pro(tn))ll
chk

IA

()| D(O(tn+1)

IA

T N0 L2ty 4501 -

Proof. The proof of (i)-(iii) follows by Taylor
expansion with integral remainder whereas the
proof of (iv)-(vi) follows as a consequence of
Lemma 1. g

We will need the following well known discrete
Gronwall lemma.

Lemma 3. (Discrete Gronwall lemma) Let

d; At; {an}nZO; {bn}n207 {Cn}n207 and {dn}nZO
be nonnegative numbers such that

m—1 m—1

am—l—Ath <At2and —|—Athn+d

n=1 n=0 n=0

for m > 1. Then we have

m m—1 m—1
U + ALY by < exp(At Y dn)(AEY e +d)
n=1 n=0 n=0
form>1.

A proof of this result can be found, for e.g, in [12].

3. Decoupled Crank-Nicolson
time-stepping scheme

We discretize the system (1) by Crank-Nicholson
scheme in time and Galerkin finite element in
space. The time discretization combines an im-
plicit treatment of the second derivative terms, a
semi-implicit second-order extrapolation for the
nonlinear convective terms and explicit treatment
of the temperature coupling term in the Navier-
Stokes equations.

Algorithm 1. Given (ui,Bi, pt.0}) € Xhgi X
Yh,qi X Qh X Zh,?fi‘b, 1 = 0,1, ﬁnd
{(ug, By, py. 05) € Xngp X Yagp X Qn X Zy g
such that

(Duj, vp) Prg(VuZ+l/2, Vvy)
(T (w2, w2 )

b(vh,p 3

Sd( ( n+1/2) BZ+1/2,Vh)
(O, %), vn)
(f{l+1/2,vh)

0 Vry,e€Qn,
Prg((V x B2 v x ¢,,)
(VB 2Vl
d(uz+1/2’¢h’I(Bz+l/2))
(k™2 ) Y, € Y,
(Vo2 )

02(1( Z+1/2)502+1/27¢h)

(2 n) € Zn,
(14)

I+ 4+ + o+

+

VVh S Xh,

=
3
i
E
+ o+ 4+

(D027 d}h)

+ o+

n+1/2 Bn+1/2 9n+1/2
» Op

form =1,...,N, where u, , B,

and phJr /2 are the intermediate variables defined

by ul = w4, B"+1/2 Bt + By,
+1/2 n+1/2

0, 2= OZH + 0 and p, 2= pZ’H + oy,

respectively.
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3.1. Stability analysis

In this section, we demonstrate the unconditional
energy stability of the decoupled scheme proposed
in Section 2. We first recall a few basic facts and
some notation that are needed below. Let us de-
fine the discrete trace spaces of X, Y, and Z,

{gn € H%(F) : there exists
v, € X}, such that A\, |gxnr
= vVploknr VK €T,

and OK NT # 0},

{an € H%(F) . there exists

Cj, € Y}, such that gploxnr
:Ch'n|8KﬁF VK eT,
and OK NT # 0}

{an € H%(F) : there exists

¢n € Zy, such that g,loxnr
= ¢nlokr VK €Ty
and OK NT # 0} .

Moreover, we define

Mol0) i= (€ () s [ hyomds =0}

and

Kh,O( —{)\h EAh( ) //\h dS—O}

Then there exists a discrete extension operator
Ep - Apo(I') — Vy, such that Ep(gh)|r = g and
1En(gn)ll1 < Clignllij2,r» see [10,28] . Similarly,
we can define discrete extension operators E}, and
Eh such that Eh(qh) -Il|p = (qh and Eh(&h)h‘ = E]Vh .
In order to prove, we first define suitable bound-
ary extensions. Let (Ej(g}), Eh(q,’;), Eh((jg)) €
Vign X Yngn X Zpge be the extension of
(gr,qr,qy) for each n > 0. Set ¢} = up —
En(gp) €L = By — En(qy) and xj, = 6} — En(gy)
so that (Ch,&€h,X7) € Vi x Y, X Z,.

We make the following assumptions about the ex-
tension operators Ej(g}), Eh(q}’j), Eh(q;}) )

Assumption A4.

The extension operators satisfy
. n+1/2 n+1/2 n+1/2
(@) e @C), Bagy ). ¢
n—1/2 n—3/2 n+1/2
< (VG I+ NG DIV e

and
|d( ( n+1/2) Z+1/2,I( Z+1/2))|
< SV xET+ IV x &)
IV x &2,
@) |SATET?), Enlgr ), ¢
< SV X ETV + IV x €70
Ve,
(i) Jea(T(CTP), En(@ ) )

kK n—1/2 n—3/2
< (VT + IV e
n+1/2
VX2

Theorem 1. Suppose assumption (A4) holds
and let {(gh,qh,qh)}n o satisfies (8h,qn,qn) €
(Ano(D)) x 1H(Apo(T)) x 14(Ah,0A( )) and
(Dgh, Dgn, Dgn) € 1*(Ano(T)) x P(Apo(T)) x
ZQ(Ah70(F)), and let f; € 12(H_1(Q)), fo €
PHYQ)) and k € 2(H-Y2()). Suppose
that (uj,B;},0;) € Vigi % thi X Zy g for

i =0,1 are such that |uz||® + Atz | l+1/2H1 <

=0

1+1/2
0, |B? HQ+AtZHB+/H1 < oo
1=0

and

1
16212 + At 10,7212 < oo as by At — 0.
Then the sol(z)ztions (up, By, 07) of (14) sat-
isfies [[upllier2()) + IVanllizge@) < M,
IBallicz2(0)) + IVBullz@ze@)y < M2 and
101102y + IVOlliz(z2()) < Ms, for some
constants My, Mo, M3 > 0.

Proof. Substituting u} = ¢y +EL(gp), 0) = xj+

Eh((jﬁ) and B} = &} —l—E\h(q,’;‘) into (14), then set-

. 1/2 1/2 1/2
tlng (vh7¢h7¢h) = ( ;LH_/ ) Z+ / 7XZ+ / ) and

using the skew-symmetry of ¢ (-, -, ) and co(+, -, -),
we obtain



A decoupled Crank-Nicolson time-stepping scheme for thermally coupled magneto-hydrodynamic system 49

(DCp, CHY2) 4 Prol|VE )2

+ Sd( ( n+1/2) €n+1/27cn+1/2)

< (fTVP ) — (DEW(g)), ¢ )
+ €<I< n+1/2) Cn+1/2>

PT@(VEh( n+1/2) vC.n—l—l/2)

+ e(I(E (~n+1/2)) Cn+1/2)
CI(I(Eh<gZ+1/2)) Eh( n+1/2) C’n+l/2)

— SAZ(Enlg) 7)), Enap ™), ¢
. ( (Cn+1/2) ( n+1/2) Cn+1/2)
_ ( (€n+1/2) = ( n+1/2)) Cn+1/2)
= Zi 1A7'l
(DER, €% 4 Prp|V x &)%)
+ Vgt
+ d( Z+1/2’ Z+1/2 (BZJrl/Q))

< (2T — (DE (). €171
. PTB(V % Eh( n+1/2) V x €n+1/2)
Prp(V - Ey(gy %), v - €117

—  d(E(gy ). 6P T(En (g )

d(En(g n+1/2) £n+1/2 (£n+1/2))
n+1/2
Xn )

+1/2 +1/2 +1/2
P22 < (pt R ey

+ IVxp,
n+1/2)

(Dxy,

- (DEh@i );
~ (VE(@,"
- a(l(E

_ ( ( Tl+1/2) E (64;+1/2)7XZ+1/2)

( n+1/2)) Eh(erl/Q)’ XZJrl/Q)

(15)

Let us next bound each term on the right-hand
side of (15); except the last two. The first five
terms can be estimated using Cauchy/Duality
and Young’s inequalities to obtain

|Z A < ClIETYR 2+ IV ER (g2
=1

~n+1/2 n
+ NZ(EA@ )2 + IDER(E) 1]
r n+1/2 n+1/2
S | L o [ G | [

We estimate Af and A7 using Holder’s,
Gagliardo-Nirenberg and Young’s inequalities as
follows

AZ| = 1 (Z(En(g) ™)), Bn(g) ), ¢ )]
< CIZ(En(gy ™) Lsy

IVEn(g "“/2>|\||c"“/2||L4(m

+ VG B o)

< CIZEET )il Enlg)y ™) h
ch"+1/2||
< CZHE (g )

+ P ||v<"“/2u2

and

AD| = |SA(T(En (g} %), En(qp %), ¢t/
< C|Z(E Nz

IV x En(q "“/2>>||rrc”“/2\|L4(m

C Z |En (g 2)14

1=0
+1/2
+ Drogwerti2)2,

En(gy™

IN

Collecting these estimates in (15)1, we obtain

(DGR, %)+ B IVG P

+ Sd(Z(B n+1/2) £n+1/27cz+1/2)
n+1/2 n
< CllF 2, + ||DEh<gh>u2

n ” n+1/2 _i_z”w z+1/2
2
- Z A PR AR V)
=0
+ g TGP
o ( (Cn+1/2) ( n+1/2) Cn+1/2)
_ ( (£n+1/2) o ( n+1/2) Cn+1/2)

(16)

We employ similar arguments to bound the terms
on the right-hand-side of (15)2 and (15)3 to obtain
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(D)

and

(Dxy , x

_|_
+
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L) Praf v < g2

+ V-t

d(¢rH2 g2 Bty

IN +

n+1/2)2
Clle 22,

+1/2 feay
g I3 1+ IDEn(a)]2,

+

+12 +12
+ gt +Z||“ /

1r]

B d(E ( n+1/2) £n+1/2 (€n+1/2))

h

IDEW@;)I1%,

+1/2 +1/2
||““ /u e AR

).

(17)

n+1/2 n+1/2 n+1/2
T2y L v 212 < ot

(18)

Finally we estimate the last terms in (16)-(18)
using assumption (A4) and Young’s inequality to

obtain

‘Cl( (Cn-‘rl/2>7 ( n+1/2) Cn+1/2)|

+
d( B
<

4
‘ ( (Cn+1/2) = (~n+l/2) n+1/2)’
<

Ve

BV G+ IV G P)
h( n+1/2) €n+1/2 (€n+1/2))|

e |V x g2

P’”B(HV &P+ IV <6 )

+
Sd( Z(&p), En(ay %)), ¢ )
<

P’I’g Hv Cn+1/2||2

P’"BS<||sz” 212 4|V x €77 12)2)

h\dp
+1/2
LV

Xh

Pr2 n— n—
D (wer 1+ v ey,

(19)

where € is a suitably chosen positive constant.

Employing these estimates in (16)-(18), we obtain

(DCy, ¢ 4 Bro v gt

+

Sd(Z(B n+1/2) €n+1/2’cz+1/2)

n+1/2
CllE )2,

n+1/2
IDEA (&) 121 + llg ™13 ¢

2
S (g -+ g )
i:O

IZOGH2)12

2Pr
i+1/2
S (lg Y I3 -

Pra(|\¢n™ 3/2||1+||<" Y22y
Pras(1en =212 4 (16 %)13)

(DEp, &)%) 4 2Brm(||v x g2

n+1/2
+ Vgt
n n+1/2
< Ofrrt, +|| = [
n+1/2
+ IDEu(@)I2, +ug R
n—ui P n—
+ Zu A TR (i
+ e )
Dy n+1/2 v n+1/292 <C n+1/2 2
(DX}, XpT2) + 4o < efll AR,
+ HDEh<qh>u%

2
—i+1/2
+ Zug;” /H;F)]
=1

_l’_

7‘2 n— n—
B (1w ey 2212 + 1w ey 2)12)

(20)

Now summing each of the inequalities in (20) from
n = 2 to m, using the skew symmetry of d(-,-, )
and the telescoping property, we obtain that
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SR+ SIEMZ + It lI?]
- n+1/22
+ AtPry Y [V
n=2

+ TAPreSAL YT, €2

ALY, VTR < M
(21)

for some constant M > 0 by the as-
sumptions. The required stability bound fol-
lows by setting (Cy, &% x,) = (up,BR,05) —
(En(gr), En(ay), En(qy)) and applying triangle
inequality. O

3.2. Error analysis

In this section we discuss the accuracy and conver-
gence of the decoupled Crank-Nicolson scheme.
In the subsequent analysis, we will assume the
boundary data is independent of time for simplic-
ity.

Theorem 2. Suppose that the assumption (A1)-
(A83) hold with a positive number hy and a positive
integer k, that the solution (u,B,p,0) of (1)-(3)
satisfy u € C([0,T); V) N HY0,T; HEL(Q)) N
H3(0,T;L*()), B e C([0,T;H.,,) N
HY0,T;HMY(Q)) n H30,T;L2(Q), 6 ¢

be the errors defined by e}, = u} —

Pffu(tn)7 egh = pg - }fp(tn)v eth = BZ -
P"B(t,) and e}, := 6 — P/0(t,). We first sub-
tract (1) from (14) and obtain

(Duj, — dpu(tyy1/2): vh) + Prg(Vuy ™ Wv,)

b(Vh,p;LH—l/Q) =< Nh,Vh >

Pro(Vu(t,i1/2), Vvn)

b(Vh, p(tn+1/2) ;
b(u;LhLl/2

+ o+ o+

—u(tpy1/2)s7n)
(DB, = 0B(tys172), &n)
Pra[(V x BTV ¥ x ¢y,)
(VB2 V- g)]
= Prp[(VxB(ty11/2),V X @)
(V- B(tns1/2): V- @3)]
<R by >,
00(tny1/2)s n) + (V9Z+1/27V¢h)
= < NPy, > +(VO(tni/2), Vi)

(DOP —

for all v, € Xy, rp € Qp, ¢h € Yh, Yy € Zy, at
each time step n, where Ry NZ and NZ are defined

C([0, T); HY )NH (0, T; HF1(Q))NH3 (0, T; L2(9)) Y

p € C([0,T]; L) N H*()) and that the ini-
tial conditions (uh,Bﬁl,Gz),i = 0,1 satisfy
3o l[w), —u(t:)||+S(Bj, —B(%:)|| 416}, - 0(t:)|| <
chk. Then, for any h € (0,ho] the approzimate
solutions (up, By, 0) of (14) satisfy the following
error estimates

[u = o0 (£2 ()2 () < C(AE + hF),

IB — Bl 2@pnz i 2)) < C(AE + h")
and

10 = Onllioe (L2 ()2 o)) < C(AE + B¥).
for some constant C independent of the mesh size

h and time step At.

Proof. Let (P;u(ty,), Pip(t,)) be the Stokes pro-
jection of (u(tn),p(tn)), let P/"B(t,) be the
Maxwell projection of B(t,) and let P/6(t,) be
the Ritz projection of 0(t,). Let (e}, %, ., €4, el)

<Np,vp > = cr(ultygy2), ultng1)2), va)
— a@ ), ut vy
+ <I< Op %) = 0t e12), Vi)
+  Sd(B(tyi1/2): Btni1/2), va)
— SdEB?), B ),
<§n7¢h> = d(u(tn+1/2)7¢h7B(tn+1/2))
—d(w T g Z(BT)
and
<Ry > = ca(ltygn) O(tnsj) n)

_ CQ(I(U.Z+1/2)7 Z+1/2,wh)-

Using the definition of Stokes, Maxwell and Ritz
projections, we obtain the basic error equations
of the method
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(Del, . vi) + Pro(Veli /% Vvy)

+ b(vhv 63;1/2) =< Ny, vy >
+  (Ow(tny12) — DBju(tn), va)
b(e717,h+1/2 h) = 0

(Dey, . ¢n) + Pro[(V x ef 2.V x ¢)
+ (Voep 2 v g
= (0:B(t n+1/2) —DPB(ty), bp)
+ <R g, >

(Ve 2, Vay) =< Ry, >
_DPhe( n)7¢h)a

(DEZh ) wh) +
+ (00t n+1/2)
(22)

for all Vi € Xh, R € Qh, d)h S Yh, ¢h € Zh,.
We next split the nonlinear terms < Ny, v;, >,

< &f#ﬁh > and < gz,wh > on the right-hand
side of (22) into several terms as follows:

<§;§,¢h >

=d((u(tny1/2) — Pyultnyi2)): @n Bltnti/2)
+d(Pyu(tyi1/2), @ B(tng1/2) — Z(B(th41/2)))
+d(Pyu(tnyi1/2), ép Z(B(tni1)2)
—P"B(tni1/2)))

—d(Pultusi)): éns L(egr %)
(@2, ¢y, T(e %)

—d(e n+1/2,¢h, Z(P"B(tni1/2))

=31 <RV x ¢, >

—d(eiy ", o, Z(el %)

—d(e "H/z,ci)h, Z(P'B(tni1/2) s

<N 4y, >

=co(ultny1/2): 0(tni12) — Prb(tniay2) ¥n)
+ea(ultnriy2) — Z(u(tng/2))

s PrO(tni1/2):¥n)
+ea(Z(u(tny1/2))
s PrO(tniiy2)s¥n)

—ea(T(e}), PrO(t g1 2), vn)
I( n+1/2) n+1/27w )
(

— Z(Pju(t n+1/2))

—ca(Z(eyy,

—co(Z(Piu(tg1/2)) €y /2

=: Zi:l < Ni s Yn >

7¢h)

and

< N, vp >

(tny1y2) — Bpultnyiy2), vi)
U(tny172) — Z(u(tny1/2)), Ppultngi/2), va)
I(u(th/Q))
C1 I(en;;lm)v Pffu(tn+1/2), Vi)

_ ( 1
—e1(Z(P(utys ) e
—e1(Z(e]

n+1/2y  nt1/2
C1 A h )7elh 7vh)

(e
+SB(tpi1/2) X (V x (B(ty41/2)
—P"B(tni1/2))), Vi)
+S((B(tpt1/2) — Z(B(t41/2)))
x(V x P"B(tpi1/2)), Vi)
+S(Z(B(tng172) — P'B(tny12))
x(V x P'B(t n+1/2))>Vh)
—S(Z(ely ) x (V x B Blty412)): v)
e(Z(hy ) vn)
+e(Z(Py0(tny1/2) — O(tng1/2)) Vi)
—S(Z(FBltns1/2)) x (V x ef /), vp)
—S(Z(eg %) x (V x ey %), vi)
= Y12 <N vy, >

—S(Z(en %) x (V x en %), v)

=ci(u(tyy1/2),
+ep (
+ci(

7Vh)

n+1/2
—S(Z(PBltnt1/2)) < (V x e /%), va).
Notice < g, e 711;[1/2 >=< N",e?,fl/? >=<
Ng,ez,jlm >=< N6,e2,j1/2 >= 0 due to skew-

symmetry of tri-linear forms ¢; (-, -, -) and co(+, -, -),

respectively. Therefore, setting vy, = 61: 1/27¢h =

n+1/2, Yp = +1/ into (22) we can write it as

— I(P§U(tn+1/2)7 P}fu(tn+1/2)7 Vh

)
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n n 2 n+1/2
((Dely, ef/?) + Pro|| Vel )2
=(0pu(t,1/2) — DPju(tn), 711;1/2)
n+1/2

0 < NP el >

T S PRI

—S( ( n+1/2) (V « 92:1/2)76?:1/2)

S(T(PBltys1)2) % (V x €5y /%)

et ),

(Del, em /%) + Pra[||V x e /22
HIV - e /21
=(0:B(ty11/2) —
AL < Re el
4—(erll,;'r1/2 X I(eg,;'rl/z), V xe

Hepy 12 X TP Bt 2))

, VX e§;1/2) ,

n n+1/2 n+1/2
(Deyy et 2 + Vel 2|2

n+1/2

DP"B",e;, ')

n+1/2
ey )

:Zizl < Nn7ez}:r1/2 >
HO(tns1)2) — DPLO(t), e P

(23)

By Cauchy-Schwarz inequality, triangle inequality
and Lemma 2, we have

(Opu(tnsr2) — DPRulty), e ?)
< C{(A)¥2(|03ul| 24, 041:12(02))

k
+ hf“(atua 8tp)HLQ(tn,th;(Hk‘Hka)(Q)}

(24)
(8:Bltyi1/2) — DPIB(ty), ey ?)
< C{A 08Bl 2ty 01151202
k n
+ L OB (e ) § e
(25)
and
(80(tns1/o) — DFLO(t), el ?)
< C{(AP2020)| 122, 1 01:12(0)
k n+1/2
L0000 2, iy i
(26)

Using Holders inequality, Gagliardo-Nirenberg in-
equality and Lemma 1, we obtain

+1/2
| <Npef >

< c*lultpsr2)lllaltng2)

= Pru(tyi1/2)lh

n+1/2
<c*h’f||<u Dl e s et 2

+1/2
| <ngef >

< cultpgiy2) — Z(a(tpri/2))ll
IV Pty o) s
+ 1Pt o) o) l€f 2

< ¢*(A1)32||82ul| 2 /2

(tnvt'rﬂ»l;Lz ||el Hl 9

| <Np el s

< | Z(u(tnt1/2))
([1Pa(tns1/2)]l00

n+1/2
+ IVPEu(tysro)lls) e

— I(Pyu(tni/2))lh

+1/2
< RE) (0, )l ey el 2

+1/2
| < Np e >

el A

(IPultnr1y2)lloc + IV B U(tni1/2)lls)

n+1/2
- ey,

+1/2
< <|re1hu+|re’fh1u>u mE2)

We estimate N7 — N7, using Holders inequality,
Gagliardo-Nirenberg inequality and Lemma 1 as
follows

1/2
| < N2, ’f;f/ > |

=[S(B(tns1/2)

x (V x (B(tn+1/2 -

< ClB(tn+1/2)llo0
IB(tnt1/2) —

< hFIIBlle (i sy ll€

m n+1/2
PIBlty1/2) e )]

m n+1/2
PB(t, 1)l llef )

n+1/2||
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<wn e 1 " n
| 87 *1h ‘ Z| <N” e1:1/2>|+z|<NZ’elz-1/2 |
= |S(( ( n+1/2) _I(B( n+1/2))) i=1 =7
X (V X P"B(tys172)), el )] < PP P) et it o)
< CB(tnt12 = Z(B(tny1/2))ll + B0 (it s FE 1)
IV X P B(tysy) s et 2l + (882|970, 07B) | 12(0,4,1:22(2)
k
< (AP0 B (b1 2) | L2t st s1:22(2) + A Blle(e, )i+ cmt)
e + llefyll + llety i
+ llesyll + llesy I+ llefll + ey
n+1/2
ey,
(27)
n+1/2
| <Rz elf? s o
= [S(ZB(tns1/2) — P"B(tns1/2)) We can estimate.N? — NZ Similarl}.l using .Ht')lders
. nt1/2 inequality, Gagliardo-Nirenberg inequality and
x (V x Py B(tn+1/2)) € ) Lemma 1-2 as follows
< ClZ(B(tnt12) — P'B(tpi1y2)ll s
m n N ) n
IV X BBty llel O >JD
< c||u(t, — P?u(t,
< M B tust2)c(n g e = ltnage) = o)
n+1/2 < B (tng1/2) 0ol V X en I
ey, lh
< (W p) (it s )05+ 0
|V x e5 2
| < vaeﬁrlﬂ > | oy
n < CHP 11( n+1 2)”00
x (V x P;TB(tn+1/2)) etn )] ey
" IB(tnt1/2) — IB(tq1/2)ll
< CIVEB(tyi1/2)l13 n+1/2
- IZ(e n+1/2)||” n+1/2||1 - [Vxe |
< C{(At)3/2H3 Bllr2(tn tni1:22()
n+1 2
IV x e
n+1/2 n+1/2y (1 .n+1/2
<Rl > | < Iz el s
| < Ng, an >
<cl|Piu(tys1/2) e
IZ(B(tnt1/2) — P"B(tny1/2)ll
and v n+1/2”

1+1/2
< chF IBllc ([tnstng1); Hk+1)||V X e" / [

| < N1y, el > | < CIT(Pr0(tnsr j2) — O(tnsr2)) |

|| ”+1/2” n+1/2

| <N47egh >|

1/2 1/2
< elZ(eh ) Prutnrs ) |V x €l

Thus, we have Therefore, we have
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4
7 = e { (A0 0Full2
oI RE e > 1 C%( N07al L2 e, 10 0:2200)
=1 3/9 9 + h ”(8tu 8tp)”%2(tn tn+1'Hk+1XHk)
S C{(At) / ||8tBHL2(tn,tn+1;L2(Q)) + h2k||( )H
" (28) W P)le ([t tngr [ HF+1 x HF)
+ R D) et o) iEr+1 xark) + (A1)?|(82, azB)uLg(tn b L)
+ BFIBlle it g i+ |
’n+11 ) n+1/2 + h2k||B||g([tn7tn+1];Hk+1)}
+ ezl + lleq, IV < e, 7
Estimating ﬁ? - &Z similarly, we obtain
1= {(At) HagBHLQ(tn,tnﬂ ;L2(2))
2k
4 h ||atB”L2(tn tna1; Hk+1)
n+1/2
Z | < Nw an > hzk”(u’p>”C([tmtn+1];Hk+1XHk)
1=1

< c{(ADY2)|02u| L2t 0 1512(02)
+ th(u,p, 0)llc ([tntry1];HFH X HF x HEF1)

+1/2
+llep, |+l I Iven )

(29)

+ (A?107BlI T2, 4022

2k 2
+ h HBHC([tn,thrﬂ;HkJrl) } )

Tg = C{ At)3H8t39||Lz tn_17tn+1;L2(Q))

Employing (24)-(29) into (23) and using Young’s
inequality, we obtain

+1/2
eqfh /)

< T +c{llefy]1? + ey,

+ lleg,lI? + lle3, 'I1* + llef, |1

(D(el,) » Pro || weltt/2)2

2

+ (el x I<PmB< n+1/2>>, v x e ?y,
n+1/2 n+1/2 n
e ) 4 [el 22 < 1y
+ef{llen > + e %)

(Dlein) »

(30)

where where

_l’_

2k
h HatHHLQ (tnstnt1;HFHL)

thH (W, 2, Ol ([t b1 1 T TR

(At) H82UHL2 (tn tnt+1;L2(Q)) I

We next add the three equations in (30) and use
the identity (A x B,V x C) =

(Bx (VxC),A)

+ ”92}71“2} to obtain
n+1/2 n+1/2 n+1/2
— S(T(ef ) x (V x ey 12) el )
m n+1/2
= S(Z(P"B(tny1/2)) x (V x e, %)
n n+1/2 n n+1/2
el (D(e}y) , iy /) + S(D(ef,), e5r %)
n n n+1/2
(D(ef,) . ef )+ Bra[||v x e /)2 + (D(ef) e %)
n r n 1/2
+ |V -en )12 < 1y 1 SPra [y x o2
n— n+1/2 r n+1/2
+ C{He3hH2 + HegthQ} +V-e + / H ] P aHv +1/ H2

+1 2
+[|Ve, y 2
1 —1
< el I + e 2 + e 12
+ llem 12+ e M 12 + e, |12

+ 17,
(31)
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"= Z?:l TzT'L
c|(At)?||(o7
(At)*]|(9Fu

w, 9B, 07072, 4. 12
,0'B)

122 022

2k
a1 (Oea, 0B, 00, 00) 72, 4 st ey

thH (u7 b, )HC([tnythrl];Hk'H xHF)

+ o+ o+ o+

h2kHBH?”([tn7tn+1]§Hk+l -

From the assumptions on the solution (u,p, B, 6)
it holds that

N
ALY T < (At

n=1

+ h2ky. (32)

Therefore summing (31) from n = 1 to m and the
discrete Gronwall inequality (Lemma 3), we have
that

llefill® + SHeQ}lH“rHeZ%HQ]

+ PrgAtZ Vel 12|12

n=1

F ALY [ went 22
Z (33)

+ SPrBAtZ IV x el /22

n=1

+ IV el )12
< c((At)* + b2k

The required error estimate now follows from (33)
and triangle inequality. O

Theorem 3. Under the assumptions in Theorem
2, the approximate pressure ph of (14) satisfies
< —— (A + 1P

75 )
for some constant c independent of mesh size h
and time step At.

lp — thl2L2 Q)

Proof. From (22); and the inf-sup condition it
holds that
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n+1/2
Vh, €9y, )

[vall1

{=(Deiy, va)

b(v

VhGXh
<1 sup ;
=8 vpEX), ||VhH1
— P'I“Q(Ve?}j_l/2a vvh)

+ (Ou(tni1je) — DPulty),
+ < NP vy, >
< c{Ipeg, |+ Vel
+ [[0ru(tnia/2) — DPyu(tn)| x, -
+ 2 IR e

+1/2 +1/2
+ 1z %) % (7 x el )] x,
+ HI<Ph B(tn+1/2))

n+1/2
X (Ve ), b

Vi)

(34)

We start estimating [Nl I8
1Z(es ) x (Ve ™) | x,+ and |Z(PPBl(tny1/2)) %

(V x eg;rlﬂ)ﬂxh* below. First, by Holder’s and

Gagliardo-Nirenberg inequalities, we obtain
| <Rg, v > | < c(|Z(F; (u(tny1/2))lloo
+ IVZ(P; (u(tn1/2)))ll )

+1/2
e vl

and

1/2
| < (B (Bltnsa2)) x (V x e %), vi > |
1/2
< CIZ(B (Bltns1 /) loclIV x €l v -
Before estimating the other two terms, notice that

by the inverse estimate (Assumption (A3)) and
(33), we obtain

el 2l < ¢ min{a~ e}, 2 llely %1}
< cmin{h~1(At? + hF)
, (A~ A2 + rR)}
<c
(35)

Similarly, we can show

IV x el 2 <. (36)

Therefore, by Holder’s, Gagliardo-Nirenberg in-
equalities and (35)-(36), we obtain
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+1/2 +12
| <R, vy, > | < el Z(eh ) hle

[vhlh
n+1/2

< Z(ey, lallval

and

< T(el %) x (V x el /?) vy, >
—+1/2
< c|[Z(el )]V x
Ivall1

+1/2
< |3 lval -

—+1/2
x ey 2|

Estimating other terms in (34) as we did in the
proof of Theorem 2, we obtain

1/2 1/2
les 2 < e {IDet, |+ [Vefy 2]
IV x el 2+ |z )|
+1/2 +1/2
HIZE )+ 12 )L
FIZET )+ el

+ (A)3/2 + hF +

(37)

Vs )

The required error estimate now follows from last
inequality by using Theorem 2 and triangle in-
equality. O

The error estimate for the pressure in the previous
theorem can be improved under stronger regular-
ity properties of the solution. To this end, we next
derive optimal order error estimates for the time
derivatives of velocity, magnetic field and temper-
ature.

Corollary 1. Suppose the
Theorem 2 hold. Moreover,
H2(0,T;HY(Q)) and 6 € H2*0,T;HY(Q)).
In addition, assume the initial conditions
(i, BY,05) i = 0,1 satisfy 3,_ |[u(t;) — ajls .
Sizo IB(t:) = Byl Sig 10(t:) — Gl < cht
and b(uj,ry) = 0, Vry € Q. Then for any
h € (0, ho| the approzimate velocity u}}, magnetic
field By and temperature 0} satisfy

assumptions of
assume u,B €

Hé?tu — 'Duhle(Lz(Q)) < C(At2 + hk) ,

10:B — DBy li2(2(y) < (A2 + hF),
and

H(‘)te — DehHZZ(LZ(Q)) < C(AtQ + hk) ,

for some constant c independent of the mesh size
h and time step At Moreover, we have

Hu - Uh”loo(Hl(Q)) S C(AtQ + hk) N

16 = Onlioe (711 () < (AL + hF),
and

IB = Ballie (a1 () < c(AL* + hF)
for some constant c independent of the mesh size
h and time step At.

Proof. Putting v, = D(el,), o = D(e},), Y =
D(e},) into (22) and splitting the nonlinear terms
as in the proof of Theorem 2, we obtain

(|| D(efy)|I* + ProD([|[Vel,[1?)
= (Oru(tpy1/2) — D(Ppultn)), D(eyy))
= Zzlil < N?vp(e?h) > )

| D(egy,)|I> + Pre[D(|V x e, |1%)
+D(||V - e, [I*)]

= (0:B(tn11/2) — D(P"B(tn)), D(eyy,))
+ 30 < RP D(el, >,

I D(ep)lI? +D(IVe,)|?)
= (040 (tns12) — D(PLO(tn)), D(efy))
+ 30 <RED(e,) >

(38)

Let us start estimating < N D(ef,) > for
1 =1,...,14. First using Holder’s inequality and
Gagliardo-Nirenberg inequality, we obtain

| <RT,D(ef,) > |

<c([ultnri/2)lloo + IVultyiiy2)lles)
[a(tni1/2) = Pyultngi2) 1] D(ef,)l

| <R3, D(ef,) > |

< cllu(tnt1/2) = Z(altny1/2))lh
([Ppu(tni1/2)lloe + IVE u(tniay2)llzs)
[ERCHRIE
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| <Ry, D(ef) > |
< c(lPgatpris2)llco + [IVPFltyi1)2)lLs)
[Z(u(tns1/2) = Pultngay2)) [Dlegy)ll,

| <N}, D(efy,) > |
< e(|Piultn1/2) oo + IV Bty )]l 15)
1z A D)

and

g, D(eyy,) > |
< (||I(P U(tni1/2)lloo + [IVI(Fa(tyr1/2))l13)
- llefn I lIDCegy)ll -
From the inverse inequality (Assumption (A3))

and Gagliardo-Nirenberg inequality, it follows
that

< ch™5|gnlls Von € X
(39)

[6nlloo + IV Rl L3 (0)

Using (39), we estimate < 8¢, D(ef,) > as below

| <XgDef,) > |
< [IZ(e} ) oo + IVZ(e}y )]l 2]
el el

<l Pz el ) hs

D)l -

Alternatively, we can estimate < N§,D(el}) > as
follows

(40)

| <G, D(ef) > |

+1/2
= ‘ﬁcl(z(e?h / ), €lh: €1y 1)’

+1/2
+ ke (e,

* +1/2
< £ |z(el

Combining (40) and (41), we have

(41)
ey, L eyl

lle,llallet; il -

n n n+1/2 n
| < N2, D(e},) > | < vl (el ) D eer,)l
+ (et ],
(42)
where
Yo = min{h~5, (A3l Pl (43)

Estimating other terms as before, we obtain

| <RZ D(e},) > |
<[ B(tny1/2)lloolB(tns1/2) —
ID(er)ll

B B(tny1/2)lh

| < Ng,'D(e?h) > |
< ||B(tnt1/2) — Z(B)(thi1/2) 1
|V X P"B(tyq1/2) s 1Pl

| <Ng,D(e},) > |
< c|Z(B(tns1/2) — P'B(tng12)lh
IV x PB| 3oyl D(efu)ll

| < N%:D(e?h) > |
1/2
< | Z(eB IV X PEB(tn 12|50y
ID(ep)I

n n n+1/2 n
| < NPy, D(efy) > | < el Zle D)

| < N?%D(e?h) > ‘
< CIZ(P;0(tnga/2) —
ID(eT)l

O(tnr1/2)ll

| < Xy, D(e) > | < | Z(PB)]|oo
+1/2
IV x st 21 IDeer,)ll -

Estimating as we did with < 8¢, D(el}) >, we get

~ +1/2
| < N2, D(eh) > | < Anll (e )]
IID(en,)ll

. -
+ > o ety Il

where
T = min{h" 5, (A)” 2 }|lef 2y

Let us next start estimating &\1 — &6. First, we
rewrite them using integration by parts formula
and then we estimate them using Holder’s in-
equality and Gagliardo-Nirenberg inequality



A decoupled Crank-Nicolson time-stepping scheme for thermally coupled magneto-hydrodynamic system 59

| <R,V x D(e,) > |
< [|B(tns1/2)lloo + IV X B(tnt1/2) 23]

[ty r1/2) — Pr(altngi2) 1l Des,)]l

| <R5,V xDley,) > |
< | Ppultnras)lioo + VP tns1/2) o)
IB(tnr1/2) — Z(B(tny1/2))lh

ID(ezn)ll

| <R2,V xD(e},) > |
< [[|Pjulloc + IVE; (a(tri1/2)l 3(0)]
IZ(B(tnt1/72) — P B(tni1/2) 1D (eg)l

N2,V x D(ey,) > |

<ec [uPh W(tni1/2)loo + IV PRty 11 2)] (o))
n+1/2 n

1z A IDen)l

| < N2,V x D(e,) > |

< I Z(P"B(tni1/2)) oo

+ [IVZ(P"B(ty41/2) 23 ()]

+1 2
el P D) -

Estimating as we did with < R, D(ef,) >, we
get

| <RZ,V x D(e,) > |

+1/2
< evalZ(el )L DR,
+ 0o ek I,

where v, is defined as in (43). Finally, we estimate
Nl Ng as follows

| < g?ﬂfp(dfh) > |

< c(lutngi/2)lloo + IV xultyri1/2)llrs)
10(t1/2) — P (0(tn12) 1 1DEG)

| < ggvtD(eZh) > |

< c([[Pr0(tng12) oo + VP (O(tni1/2)) lL3(02))

la(tyt1/2) — Z(a(tny12) I DEG)I

| <N§.Dey,) > |

< el Z((u(tni1/2) — Pr(altnia/2))lh
(1PR0(tns1/2) loo + IV PE (O(tns1/2)] L3 ()
DRI

| < N”,D(ejfh) > |
< c(I1PF0(tns1/2)loo + IVELO(tny1/2) L3 (0))
- zel D)l

| < RE,D(ely) > |

< [[|IZ(Pyu(tni1/2))lleo

+ [|VZ(Pa(ty1/2) 23]
e Pl -

Estimating as we did with < R}y, D(e},,) >, we
get

| < NI, D(ef,) > |

~ n+1/2 n
< ATl AP E)]
+ el

where ¥, := min{h~%,(At)"2}|le}, 2|, . Em-
ploying these estimates in (38), we can write it
as

G 52D (|| Ve, %)

(RT3
BRIl 213

an)a

Pra[D(|V x e, [1?)

D(|V - e, %))

e {@n +21Z(es)I3} |

1D(| Ve, )

c{an +TalIZ(e})IT}
(44)

+

IN

3ID(e5)]

N+ + o+

31D(e)I?

IN +

where
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o (At)3 ||83u||L2 (tn tn+1;L2(2))

2k
h H(atu 8tp HLQ(tn,tn+1;Hk+1><Hk)

h2k ” (u,p) HC([tn,th];H’““ x Hk)

W2 EIBIZ (1 o ibe1)
RPRNONZ (e s o)
(At)? H82BHL2 (tn tnt 1 H(Q))
(At)*||07 U‘HL2 (tn tnt 1 HL(R))

>iolllels, 1% + llef 151 + |

n+1/2||2
1

+ o+ o+ + o+ + o+t

I
an = (At)? ||83BHL2 (tnotnt1;L2())

h2k
\atBHH (tn,tng1;HFFL)
h2k [|(u, p) ||c([tn,tn+1];H’chl xHF)

(At)? ||82BHL2 (tnstnr1;HL ()

X
4

+ h%HB”?z([tn tny1;HEHL)
L

+ X olllet I3 + ek, 13,
an = W02 o gy
(APN0FON 24, 4111 (2)
g [
(At)?|070175,,,

hzk || (u7p> ||g’ [tn tn_H].Hk-H ><Hk)

+1/2
S e 12 + [le )12

Notice that by (33) and (43), we have that

tn+1;L%(92))

+ o+ + + o+

N N
. _4d _ i
ALY 42 <min{h~5, (A1) 2}ALD |l |13

=1 i=1

< cmin{h~%, (At)"2} (A2 + (AD)Y)

< cmin{h?~5 + (A)2)

<ec.

(45)
Similarly, we can show that
N N

AtY 7 <c and Aty FP<ec.  (46)

i=1 =1

Using the regularity properties of the solution
(u,p,0) and (33), we obtain
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and

At At
AN G < e((At)* + h2F).

-1 @i, 1011

(47)

Summing (44) from n = 1 to m and the assump-
tions about initial conditions (uj,Bj,0}), i =
0,1, we obtain

IVeTill® + pry At 35, [1D(efy)]1”

< ef P AT 2T (eI
P ALY AT el
(At)* + h?F}

IV - el

P?“B Aty HD(egh)HQ
ot AL AT,
(At)4+ th} :
AL [D(e,)2
c{ant s FIT(el,) 7
(At)* + h?F}

IV > e 12

IA ++++

Ve I?

IN 4+ +

_l’_

(48)

The required results now follows from (45), (46)
and (48). O

Corollary 2. Suppose the assumptions of Corol-
lary 3.8 hold. Then the approxrimate pressure

PZH/Q in (14) satisfies
1P = palliz2) < c(A? + hF).

Proof. We provide only a sketch of the proof of
this Corollary as it is similar to the proof of The-
orem 2. It follows from (3.35) that

At||Def, |[* < e((At)" + h*F). (49)

Therefore using (49) in (37), we obtain the re-
quired estimate. O

4. Numerical results

In this section, we present a numerical example
to illustrate the theoretical results of the previ-
ous section. We set © := (0,1) x (0, 1) and choose
the standard piecewise quadratic finite space for
approximating the magnetic field and tempera-
ture. We also choose the Taylor-Hood element
pair, i.e., continuous piecewise-quadratic and con-
tinuous piecewise linear finite element space for
the fluid velocity and pressure approximations,
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respectively. Uniform triangular meshes are cre-
ated by first dividing the rectangular domain €2
into identical small squares and then dividing each
square into two triangles. We set the exact solu-
tions to

u=((y+y’)e " (z+a%)e )

B = ((sin(y) + y)e !, (sin(z) + z)e™?)

p=(z+y)e"’

0=(1+azy)e".

The right-hand side data in the MHD system, ini-
tial conditions and boundary conditions are then
chosen correspondingly. For simplicity, we set the
parameters Pry, S, Prpg, Ra equal to 1.0. In or-
der to determine the order of convergence o with
respect to the time step At, we fix the spatial
spacing h and use the following approximation

IVh arle, t) = v, a1, )]

a =~ log, (50)

vy, a0 (2, tn) = v, ac (2, N )|

A set of values of « are listed in Table 4.1 with
a fixed spacing h = 1/32 and varying time step
At =1/20,1/40,1/80,1/160,1/320, which clearly
suggest the concerned orders of convergence in
time are all O(At?) for the decoupled scheme.
Thus, the numerical experiments clearly suggest
that the orders of convergence in time in error es-
timates in Theorem 2 for the L?— norm of u, B
and 6 are optimal.

Table 1. Convergence order of
O(Ata) of the partitioned

scheme at time tN = 10, with
1
the fixed spacing h = 32

| At [ u(tn) —uf] | Order |
1/20 [4.13475 x 10> |-
1/40 | 1.0724423 x 107° | 1.9469
/80 [ 0.2699941 x 10~ | 1.9899
1/160 | 0.0675874 x 10~° | 1.9981
1/320 | 0.0169062 x 10~ | 1.9992

| At [[B{tn,) =B} [ Order |
1/20 [3.92644 x 107> |-
1/40 [0.9977026 x 10" | 1.97654
/80 [0.2512598 x 10> | 1.98943
1/160 | 0.0630024 x 107> | 1.9957
1/320 [ 0.0157597 x 10> | 1.99916
| At [ [0(t) — 07| | Order ‘
1/20 | 3.659835 x 10~ | -
1/40 |0.9312186 x 107° | 1.9745867
/80 | 0.2344775 x 107° | 1.98967
1/160 | 0.0588082 x 10> | 1.99536
1/320 | 0.0147111 x 107> | 1.99911
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