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1. Introduction

This study deals with the optimal control prob-
lem of the stationary Stokes equation. Numerical
solution of the Stokes equation needs some extra
caution due to the coupling of velocity and pres-
sure. Finite element methods are mostly used
for the solution of Stokes equation but inaccu-
rate pressure singularities are encountered unless
some stable finite element pairs are used for the
standard Galerkin finite element approach. Sta-
ble finite element pairs are chosen as they satisfy
the so called inf-sup condition to overcome such
problems. This condition, in particular, does not
allow the use of simple interpolations like equal
order ones, which are desirable from a computa-
tional view point [6]. Thus, if one uses such sim-
ple finite element pairs, a pressure stabilization
mechanism must be cast to the system in order
to avoid pressure singularities.

In most of these stabilized methods, one adds
some extra terms to the discrete variational form
of the problems to ensure stability. The first

and most well-known stabilization technique ap-
plied on a Stokes system is the Brezzi-Pitkaranta
method [8], which is considered in this study
to stabilize the optimal control problem. This
method adds a weighted Laplace operator on the
pressure space, which results in an optimally con-
vergent scheme for equal order finite element ap-
proximations [5]. Some other popular methods
are GLS method [13], SUPG method along with
PSPG method [9], the Douglas-Wang method
[12], bubble function method [4], Pressure Gra-
dient Projection methods [11] and VMS meth-
ods [20]. Some of these stabilization methods are
transferred to the Navier-Stokes systems as tested
in Stokes flows and demonstrate a good success.
Thus, Stokes flow problems bears a great impor-
tance as it plays a role as a test bed for more com-
plicated and convective problems such as uncou-
pled and coupled Navier-Stokes systems. Mak-
ing use of the Brezzi-Pitkaranta stabilization for
the control of the Stokes equation is advantageous
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since it doesn’t require numerical residual explic-
itly as in GLS methods and thus, strong differen-
tial formulation of the problem is not needed. The
Brezzi-Pitkaranta stabilization technique also will
not require extra regularity conditions as in some
well-known stabilization procedures [19].

There are various studies in the literature con-
cerning the optimal control of flow problems.
In [25], a discontinuous galerkin finite element
method (DG) with interior penalties for the op-
timal control problem of the convection-diffusion
equation was studied and in [18], an edge stabi-
lized galerkin finite element method for the same
optimal control system was considered. More-
over, local error estimates for SUPG solutions of
advection-dominated elliptic linear-quadratic op-
timal control problems was studied in [17]. Simi-
larly, the local (DG) for optimal control problem
governed by convection-diffusion equations was
analyzed in [27]. In [14], authors presented an
analysis concerning the optimal control of fully
discretized Stokes equations and a priori error
analysis of the same optimal control system are
presented in [23]. In most similar studies, re-
searchers choose inf-sup stable finite element pairs
for velocity and presuure approximations. The
originality of this study comes from the idea
of combining the pressure stabilization technique
and optimal control problem of Stokes problem
with unstable and lower order finite element pairs.
To the best of the authors knowledge, this is the
first study on optimal control problem of Stokes
equations including the Brezzi-Pitkaranta stabi-
lization applied on an equal order finite element
interpolations.

In this work, we use Lagrange approach to get
the first order optimality conditions. Then, we
formulate the discrete optimal control problem.
Stabilization terms are added to both weak for-
mulations of the discrete state and adjoint vari-
ables. In order to solve the optimal control prob-
lem, we use a gradient descent type algorithm. In
the numerical example, one can easily see the ef-
ficiency of the stabilization for both the state and
the adjoint variables.

The organization of the paper is as follows: We
first give some notational notes and mathematical
preliminaries in order to define the problem and
its variational form. Then, we give the finite el-
ement discretization of the optimal control prob-
lem and prove the stability properties. A priori
error analysis of the control problem is proceeded
in the following section. We conclude our study
with a numerical example.

2. Problem Formulation and Optimal

Control Problem

In this work, we consider the optimal control
problems governed by the Stokes equations. Let
Ω be a bounded polygonal domain in R

d, with
d = 2 or 3, and its Lipschitz boundary be Σ =
∂Ω. Then, we state the distributed control prob-
lem as:

min J(y, u) =
1

2
‖y − yd‖

2
Ω +

β

2
‖u‖2Ω (1)

subject to − ν∆y +∇p = u in Ω,

∇.y = 0 in Ω, (2)

y = 0 on Σ,

where y : Ω 7→ R
d is the fluid velocity, p : Ω 7→ R

denotes the pressure and u is the control variable.
The kinematic viscosity is denoted by ν > 0.
Here, β > 0 stands for the regularization param-
eter and yd is the desired state.

We follow the well-known Lagrange approach [21]
to get the first order optimality conditions. We
let λ denote the adjoint variable that satisfies

subject to − ν∆λ+∇ξ = y − yd in Ω,

∇.λ = 0 in Ω, (3)

λ = 0 on Σ,

and
βu+ λ = 0 in Ω, (4)

where ξ : Ω 7→ R.

We use the standard notations for Sobolev and
Lebesgue spaces as in Adams [3] throughout the
paper. We denote the velocity space by Y =
H1

0 (Ω), the pressure space by Q = L2
0(Ω) and the

control space U = L2(Ω). The usual norm in
L2(Ω) is denoted with ‖.‖ and the norm of H1(Ω)
space is shown with ‖.‖1. We would like to recall
here the dual space of Y = H1

0 (Ω), namely the
space H−1(Ω) equipped with the −1-norm

‖z‖−1 = sup
y∈Y

| < z, y > |

‖y‖1
. (5)

Here, < ., . > denotes the duality pairing. We in-
troduce the following bilinear forms in order to
define the variational form of the problem, for
y, v ∈ Y and q ∈ Q:
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a(y, v) = ν

∫

Ω
∇y : ∇vdx,

d(v, q) =

∫

Ω
q∇ · vdx.

Now, the weak forms of the equations (2) and (3)
read as: Find y ∈ Y , u ∈ U and q ∈ Q satisfying

a(y, v)− d(v, p) + d(y, q) (6)

= (u, v), ∀(v, q) ∈ Y ×Q,

for the state part. For the adjoint equation, the
problem is: Find λ ∈ Y and ϕ ∈ Q satisfying

a(λ,w)− d(w, ξ) + d(λ, ϕ) (7)

= (y − yd, w) ∀(w,ϕ) ∈ Y ×Q.

Assuming the solution operator S : U 7→ H1
0 (Ω)∩

H2(Ω), we define the reduced cost function:

J(y, u) = J(S(u), u) := j(u),

where S(u) solves the auxiliary problem

a(y(u), v)− d(v, p) + d(y(u), q) (8)

= (u, v) ∀(v, q) ∈ Y ×Q.

Optimality conditions give the gradient equation
as

j′(u)(ũ− u) = (λ(u) + βu, ũ− u), ∀ũ ∈ U, (9)

with λ(u) solves the following system:

a(λ(u), w)− d(w, ξ) + d(λ(u), ϕ) (10)

= (y(u)− yd, w) ∀(w,ϕ) ∈ Y ×Q.

We can use the second order sufficient optimality
condition to get the positive definiteness of the
reduced hessian [21, 26]:

j′′(u)(δu, δu) ≥ α ‖δu‖2L2(Ω) ∀δu ∈ U. (11)

We would like to note here that, unless stated oth-
erwise, the letter C will stand for a generic con-
stant, which is independent from the mesh size h
throughout the entire paper.

3. Discretization

In this section, we will discretize our continuous
problems using a finite element approach and the
Brezzi-Pitkaranta stabilization term will appear
in discrete variational problem. We let Y h ⊂
Y ,Qh ⊂ Q and Uh ⊂ U be the finite element
spaces with a quasiuniform triangulation τh of Ω.
The corresponding triangles of the domain are de-
noted by K1,K2, ...,Kn. We let hi = diam(Ki)
and h = max{h1, h2, ..., hn}. We consider Y h and
Qh to be the spaces of continuous piecewise linears

(P1-P1 pair), which is an unstable pair known not
to satisfy discrete inf-sup condition. We also make
the standard assumptions that the finite element
spaces satisfy the following approximation prop-
erties:

inf
yh∈Y h,qh∈Qh

{

‖(y − yh)‖+ h‖∇(y − yh)‖

+h‖p− qh‖
}

≤ Ch2(‖y‖2 + ‖p‖1), (12)

for (y, p ∈ (Y ∩H2(Ω), Q ∩H1(Ω)). We also as-
sume that the control variable u satisfies

‖u− ũ‖ ≤ Ch2‖u‖2 for u ∈ U ∩H2(Ω), (13)

where ũ is the L2 projection from U to Uh. Now,
the finite element scheme considered for the opti-
mal control problem here reads as follows: Find
yh, λh ∈ Y h, uh ∈ Uh and qh, ξh ∈ Qh such that

min J(yh, uh) =
1

2

∥

∥

∥
yh − yd

∥

∥

∥

2
+
α

2

∥

∥

∥
uh

∥

∥

∥

2
(14)

subject to

a(yh, vh)− d(vh, ph) + d(yh, qh) + c(ph, qh)

= (uh, vh), ∀(vh, qh) ∈ Y h ×Qh, (15)

a(λh, wh)− d(wh, ξh) + d(λh, ϕh) + c(ξh, ϕh)

= (yh − yd, w
h) ∀(wh, ϕh) ∈ Y h ×Qh.

(16)

Here, the terms c(ph, qh) and c(ξh, ϕh) stand for
the Brezzi-Pitkaranta stabilization. α is a positive
parameter and c(., .) is a mesh dependent bilinear
form, which is defined by

c(ph, qh) = α

n
∑

i=1

h2i

∫

Ki

∇ph.∇qhdx ∀ph, qh ∈ Qh,

and assumed to satisfy following properties [19]:

i. c(ph, qh) is defined for all ph, qh ∈ Qh.
ii. c(qh, qh) = α[qh]2, ∀qh ∈ Qh is a mesh

dependent norm.
iii. c(ph, qh) is continuous in the sense that,

c(ph, qh) ≤ [ph][qh].
iv. For ∀yh ∈ Y h, qh ∈ Qh; ∃ a positive con-

stant γ, which is independent from h and
satisfies

d(yh, qh) ≤ γ
1

hk

∥

∥

∥
yh

∥

∥

∥
[qh], k = 1, 1/2.

v. ∃c0, a positive constant independent from
h, such that

∀qh ∈ Qh [qh] ≤ c0h
k
∥

∥

∥
qh
∥

∥

∥

1
, k = 1, 1/2.

Similar to continuous case, we can define the dis-
crete solution operator Sh such that Sh(u) =
yh(u). Then, there hold

j′h(u)(ũ−u) = (λh(u)+αu, ũ−u), ∀ũ ∈ U, (17)
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and

j′′h(u)(δu, δu) ≥ α ‖δu‖2L2(Ω) , ∀δu ∈ U. (18)

The discrete auxiliary problem in variational for-
mulation follows as:

a(yh(u), vh)− d(vh, ph) + d(yh(u), qh) (19)

+c(ph, qh) = (u, vh) ∀(vh, qh) ∈ Y h ×Qh,

a(λh(u), wh)− d(wh, ξh) + d(λh(u), ψh)

+c(ξh, ψh) = (yh(u)− yd, w
h)

∀(wh, ψh) ∈ Y h ×Qh. (20)

Now, we will obtain the stability results for both
state and adjoint state variables in the following
lemma.

Lemma 1. The discrete state and adjoint state
variables (15)-(16) are stable and there hold

ν
∥

∥

∥
∇yh

∥

∥

∥

2
≤ Cν−1

∥

∥

∥
uh

∥

∥

∥

2
, (21)

and

ν
∥

∥

∥
∇λh

∥

∥

∥

2
≤ Cν−1

∥

∥

∥
yh − yd

∥

∥

∥

2
. (22)

Proof. We let vh = yh in (15) to get

a(yh, yh)− d(yh, p) + d(yh, q) = (uh, yh).

We choose q = p and applying the Cauchy-
Schwartz and Young’s inequalities we get the de-
sired result for the state part. We proceed the
similar argument for the stability of the adjoint
state variable.

�

4. Finite element error analysis

In this section, we derive the error estimates for
the control, state and adjoint state variables.

Lemma 2. Let (y(u), p) and (yh(u), ph) be solu-
tions of (6) and (19), respectively. Then, we have

ν‖∇(y(u)− yh(u))‖2 + [p− ph]2

≤ inf
ỹ∈Y h,p̃∈Qh

C

{

ν−1 ‖∇(y(u)− ỹ)‖2 + ν−1 ‖(p− p̃)‖2

+ h−1 ‖∇(y(u)− ỹ)‖2 + [p− p̃]2 + [p]2
}

.

Proof. We subtract (19) from (6) via the same
test functions vh, qh. Thus, we get the error equa-
tion

a(y(u)− yh(u), vh)− d(vh, p− ph) +

d(y(u)− yh(u), qh)− c(ph, qh)

= 0, ∀(vh, qh) ∈ Y h ×Qh.

Now we split the error term y − yh(u) as y −
yh(u) = y − ỹ − (yh(u) − ỹ) = η − φh, where
ỹ is the best approximation of y in Y h. So the
error equation becomes:

a(η − φh, vh)− d(vh, p− ph)

+d(η − φh, qh)− c(ph, qh) = 0.

Rearranging the new error equation and adding
and subtracting c(p, qh) with the test function
choice vh = φh yield:

a(φh, φh) = a(η, φh)− d(φh, p− ph)− d(φh, qh)

+d(η, qh) + c(p− ph, qh)− c(p, qh).

Splitting the error in the pressure in a similar
manner gives p− ph = p− p̃− (ph − p̃) = ζ − ψh,
where p̃ is the best approximation of p in Qh.
Then, we have

a(φh, φh) = a(η, φh)− d(φh, ζ − ψh)− d(φh, qh)

+d(η, qh) + c(ζ − ψh, qh)− c(p, qh).

Picking qh = ψh gives:

a(φh, φh) + c(ψh, ψh) = a(η, φh)− d(φh, ζ)

+d(φh, ψh)− d(φh, ψh) + d(η, ψh)

+c(ζ, ψh)− c(p, ψh) = a(η, φh)− d(φh, ζ)

+d(η, ψh) + c(ζ, ψh)− c(p, ψh). (23)

We now estimate absolute value of each term
at right-hand side of (23) separately. By us-
ing Cauchy-Schwartz and Young’s inequalities we
have:

∣

∣

∣
a(η, φh)

∣

∣

∣
≤ ν ‖∇η‖

∥

∥

∥
∇φh

∥

∥

∥

≤
ν

4

∥

∥

∥
∇φh

∥

∥

∥

2
+ Cν−1 ‖∇η‖2 ,

∣

∣

∣
−d(φh, ζ)

∣

∣

∣
≤ C ‖ζ‖

∥

∥

∥
∇φh

∥

∥

∥

≤
ν

4

∥

∥

∥
∇φh

∥

∥

∥

2
+ Cν−1 ‖ζ‖2 .

Making use of Poincare-Friedrich’s inequality and
property (iv) of the bilinear form c(., .), we have

∣

∣

∣
−d(η, ψh)

∣

∣

∣
≤ Ch−1/2 ‖∇η‖ [ψh]

≤
1

6
[ψh]2 + Ch−1 ‖∇η‖2 .
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For stabilization terms, we use the properties
along with the usual inequalities to get:

∣

∣

∣
c(ζ, ψh)

∣

∣

∣
≤ [ζ][ψh] ≤

1

6
[ψh]2 + C[ζ]2,

and
∣

∣

∣
c(p, ψh)

∣

∣

∣
≤ [p][ψh] ≤

1

6
[ψh]2 + C[p]2.

Rearranging the error equation with obtained
bounds will result:

ν

2

∥

∥

∥
∇φh

∥

∥

∥

2

+
1

2
[ψh]2 ≤

C
{

ν
−1 ‖∇η‖2 + ν

−1 ‖ζ‖2 + h
−1 ‖∇η‖2 + [ζ]2 + [p]2

}

.

Making a final use of triangle inequality gives the
desired result now.

�

Lemma 3. Let (λ, ξ) and (λh(u), ξh) be solutions
of (10) and (20), respectively. Then, we have

ν‖∇(λ(u)− λh(u))‖2 + [ξ − ξh]2 ≤ inf
λ̃∈Y h,ξ̃∈Qh

C

{

ν−1
∥

∥

∥
∇(λ(u)− λ̃)

∥

∥

∥

2
+ ν−1

∥

∥

∥
(ξ − ξ̃)

∥

∥

∥

2

+ h−1
∥

∥

∥
∇(λ(u)− λ̃)

∥

∥

∥

2
+ [ξ − ξ̃]2

+[ξ]2 + ν−1
∥

∥

∥
∇(y(u)− yh(u))

∥

∥

∥

2
}

.

Proof. We omit the proof since it is very similar
to the previous case. �

In order to get an estimate for the control vari-
able, we need a relation between the discrete con-
tinuous and auxiliary solutions for both state and
adjoint state equations.

Lemma 4. If (yh, ph) and (yh(u), ph) be solutions
of (15) and (19), respectively. Then, there holds

ν
∥

∥

∥
∇(yh − yh(u))

∥

∥

∥

2
≤
C

ν

∥

∥

∥
u− uh

∥

∥

∥

2
. (24)

Similarly, if (λh, ξh) and (λh(u), ξh) be solutions
of (16) and (20), respectively. Then, there holds

ν
∥

∥

∥
∇(λh − λh(u))

∥

∥

∥

2
≤
C

ν

∥

∥

∥
yh − yh(u)

∥

∥

∥

2
. (25)

Proof. For the state part, we subtract (19) from
(15). Since the pressure terms are independent of
the control, the proof is trivial. �

Lemma 5. The first derivative of the reduced cost
function for the continuous and the discrete cases
satisfy

‖j′(u)(δ)− j′h(u)(δ)‖ ≤
∥

∥λ(u)− λh(u)
∥

∥ ‖δ‖

∀u, δ ∈ U. (26)

Proof. The result is obtained by using Eqns. (9)
and (17) directly. �

The following lemma gives the error estimate for
the control variable u [5].

Lemma 6. Let (u, y) and (uh, yh) be solutions to
(6) and (15), respectively. Then, we have
∥

∥

∥
u− uh

∥

∥

∥
≤ ‖u− ũ‖+

1

α

∥

∥

∥
λ(u)− λh(u)

∥

∥

∥
,

ũ ∈ U, (27)

where λ(u) and λh(u) are solutions to (7) and
(20), respectively.

Corollary 1. The error in state variable y satis-
fies:

ν‖∇(y − yh)‖2 + [p− ph]2 ≤ inf
ỹ∈Y h,p̃∈Qh

C
{

ν−1 ‖∇(y(u)− ỹ)‖2 + ν−1 ‖(p− p̃)‖2

+h−1 ‖∇(y(u)− ỹ)‖2 + [p− p̃]2 + [p]2 (28)

+ν−1
∥

∥

∥
u− uh

∥

∥

∥

2
}

.

Proof. The corollary is the combination of
Lemma (2) and Lemma (4). �

Corollary 2. The error in adjoint state variable
λ satisfies:

ν‖∇(λ− λh)‖2 + [ξ − ξh]2 ≤ inf
λ̃,ỹ∈Y h,ξ̃,p̃∈Qh

C
{

ν−1 ‖∇(y(u)− ỹ)‖2 + ν−1 ‖(p− p̃)‖2 + [p]2

+[p− p̃]2 + h−1 ‖∇(y(u)− ỹ)‖2 + ν−1
∥

∥

∥
u− uh

∥

∥

∥

2

+ν−1
∥

∥

∥
∇(λ(u)− λ̃)

∥

∥

∥

2
+ ν−1

∥

∥

∥
(ξ − ξ̃)

∥

∥

∥

2
+ (29)

h−1
∥

∥

∥
∇(λ(u)− λ̃)

∥

∥

∥

2
+ [ξ − ξ̃]2 + [ξ]2

}

.

Proof. The proof is just a combination of the re-
sults of Lemma (3) and Lemma(4). �

We are now in a position to state approxima-
tion results. We give corollaries for each variable.
We first assume that y, u, p, λ, ξ are sufficiently
smooth, before stating the approximation results.

Corollary 3. The control variable u satisfies

‖u− uh‖ ∼= O(h1/2).

Proof. Making use of approximation assump-
tions (12), (13) and property (v.) of the bilinear
form c(., .) in Lemma 6, we get

‖u− uh‖ ≤ C(u)h2 + C(ν−1, α−1, y, λ, p, ξ)h1/2,

which completes the proof. �
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Corollary 4. The adjoint state variable λ satis-
fies

ν‖∇(λ− λh)‖2 + [ξ − ξh]2 ∼= O(h).

Proof. The proof is similar to the previous case,
which is stated for u. �

Corollary 5. The state variable y satisfies

ν‖∇(y − yh)‖2 + [p− ph]2 ∼= O(h).

Proof. The proof is similar to the previous cases,
which are stated for u and λ. �

Remark 1. By the property (v.) of the bilin-
ear form c(., .), the norm [ . ] is approximated as

h1/2 ‖.‖1. Thus, the pressure error terms at left-
hand side of all error relations does not give any
convergence for pressure. Since pressure is not
guaranteed to be unique, this situation is expected.
However, the discrete pressure remains bounded
in any case [19].

5. Numerical Application

In this section, we perform a numerical experi-
ment to verify the effectiveness of the proposed
method. We use the finite element software pack-
age Freefem++ [16] to carry out all computations.
In considered test case, we study in the domain
(0, 1)2 with a mesh resolution of 32 × 32. We
choose the parameters as ν = 1 and β = 0.1. The
stabilization parameter α is calculated as:

α =
|K|2

5(c21 + c22 + c23)
.

Here K denotes any triangle in τh and |K|2 is its
area. c1, c2, c3 stands for the lengths of sides of
the triangle K.

Example As a numerical test, we consider the
driven cavity problem. In this problem, the hor-
izontal velocity on the upper boundary is 1 and
the vertical component is 0. We consider a nu-
merical experiment from [14]. We do not have
any constraint on the control or the state vari-
able. Let the desired state be

yd =

(

sin(πx)2 sin(πy) cos(πy)
− sin(πy)2 sin(πx) cos(πx)

)

.

In Figure 1, we compare the pressure terms of the
state equation for both stabilized and unstabilized
solutions. We observe that unstabilized pressure
diverges. Similarly, for the adjoint state, unstabi-
lized pressure blows up in Figure 2. Finally, we
compare the first component of the stabilized and
unstabilized solutions. One can easily see the effi-
ciency of the stabilization through comparison of
these figures.

6. Conclusion and Outlook

In this work, we have studied Brezzi-Pitkaranta
stabilization scheme for the optimal control prob-
lems governed by Stokes equations. We have ob-
tained the stability results for both the state and
adjoint state variables. We derived a priori error
bounds for each variable and proved that the er-
ror is of order 1/2. In the numerical example, we
have shown the efficiency of the stabilization in
both solutions of the state and adjoint state. As
future works, we will consider the optimal control
of time dependent and nonlinear flow problems.
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Figure 1. Comparison of pressure solution of the state equation: stabilized(left) and unstabi-
lized(right)
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Figure 2. Comparison of pressure of the adjoint the state equation: stabilized(left) and un-
stabilized(right)
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Figure 3. Comparison of first component of the solutions of the state variable: stabilized(left)
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