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 Teaching Learning Based Optimization (TLBO) is one of the non-traditional 

techniques to simulate natural phenomena into a numerical algorithm. TLBO 

mimics teaching learning process occurring between a teacher and students in a 

classroom. A parameter named as teaching factor, TF, seems to be the only 

tuning parameter in TLBO. Although the value of the teaching factor, TF, is 

determined by an equation, the value of 1 or 2 has been used by the researchers 

for TF. This study intends to explore the effect of the variation of teaching factor 

TF on the performances of TLBO. This effect is demonstrated in solving 

structural optimization problems including truss and frame structures under the 

stress and displacement constraints. The results indicate that the variation of TF 

in the TLBO process does not change the results obtained at the end of the 

optimization procedure when the computational cost of TLBO is ignored. 
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1. Introduction 

Optimization tools emerged as obtaining the optimum 

solution of optimization problems try to maximize or 

minimize a real function within a domain which 

contains the acceptable values of variables while some 

restrictions are to be satisfied. Among the 

optimization tools developed and used for the solution 

of optimization problems, the recent novel and 

innovative meta-heuristic search techniques emerged 

use nature as a source of inspiration to establish a 

numerical search algorithm for solving complex 

engineering problems and they do not suffer the 

discrepancies of mathematical programming based 

optimum design methods [1]. Although genetic 

algorithms (GAs) based on the principle of survival of 

the fittest as a computational procedure [2-7] seems to 

be commonly employed to obtain the optimum 

solution of structural design problems, many meta-

heuristic optimization tools occurred in recent years, 

which were developed inspiring the different process 

and phenomena from the nature. The optimization 

algorithms such as ant colony optimization (ACO) 

working on the behavior of an ant, particle swarm 

optimization (PSO) implementing the foraging 

behavior of a bird for searching food, artificial bee 

colony (ABC) using the foraging behavior of a honey 

bee, harmony search (HS) working on the principle of 

music improvisation in music player, charged system 

search (CSS) implementing the Coulomb and Gauss’s 

law of electrostatics in physics, and imperialist 

competitive algorithm (ICA) using a socio-politically 

motivated strategy might be stated as the new 

generation meta-heuristic techniques, mine blast 

algorithm (MBA) simulating the mine bomb 

explosion, water cycle algorithm (WCA) 

implementing the main steps of the hydrologic cycle, 

water wave optimization (WWO) working on the 

principle of wave motion in recent years, which have 

been developed mimicking the principles of different 

natural phenomena and have been effectively 

employed to attain the optimum solution of structural 

design problems [1, 8-19]. Moreover, the improved 

form of these algorithms proposed to enhance 

performance and ability of those can also be found in 

the literature [20-22]. On the other hand, the 

emergence of new computational techniques that are 

based on the simulation of paradigms found in nature 

has still continued due to its ability of solving 

different optimization problems because of their very 

suitability and effectiveness in finding the solution of 
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structural optimization problems. 

One of the meta-heuristic techniques offered from 

inspiring the natural phenomena is the so-called 

Teaching-Learning Based Optimization (TLBO). 

TLBO was developed by [23] as a new optimization 

method, which mimics teaching-learning process in a 

class between the teacher and the students (learners). 

[23] tested the TLBO algorithm on constrained 

benchmark test functions with different 

characteristics, benchmark mechanical design 

problems and mechanical design optimization 

problems taken from the literature. After that, some 

optimization problems related with the distinct 

discipline and features were investigated using the 

standard TLBO algorithm and the enhancement 

version of its [24-30]. The numerical results presented 

in the corresponding researches proved exploration 

and exploitation capacities of TLBO on different kind 

of optimization problems in comparison to other 

metaheuristics algorithms used in these optimization 

cases. 

TLBO algorithm contains two main phases known as 

Teaching phase and Learning phase and it does not 

need any control parameters values to start its 

searching process. The teaching factor TF placed in the 

Teaching Phase seems the only tuning parameter 

although yet TF was decided with the help of TF = 

round[1 + rand (0,1) {2-1}] in [23]. However, the 

value TF was taken as 1 or 2 in the studies conducted 

using TLBO in contrast to the equation given in [26]. 

For example, [30], [31], and [24] were adopted it as 2 

through the TLBO process while [28] taken as [0, 1]. 

Therefore this study intends to explore the effect of 

the variation of teaching factor TF on the performances 

of TLBO. This effect is demonstrated solving 

structural optimization problems including truss and 

frame structures under the stress and displacement 

constraints. 

2. Optimization problems 

A general mathematical statement for the constrained 

optimization problem is defined in [32] as follows. In 
nR  find the design variables x={x1, x2, ..., xn}T 

minimizing an objective function and satisfying the 

constraints:. 
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In Eq. (1), gi(x) and hj(x) represent the inequality and 

equality constraints, xl and xu are the vectors showing 

the lower and upper limit for the design variables, 

respectively. Since the design variables of the 

optimization problem are discrete xl is equal to 1 

whereas xu is the maximum section number 

considered for design variables. Therefore, the 

optimization problem turns finding a vector of integer 

values x corresponding to the sequence numbers of 

steel sections in a given list to create a vector of cross-

sectional areas A={A1,A2,..,AM}T for M members of the 

structure. Such that, the objective function f taken as 

weight of the structural system is minimized 

depending on A. 
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In Eq. (2), M is the number of elements in the 

structural system. Li and Ai are the length, and the 

cross-section area of i-th element respectively, ρ is the 

density of the material. 

As the meta-heuristic methods are suitable for the 

unconstrained optimization problems, the constrained 

optimization problem is converted to the 

unconstrained one via penalty functions based on the 

measurement of violation. A penalty functional is 

added to the objective function to define the fitness 

value of an infeasible element. The objective function 

for the design problem incorporating penalty function 

as well can be expressed as follows; 

( ) ffW penalty+= 1min                  (3) 

In Eq. (3), W is called the penalized objective function 

and shows a relative measure of the performance of 

the solution, fpenalty is the penalty function, and f is 

objective function as in Eq. (2). All penalty functions 

are based on the violation of the constraints, and 

usually the degree of penalty for a given solution is 

adjusted through some coefficients placed in the 

penalty function. The penalty function taken from [8] 

as given below is used in the current work. 

( )

2∑ 0where

1

1

1
=,)](,max[=

+=

=
ε

ε

m

i
i

penalty

gC

Cf

x
      (4) 

In Eq. (4), C is the total value of displacement and 

stress violations, ε=penalty function exponent, and m1 

is number of the total constraints considered as the 

displacement and/or the stress constraints, gi(x). 

3. Teaching-learning based optimization (TLBO) 

TLBO simulates the effect of influence of a teacher on 

learners (students) which is taken as the source of its 

inspiration. In accordance with this purpose, the 

method imitates the set of possible solution 

alternatives of the problem as teacher-student group in 

a class which struggles to increase the level of the 

class by attaining the new information on a subject 

under the existing conditions. It is intended in this 

simulation that the students in a class increase and 

move their knowledge level on a subject taught by the 

teacher towards his or her own level. 

A computational procedure by imitating the above 

teaching-learning process that occurs between the 

teacher and the students in a class is developed by [23] 
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and aforementioned process called TLBO consists of 

two parts; i) “Teaching Phase”, and ii) “Learning 

Phase”. In teaching phase, the teacher, who is the most 

knowledgeable person in a social group and is 

expected to disseminate information to other learners, 

is determined whereas in the learning phase, it is 

provided for the students to acquire new information 

through the interactions among the learners. As in 

other meta-heuristic algorithms inspiring from the 

nature, TLBO is also a population based method. 

Each student in a class represents a possible solution, 

the different subjects offered to learn to students is 

analogous to different design variables, the students’ 

result obtained through the exam demonstrates the 

fitness of solution, the teacher is taken as the best 

solution achieved so far, and finally whole class is 

considered as the population in TLBO. After this 

association, the step-wise procedure for the 

implementation of TLBO is as follows. 

3.1. Initialize the optimization problems 

The parameters required by the optimization algorithm 

to be used in solving the structural design problems 

are defined in this step. These are number of 

population (np), maximum number of cycles (Cmax), 

number of design variables (nd), lower and upper 

limits of design variables (xl and xu), objective 

function (f(x)) and so on, which are selected 

depending on the type of problem.  

3.2. Initialize the population and evaluate the 

solution 

The population is randomly generated according to the 

parameters described in the previous step as follows.  
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In Eq. (5), each row shows a possible solution (xi={xi,1 

… xi,nd-1  xi,nd}  i=1, …, np), W(x1,..,np) represents the 

value of the penalized objective function for the 

evaluation of the potential solutions through Eq. (3), 

and pop demonstrates the population. 

3.3. Teaching phase 

The solution with a minimum value of the penalized 

objective function in the population is determined at 

this stage of TLBO ( min(W(x1,..,np)) ). Since this 

individual is the best of the population it is taken into 

account as a teacher in the teaching-learning process 

(xteacher=x=min(W(x)). Then, the other students in the 

current population are modified in the neighborhood 

of the teacher by the hope that the level of students 

will be updated to the level of the teacher. This 

modification is carried out by using the following 

equations. 

* ( )i teacher F meanx x r x T x                 (6a) 

In Eq. (6a), x* shows the renewed form of xi by Eq. 

(6a), r is a random number varying [0,1], TF is a 

teaching factor being either 1 or 2, which is again a 

heuristic step and decided randomly with equal 

probability as TF = round[1 + rand (0,1) {2-1}] ( in 

[23]), and xmean symbolizes the mean of the 

population, which is calculated with column-wise 

manner as follows. 
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In Eq. (6b), i=1,…,np, j=1,…,nd, np and nd are the 

number of solutions and the design variables. As a 

results of these operations, xi is taken as x* if the 

obtained x* produces a better value of W(.) than xi. 

Otherwise, xi is retained. 

3.4. Learning phase 

After the teacher transfers him or her own knowledge 

to the students by Eq. (6a), the teaching-learning 

process continues in the form of interaction among 

students. At this stage of the TLBO algorithm, a 

student learns new information by interacting with 

other students who have more knowledge than him or 

her. The modification formula representing the 

learning phase can be expressed as: 

*
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where, x* and xi are the new and existing solution of i, 

xj is the any solution that is different from xi. If the 

solution gained new information with help of Eq. (6c), 

x*, produces better penalized objective function value 

than xi change xi to x*, otherwise preserve xi. 

At the end of the learning phase, a cycle (iteration) is 

completed for the TLBO and the steps in section 3.3 

and 3.4 continues until a termination criterion is 

satisfied, which is adopted as a pre-determined 

maximum number of cycles (Cmax) in the current 

work. The vector x* obtained with application of both 

Eqs. (6a) and (6c) may contain any design variable 

being less than xl or bigger than xu due to addition and 

subtraction in the corresponding expressions. In such a 

case, a controlling procedure should be performed for 

x* so as not to encounter any abnormal ending in the 

algorithm. Therefore, it is ensured that any design 

variable in x* must not be bigger than xu and less than 
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xl and if any design variable of x* is less than xl or 

bigger than xu it is taken into account as xl or xu, 

respectively. 

The flowchart of TLBO developed in the light of 

information given above is demonstrated in Figure 1. 

4. Design examples 

The design process, that is explained with the 

implementation steps given above, of a Teaching 

Learning Based Optimization (TLBO) technique is 

properly applied to the example designs such as 52 bar 

truss, 3-bay 15-story frame, and 582 bar space truss in 

order to exhibit the effecting of varying the value of 

TF on the performance of TLBO algorithm. In the 

design examples examined, the design variables taken 

into consideration as the cross-sectional area of the 

members that make up the structural systems are 

discrete. In other words, they are represented by the 

section numbers considered for design variables. 

The inequalities shown as follows are kept in mind as 

constraints in the current work for the examples 

1 1 1( ) 1.0 0 1,...,a
k

u
g x k c

u
           (7a) 

2 2 2( ) 1.0 0 1,...,a
kg x k c




           (7b) 

where, Eq. (7a) and (7b) demonstrate the 

displacements and stresses constraints, respectively. u 

displacement of joint, and ua is its upper bound. σ is 

stress in a member . σa is the allowable stresses for the 

tension and compression members, respectively. c1 

and c2 are number of restricted displacements and 

stresses. 

The optimizations process performed using TLBO for 

the structure systems examined in this study is 

repeated 20 times by the different populations which 

are generated independently and randomly at every 

turn. The best (lightest) one of the 20 runs is 

propounded as the result of the related examples. 

The algorithm and finite element analysis program are 

coded in Matlab software and implemented on PC 

with Intel Core i5 2.70 GHz processor and 8 GB RAM 

memory. 

4.1. 52 bar truss 

A 52 bar plane truss shown in Figure 2 is studied as 

the first example for demonstrating how to vary the 

solution process of TLBO depending on the value of 

TF. It is subjected to single-load case given in Table 1. 

The truss was optimized by [33] using GA, by [34] 

using GA with adaptive manner penalty function, and 

by [35] using rank-based ant system that is a variant of 

the ACO. Moreover the same example was solved by 

[36] using MBA and [37] using IMBA.  

 

Figure 1. Flowchart diagram for TLBO. 
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Figure 2. 52 bar planar truss. 

 

The young modulus, E, is 207 GPa, the density, ρ, is 

7860 kg/m3, and the allowable stresses are 180 MPa in 

tension and compression. Constraints are imposed on 

member stresses. Members of the truss are divided 

into 12 groups and the cross-sectional areas are to be 

selected from a list with 64 sections presented in 

Table 2.  

As mentioned previously, in contrast to [30], [31], 

[24], and [28] in the current work, to show the 

dependence of the TLBO on the value of TF each 

design example examined in this study is optimized 

taking the value of TF as 1, 2 and round[1 + rand (0,1) 

{2-1}], respectively. 

The results obtained by the TLBO as well as those 

from the references cited above are summarized in 

Table 3. The iteration histories of TLBO process are 

shown in Figure 3. Figure 3 shows the variations of 

the penalized objective function during the solution 

process conducting with TLBO. Figure 3a illustrates 

this variation for the population size (pop) adopted as 

50 and a maximum number of cycles(Cmax) taken as 

150, 100, and 80 respectively. 

Table 1. Load case for the 52 bar truss. 

Note Fx (kN) Fy (kN) 

17 100.0 200.0 

18 100.0 200.0 

19 100.0 200.0 

20 100.0 200.0 
 

However, Figures 3b and 3c demonstrate the same 

variation through the solution process for pop=40 and 

pop=30, respectively. Each solution process depicted 

in Figures 3b and 3c is repeated with different Cmax 

taken as 150, 100, and 80 respectively while the 

population size remains the same. 

It is noticed that for TF = round[1 + rand (0,1) {2-1}], 

the results remain the same for pop=30, 40, and 50 

when Cmax=150  and 100 as well as for being TF=1. In 

case of Cmax=80, the results are also same both TF = 

round[1 + rand (0,1) {2-1}] and TF=1 when pop=40 

and  pop=50. It is observed that TLBO does not 

produce the same results for TF=2 when Cmax=100 and 

80, and pop= 30, 40, and 50. 

It might be concluded from the observations that 

TLBO is capable of finding the same results if the 

parameters of Cmax and pop are rationally selected for 

the problem under investigation. In addition, it is 

worthy said that compared with TF=2 the results 

obtained with TF=1 and TF = round[1 + rand (0,1) {2-

1}] are not more sensitive the changes in the 

population size and the maximum number of cycles. 

Table 2. Cross-sectional areas for the 52 bar truss. 

Section 

no 

Area 

(mm2) 

Section 

no 

Area 

(mm2) 

1 71.613 33 2477.414 

2 90.968 34 2496.769 

3 126.450 35 2503.221 

4 161.290 36 2696.769 

5 198.064 37 2722.575 

6 252.258 38 2896.768 

7 285.161 39 2961.284 

8 363.225 40 3096.768 

9 388.386 41 3206.445 

10 494.193 42 3303.219 

11 506.451 43 3703.218 

12 641.289 44 4658.055 

13 645.160 45 5141.925 

14 792.256 46 5503.215 

15 816.773 47 5999.988 

16 940.000 48 6999.986 

17 1008.385 49 7419.340 

18 1045.159 50 8709.660 

19 1161.288 51 8967.724 

20 1283.868 52 9161.272 

21 1374.191 53 9999.978 

22 1535.481 54 10322.560 

23 1690.319 55 10903.204 

24 1696.771 56 12129.008 

25 1858.061 57 12838.684 

26 1890.319 58 14193.520 

27 1993.544 59 14774.164 

28 2019.351 60 15806.420 

29 2180.641 61 17096.740 

30 2238.705 62 18064.480 

31 2290.318 63 19354.800 

32 2341.931 64 21612.860 
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Table 3. Design results for the 52 bar truss. 

Group no Members GA [33] GA [34] ACO [35] MBA [36] IMBA [37] 
TLBO 

This study 

1 1, 2, 3, 4 44 44 44 44 44 44 

2 5, 6,…,10 19 19 19 19 19 19 

3 11, 12, 13 13 10 11 10 10 11 

4 14,…,17 42 42 42 42 42 42 

5 18,…,23 18 16 16 16 16 16 

6 24, 25, 26 10 12 11 10 10 11 

7 27,…,30 33 30 30 30 30 30 

8 31,…,36 18 17 17 17 17 17 

9 37, 38, 39 7 8 9 10 10 9 

10 40,…,43 24 20 20 20 20 20 

11 44,…,49 18 19 19 19 19 19 

12 50, 51, 52 12 10 11 10 10 11 

Best (kg) 1970.142 1903.366 1899.350 1902.605 1902.605 1899.350 

Evaluations+ 60000 17500 17500 5450 4750 6440 

+ shows the maximum numbers of structural analysis to obtain the optimal design presented in Table 

 

 

 

 

 

 

 

 

 

(a)  Variation of objective function for  pop = 50. 

 

 

 

 

 

 

 

 

 

 
(b)  Variation of objective function for  pop = 40. 

 

 

 

 

 

 

 

 

 

 
(c)  Variation of objective function for  pop = 30. 

Figure 3. Histories of TLBO process of 52-bar truss example. 
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The TLBO algorithm produces identical design to the 

design reported by [35]. However, TLBO algorithm 

uses 80 generations with a population size 40 resulting 

in 6440 truss analyses to converge to a solution and 

the required truss analyses to converge to a solution 

for the TLBO algorithm is more less than 60000, 

17500, and 17500 analyses required by GA [33, 34] 

and ACO [35], respectively. However, [36] and [37] 

reported the required truss analyses number as 5450 

and 4750 to acquire the optimal solutions using MBA 

and IMBA respectively. Studying the figures given by 

[36] and [37], it can be stated that maximum number 

of iteration was set as 500 in their algorithms. Since 

the results did not change around 100 iterations, it 

seems that the reported analyses numbers were 

calculated considering this iteration number in 

contrast to maximum number of iteration adopted as 

500. Keeping this in mind, TLBO find the results 

presented in Table 3 at 55th iteration(see last graphic 

illustrated in Figure 3b). In this case, TLBO requires 

4440 truss analyses to produce the optimal results. 

Although both ACO and TLBO reach the same 

solution the design slightly violates stress constraints 

(0.012%). In the optimization application taken from 

the literature, certain results that violate the constraints 

less than the level of 0.1% might sometimes be 

encountered. The rationale of this might be 

meaningful due to the results from the point of view of 

engineering. 

Statistical optimization result of TLBO algorithm is 

presented in Table 4. 

Table 4. Load case for the 52 bar truss. 

Exp. 

Best 

optimized 

weight / 

volume 

Average 

optimized 

weight / 

volume 

Worst 

optimized 

weight / 

volume 

Standard 

deviation 

on weight 

/ volume 

Exp1 
1899.350 

(kg) 

1904.430 

(kg) 

1920.396 

(kg) 

6.705     

(kg) 

Exp2 
402.94 

(kN) 

408.44  

(kN) 

412.13  

(kN) 

3.99      

(kN) 

Exp3 
20.304  

(m3) 

21.073  

(m3) 

24.104  

(m3) 

1.143    

(m3) 

Note: Exp1= 52 bar truss; Exp1= 3 bay-15 story frame;  

Exp3= 582 bar truss tower 

4.2. Three-bay 15 story frame 

Figure 4 shows configuration of three-bay 15-story 

frame consisting of 105 members and its node, 

element numbering patterns and the loading. The 

material properties are a modulus of elasticity of 

E=200 GPa and a yield stress of fy=248.2 MPa. The 

frame is designed following the AISC-LRFD 

specification [38] and uses a displacement constraint 

(the sway of the top story < 23.5 cm). The effective 

length factors, Kx, of the members are calculated as Kx 

 0 for a sway-permitted frame and the out-of-plane 

effective length factor Ky is considered as 1.0. All 

columns are considered as non-braced along their 

lengths and the non-braced length for each beam 

member is specified as one-fifth of the span length. 

 

 

Figure 4. Topology of the 3-bay 15-story frame. 
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The optimum design of the frame is obtained after 

9030 analyses by using the TLBO, having the 

minimum weight of 402.94 kN. The optimum design 

for ICA [14] has the weight of 417.466 kN. Table 5 

summarizes the optimal designs for ICA and TLBO. 

The ICA could find the result after 6000 analyses. The 

results obtained by TLBO is nearly 3.5% lighter than 

the that of the ICA [14]. 

As aforementioned, to investigate the effect of TF on 

the results to be obtained, the total number of cycles 

required for TLBO process is varied by taking the 

different the population size (pop) and by considering 

distinct TF value, i.e.  TF=1, TF=2, and TF= round[1 + 

rand (0,1) {2-1}]. 

The results reported here correspond to the best 

having the least weight and they are obtained when the 

following parameter values are taken into 

consideration in TLBO process; pop=30, Cmax = 150, 

TF=1 and TF= round[1 + rand (0,1) {2-1}]. However 

when TF=2, to reach the results presented in the last 

column of Table 5 TLBO requires more cycles. Figure 

5 shows the histories of the best solutions obtained for 

all cases, which are performed using different values 

of pop, TF and Cmax in order to shorten the 

computational cost of TLBO process and to 

demonstrate the effect of TF. 

Table 5. Design results for the three-bay 15-story frame. 

Grp. 

No 
Members 

ICA 

[14] 

TLBO 

This 

study 

TLBO 

This 

study 

1 
column 1-

3S, E 
W24×117 W24×117 W12×106 

2 
column 1-

3S, I 
W21×147 W36×160 W27×161 

3 
column 4-

6S, E 
W27×84 W14×82 W24×87 

4 
column 4-

6S, I 
W27×114 W30×116 W21×111 

5 
column 7-

9S, E 
W14×74 W21×68 W12×65 

6 
column 7-

9S, I 
W18×86 W30×90 W16×89 

7 
column 

10-12S, E 
W12×96 W12×50 W10×49 

8 
column 

10-12S, I 
W24×68 W12×65 W12×65 

9 
column 

13-15S, E 
W10×39 W12×30 W8×31 

10 
column 

13-15S, I 
W12×40 W12×40 W16×40 

11 beams W21×44 W21×44 W21×44 

Best (kN) 417.466 408.03 402.94 

Evaluations+ 6000 6030 9030 
+ shows the maximum numbers of structural analysis to 

obtain the optimal design presented in Table 

Note: Grp = Group; S = Story; E = Exterior column; I = 

Interior column. 

 

It might be realized from Figure 5 that although the 

design achieved by TLBO for all cases has the same 

weight of frame, to achieve the results obtained when  

 
(a) Variation of objective function for pop=40. 

 

 
(b) Variation of objective function for TF =2. 

 

 
(c) Variation of objective function for pop=30. 

 

 
(d) Variation of objective function for pop=30. 

Figure 5. Histories of TLBO process of three-bay 15-

story frame example. 

 

pop=30, Cmax=150, TF=1, and TF= round[1 + rand 

(0,1) {2-1}] the maximum number of cycles should be 

increased from 150 to 200 when the teaching factor is 

considered as 2 (see Figure 5b). 

Moreover, if the required frame analyses to reach the 

best design was adopted 6,000 as well as in the ICA 
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[14] TLBO would produce a frame having a weight of 

408.03 kN, which is 2.26% lighter than that of the 

ICA (see Figure 5d). This indicates that even though 

varying the TF in TLBO process results in different 

computational cost, the results remain the same or 

closely the same with small differences. 

The global sway at the top story is 13.61 cm, which is 

less than the maximum sway. The maximum value for 

the stress ratio is equal to 99.60%.  Also, the 

maximum drift story is equal to 1.11 cm. Statistical 

optimization result of TLBO algorithm for this 

example is presented in Table 4. 

4.3. 582 bar space truss 

The geometry and group numbering of a 582 bar space 

tower, previously studied by [39] using Particle 

Swarm Optimization (PSO), is given in Figure 6. The 

structural members of the space tower are linked 

together into 32 groups. The modulus of elasticity, the 

material density of all members and yield stress are 

29000 ksi, 0.2836 lb/in.3 and 36 ksi, respectively. The 

maximum displacement of all the nodes is not allowed 

to exceed 8 cm (3.15 in.) for all directions. A single 

loading condition is considered to be applied such that 

the lateral loads of 5 kN (1.12 kips) are applied to all 

nodes in both x and y-directions, and vertical loads of 

-30 kN (−6.74 kips) are applied, respectively, to all 

nodes in the upper and lower parts of the tower in z 

direction. A discrete set of 140 W-shape steel profiles 

given in Table 6 is used to size the design variables. In 

association with [39], cross-sectional areas of 140 W-

shape steel profiles vary between 6.16 in.2 (39.74 cm2) 

and 215.0 in.2 (1387.09 cm2). 

According to ASD-AISC the maximum slenderness 

ratio of i-th member is limited to 300 and 200 for 

tension and compression, respectively (

i i i i allowedK L r   , in here Ki is the effective 

length factor which was taken to be 1, Li is the length 

and ri is minimum radii of gyration). The stress and 

stability limitations of the members also are imposed 

according to the provisions of ASD-AISC. 

Table 7 lists the designs developed by the PSO [39], 

the DHPSACO [40] and the IMBA [37]. The TLBO 

algorithm needs 30050 truss analyses to converge to a 

solution, while the 50000 analyses are required by 

PSO [39]. However, studying [39], it can be observed 

that the results are obtained within 17500 structural 

analyses although optimization process that ends up 

50000 analyses. This case is also the same for the 

structural analyses number reported by other 

researchers. For instance, for this example, even 

though [37] finished the optimization process at the 

end of the 350 iterations they presented the structural 

analyses as 15100. This analyses number indicates the 

obtaining the reported volume firstly. Therefore, the 

structural analyses number reported as 15550 (155 

iteraton) in the current work although TLBO process 

runs until 300 iterations. Figure 7 shows the 

convergence histories for the optimum designs 

obtained by the TLBO algorithm, which is utilized 

with pop=50, TF =1, TF =2 and TF = round[1 + rand 

(0,1) {2-1}] in order to demonstrate the effect of TF. 

 

 

Figure 6. The 582-bar space tower truss. 
 

 
Figure 7. Histories of TLBO process of 582 bar space 

truss example (pop=50). 
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Studying on Figure 7 and ignoring the computational 

cost of TLBO process, it is worthy to state that 

varying the value of teaching factor, i.e. TF=1, TF=2, 

and TF= round[1 + rand (0,1) {2-1}], does not affect 

the results obtained by the TLBO. Statistical 

optimization result of TLBO algorithm is presented in 

Table 4. 

5. Conclusion 

Three design examples consisting of two trusses and 

one frame are considered to illustrate the effect of 

teaching factor TF on the optimal design for all 

examples. The comparisons of the numerical results 

obtained by the TLBO with TF=1, TF=2, and TF= 

round[1 + rand (0,1) {2-1}] and those obtained by 

other optimization methods based on the meta-

heuristic concepts are presented to show the capability 

of the TLBO algorithm in finding good results. 

Simulations show that reaching the optimum designs 

by TLBO is insensitive to the parameter of TF and 

TLBO produces the same results for all case of TF 

when the computational cost of TLBO and the number 

Table 7. Design results for the 582 bar sapce tower truss. 

Elm. 

grp. 

PSO 

[39] 

DHPSACO 

[40] 

IMBA 

[37] 

TLBO 

This 

study 

1 W8×21 W8×24 W8×21 W8×21 

2 W12×79 W12×72 W24×76 W24×84 

3 W8×24 W8 × 28 W8 × 21 W8 × 21 

4 W10×60 W12×58 W12×65 W24×62 

5 W8×24 W8×24 W8×21 W8×21 

6 W8×21 W8×24 W8×21 W8×21 

7 W8×48 W10×49 W10×54 W16×57 

8 W8×24 W8×24 W8×21 W8×21 

9 W8×21 W8×24 W8×21 W8×21 

10 W10×45 W12×40 W12×50 W12×53 

11 W8×24 W12×30 W8×21 W8×21 

12 W10×68 W12×72 W10×68 W10×77 

13 W14×74 W18×76 W24×76 W21×83 

14 W8×48 W10×49 W14×53 W21×57 

15 W18×76 W14×82 W12×79 W18×76 

16 W8×31 W8×31 W8 × 21 W8 × 21 

17 W8×21 W14×61 W12×65 W10×22 

18 W16×67 W8×24 W8×21 W18×55 

19 W8×24 W8×21 W8×21 W8×21 

20 W8×21 W12×40 W12×45 W8×21 

21 W8×40 W8×24 W8×21 W14×30 

22 W8×24 W14 × 22 W8 × 21 W8 × 21 

23 W8×21 W8×31 W16×26 W8 × 21 

24 W10×22 W8×28 W8×21 W8×21 

25 W8×24 W8×21 W8×21 W8×21 

26 W8×21 W8×21 W8×21 W8 × 21 

27 W8×21 W8 × 24 W8 × 21 W10×22 

28 W8×24 W8 × 28 W8 × 21 W8×21 

29 W8×21 W16×36 W8×21 W8×21 

30 W8×21 W8×24 W8×21 W8×31 

31 W8×24 W8×21 W8×21 W8×21 

32 W8×24 W8×24 W8×21 W12×22 

Vol. 22.3958 22.0607 20.0688 20.304 

Eval+. 17500 17500 15300 15550 

Note: Vol.= Volume (m3); Eval.= Evaluations 

+ shows the maximum numbers of structural analysis to 

Table 6. Profile list for the 582 bar space tower. 

W-shape profile list * 

W27 x 178 W21 x 122 W18 x 50 W14 x 455 

W27 x 161 W21 x 111 W18 x 46 W14 x 426 

W27 x 146 W21 x 101 W18 x 40 W14 x 398 

W27 x 114 W21 x 93 W18 x 35 W14 x 370 

W27 x 102 W21 x 83 W16 x 100 W14 x 342 

W27 x 94 W21 x 73 W16 x 89 W14 x 311 

W27 x 84 W21 x 68 W16 x 77 W14 x 283 

W24 x 162 W21 x 62 W16 x 67 W14 x 257 

W24 x 146 W21 x 57 W16 x 57 W14 x 233 

W24 x 131 W21 x 50 W16 x 50 W14 x 211 

W24 x 117 W21 x 44 W16 x 45 W14 x 193 

W24 x 104 W18 x 119 W16 x 40 W14 x 176 

W24 x 94 W18 x 106 W16 x 36 W14 x 159 

W24 x 84 W18 x 97 W16 x 31 W14 x 145 

W24 x 76 W18 x 86 W16 x 26 W14 x 132 

W24 x 68 W18 x 76 W14 x 730 W14 x 120 

W24 x 62 W18 x 71 W14 x 665 W14 x 109 

W24 x 55 W18 x 65 W14 x 605 W14 x 99 

W21 x 147 W18 x 60 W14 x 550 W14 x 90 

W21 x 132 W18 x 55 W14 x 500 W14 x 82 

W14 x 74 W12 x 230 W12 x 50 W10 x 45 

W14 x 68 W12 x 210 W12 x 45 W10 x 39 

W14 x 61 W12 x 190 W12 x 40 W10 x 33 

W14 x 53 W12 x 170 W12 x 35 W10 x 30 

W14 x 48 W12 x 152 W12 x 30 W10 x 26 

W14 x 43 W12 x 136 W12 x 26 W10 x 22 

W14 x 38 W12 x 120 W12 x 22 W8 x 67 

W14 x 34 W12 x 106 W10 x 112 W8 x 58 

W14 x 30 W12 x 96 W10 x 100 W8 x 48 

W14 x 26 W12 x 87 W10 x 88 W8 x 40 

W14 x 22 W12 x 79 W10 x 77 W8 x 35 

W12 x 336 W12 x 72 W10 x 68 W8 x 31 

W12 x 305 W12 x 65 W10 x 60 W8 x 28 

W12 x 279 W12 x 58 W10 x 54 W8 x 24 

W12 x 252 W12 x 53 W10 x 49 W8 x 21 
* the corresponding profile list was taken from Sadollah et 

al. [37] 
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obtain the optimal design presented in Table 

analyses required to obtain the best design are 

ignored. Comparisons of the numerical results 

obtained by TLBO with those by other optimization 

methods are performed to demonstrate the efficiency 

of the TLBO algorithm in terms of reaching the best 

designs. Consequently, it is useful to express that TF=1 

and TF= round[1 + rand (0,1) {2-1}] would be more 

suitable when it is intended to find good results in a 

less number of iterations. 
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