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In this paper, we present an efficient direct solver for solving the generalized
pantograph equations with variable coefficients. An approach is based on the
second kind Chebyshev polynomials together with operational method. The
main characteristic behind this approach is that it reduces such problem to ones
of solving systems of algebraic equations. Only a small number of Chebyshev
polynomials are needed to obtain a satisfactory result. Numerical results with
comparisons are given to confirm the reliability of the proposed method for
solving generalized pantograph equations with variable coefficients.
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1. Introduction

Functional-differential equations with propor-
tional delays are usually referred to as pantograph
equations or generalized pantograph equations.
Pantograph equations have gained more interest
in many application fields such a biology, physics,
engineering, economy, electrodynamics [1–7]. In
recent years, there has been a growing interest in
the numerical treatment of pantograph equations
of the retarded and advanced type. A special fea-
ture of this type of equation is the existence of
compactly supported solutions [6]. Pantograph
equations are characterized by the presence of a
linear functional argument and play an important
role in explaining many different phenomena. In
particular they turn out to be fundamental when
ODEs-based model fail. In the literature, special
attention has been given to applications of Taylor
polynomials method, variation iteration method,
Adomian decomposition method etc. [8–21,25–28]

Consider the generalized linear pantograph equa-
tions of the form

m∑

k=0

Pk(x)y
(k)(x) +

J∑

j=0

n∑

s=0

Hjs(x)y
(s)(αjx− βj) = g(x) (1)

for x ∈ [−1, 1], under the mixed condition, for
1 ≤ cj ≤ 1, i = 0, 1, 2, ...,m− 1

m−1∑

k=0

r∑

j=0

ckijy
(k)(cj) = λi (2)

which is the y(x) an unknown function, the known
function Pk(x), Hjs(x), g(x) are defined on an in-

terval and also ckij are appropriate constant.

Our aim is to find an approximate solution ex-
pressed in terms of polynomial of degree N in the
form

yN (x) =

N∑

r=0

arUr(x) (3)
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where ar unknown coefficients and N is chosen
any positive integer such that N ≥ m.

2. Chebyshev polynomial

Orthogonal functions, often used to represent an
arbitrary time function, have received consider-
able attention in dealing with various problems
of dynamical system. The main characteristic of
this technique is that it reduces these problems to
those of solving a system of algebraic equations,
thus greatly simplifying the problem.

Definition 1. The Chebyshev polynomial of the
second kind Un(x) is a polynomial in x of degree
n, defined by the relation

Un(x) =
sin(n+ 1)θ

sinθ
, when x = cos(θ).

If the range of the variable x is the interval [−1, 1],
the range the corresponding variable θ can be
taken [0, π]. We suppose without lose of gener-
ality that the interval of Eq.(1) is [−1, 1] which
domain of the Chebyshev polynomial of the sec-
ond kind, since any finite [a, b] can be transformed
to interval [−1, 1] by linear maps [23, 24]. Using
Moivre’s Theorem we obtained the fundamental
recurrence relation [22, 23]

Un(x) = 2xUn−1(x)− Un−2(x), n = 2, 3, ...

which together with the initial conditions

U0(x) = 1, U2(x) = 2x

These polynomials have the following properties:

i) Un+1(x) has exactly n + 1 real zeroes on the
interval [−1, 1]. The m-th zero xn,m of Un(x) is
located at

xn,m = cos(
mπ

n+ 2
)

ii) These polynomials are orthogonal on [−1, 1]
with respect to the weight function ω(x) = (1 −

x2)1/2

∫ 1

−1
Ur(x)Us(x)ω(x)dx =







π, r=s=0;
π
2 , r = s 6= 0;
0, r 6= s.

iii) It is well known that [23] the relation between
the powers xn and the Chebyshev polynomials
Un(x) is

xn = 2−n

||n
2
||

∑

j=0

((n

j

)

−

(
n

j − 1

))

Un−2j(x) (4)

iv) Any function y(x) ∈ L2[−1, 1] can be approx-
imated as a sum of the second kind Chebyshev
polynomials as:

y(x) =
∞∑

n=0

cnUn(x) (5)

where, for n = 0, 1, ...

cn =
〈

y(x), Un(x)
〉

=

∫ 1

−1
y(x)Un(x)dx. (6)

3. Fundamental matrix relations

Let us write Eq. (1) in the form

D(x) +H(x) = g(x) (7)

where

D(x) =

m∑

k=0

Pk(x)y
(k)(x),

and

H(x) =

J∑

j=0

n∑

s=0

Hjs(x)y
(s)(αjx− βj).

We convert these parts and the mixed conditions
in to the matrix form. Let us consider the Eq.
(1) and find the matrix forms of each term of the
equation. We first consider the solution yN (x)

and its derivative y
(k)
N (x) defined by a truncated

Chebyshev series. Then we can put series in the
matrix form

yN (x) = U(x)A, y
(k)
N (x) = U (k)(x)A (8)

where

U(x) =
[
U0(x) U1(x) · · · UN (x)

]

U (k)(x) =
[

U
(k)
0 (x) U

(k)
1 (x) · · · U

(k)
N (x)

]

A =
[
a0 a1 · · · aN

]T

By using (4), we obtained the corresponding ma-
trix relation as follows:

XT (x) = DUT (x) and X(x) = U(x)DT

and so U(x) = X(x)(DT )−1 (9)

where
X(x) =

[
1 x ... xN

]
.

for odd N ,
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D =

















1

20

(

0

0

)

0 0 . . . 0
0 1

21

(

1

0

)

0 . . . 0
1

22
(
(

2

1

)

−

(

2

0

)

) 0 1

22

(

2

0

)

. . . 0
...

...
...

. . .
...

0 1

2N
(
(

N
N−1

2

)

−

(

N
N−3

2

)

) 0 . . . 1

2N

(

N

0

)

















for even N,

D =

















1

20

(

0

0

)

0 0 . . . 0
0 1

21

(

1

0

)

0 . . . 0
1

22
(
(

2

1

)

−

(

2

0

)

) 0 1

22

(

2

0

)

. . . 0
...

...
...

. . .
...

1

2N
(
(

N
N

2

)

−

(

N
N−2

2

)

) 0 1

2N
(
(

N
N−2

2

)

−

(

N
N−4

2

)

) . . . 1

2N

(

N

0

)

















Moreover it is clearly seen that the relation be-
tween the matrix X(x) and its derivative X(k)(x),

X(k)(x) = X(x)Bk (10)

where

B =








0 1 0 · · · 0
0 0 2 · · · 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 · · · N

0 0 0 · · · 0








and
Bk = BB...B

︸ ︷︷ ︸

k−times

.

The derivative of the matrix U(x) defined in (8),
by using the relation (9), can expressed as

U (k)(x) = X(k)(x)(DT )−1

= X(x)Bk(DT )−1. (11)

By substituting (10) into (8), we obtain, for
k = 0, 1, ..., N

y
(k)
N (x) = X(x)Bk(DT )−1A. (12)

Now, the matrix representation of differential part
can be given by

D(x) =
m∑

k=0

Pk(x)X(x)Bk(DT )−1A. (13)

We know that;

X(αjx− βj) = X(x)Bj (14)

where

Bj =

















(

0

0

)

α0

j (−βj)
0

(

1

1

)

α0

j (−βj)
1

(

2

2

)

α0

j (−βj)
2 . . .

(

N

N

)

α0

j (−βj)
N

0
(

1

0

)

α1

j (−β0

j )
(

2

1

)

α1

j (−βj)
1 . . .

(

N

N−1

)

α1

j (−βj)
N−1

0 0
(

2

0

)

α2

j (−βj)
0 . . .

(

N

N−2

)

α2

j (−βj)
N−2

...
...

...
. . .

...

0 0 0 . . .
(

N

0

)

αN
j (−βj)

0

















Using relation (10), we can write

X(s)(αjx− βj) = X(x)BsBj (15)

In a similarly way as (12) , we obtain

y(s)(αjx− βj) = U (s)(αjx− βj)A

= X(x)BsBj(D
T )−1A.(16)

So that, the matrix representation of H(x) part
can be given by

H(x) =
J∑

j=0

n∑

s=0

Hs(x)X(x)BsBj(D
T )−1A. (17)

4. Method of solution

In this section, we presents the method for solv-
ing Eq.(1) with conditions Eq.(2). Firstly, we can
write the Eq.(1) follow as:

(

m
∑

k=0

Pk(x)X(x)Bk(DT )−1 +

J
∑

j=0

n
∑

s=0

Hjs(x)X(x)Bs
Bj(D

T )−1

)

A = g(x). (18)

Then, residual RN (x) can be written as

RN (x) ≈
(

m
∑

k=0

Pk(x)X(x)Bk(DT )−1

+
J
∑

j=0

n
∑

s=0

Hjs(x)X(x)Bs
Bj(D

T )−1

)

A

−G
T
X(x)(DT )−1

. (19)
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Applying typical tau method [29–33], Eq.(19) can
be converted in (N −m) linear or nonlinear equa-
tions by applying

〈

RN (x), Un(x)
〉

=

∫ 1

−1
RN (x)Un(x)dx

= 0 (20)

for n = 0, 1, ..., N −m. The initial conditions are
given by

m−1∑

k=0

r∑

j=0

ckijX(cj)B
k(DT )−1A = λi (21)

where −1 ≤ cj ≤ 1, i = 0, 1, 2, ...,m− 1

X(cj) =
[
c0j c1j · · · cNj

]
.

Hence, we obtain the (N+1) sets of linear or non-
linear algebraic equation with (N + 1) unknowns
by Eq.(20) and Eq.(21). Using the Maple pro-
gram, we solve the (N + 1) sets of linear or non-
linear algebraic equations with (N +1) unknowns
and so approximate solution yN (x) can be calcu-
lated.

4.1. Checking of Solution

Likewise we can easily check the accuracy of the
obtained solutions as follows: Since the obtained
the Chebyshev polynomial of the second kind
expansion is an approximate solution of Eq.(1),
when the function yN (x) and its derivatives are
substituted in Eq.(1), the resulting equation must
be satisfied approximately; that is for [24]

EN (x) =
∣
∣
∣

m∑

k=0

Pk(x)y
(k)
N (x) +

J∑

j=0

n∑

s=0

Hjs(x)y
(s)
N (αjx− βj)− g(x)

∣
∣
∣ ∼= 0

5. Illustrative example

In this section, several numerical examples are
given to illustrate the accuracy and effectiveness
of the properties of the method and all of them
were performed on the computer using a program
written in Maple 13. The absolute errors in tables
are the values of Ne = |y(x) − yN (x)| at selected
points.

Example 1. Let us consider the first order pan-
tograph equation [11,20,21]

y′(x)−
1

2
y(x)−

1

2
e

x
2 y(

x

2
) = 0 (22)

with y(0) = 1 and the exact solution y = ex.

Then P0(x) = −1
2 , P1(x) = 1, H00(x) = −1

2e
x
2 ,

g(x) = 0, α0 = 1
2 , β0 = 0. We seek the approxi-

mate solution for N = 4. Then, we have residual

R4(x) ≈
(

P1(x)X(x)B(DT )−1

+P0(x)X(x)(DT )−1 +H00(x)X(x)B0(D
T )−1

)

A

where

B =








0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4
0 0 0 0 0







B0 =








1 0 0 0 0
0 1

2
0 0 0

0 0 1

4
0 0

0 0 0 1

8
0

0 0 0 0 1

16








If the residual R4(x) are substituted (19) for n =
0, 1, 2, 3 and with initial condition, we obtain a
linear algebraic equations system. Solving this lin-
ear equations system, we obtain the Chebyshev co-
efficients follows as:

a0 = 1.130077, a1 = 0.542776

a2 = 0.132856, a3 = 0.223357E − 1

a4 = 0.277975E − 2

then so, we get the approximate solution for N =
4

y4(x) = 0.999999 + 0.996210x+ 0.498070x2

+0.178686x3 + 0.044476x4

Table 1 shows approximate solutions of the
Eq.(22) for N = 4, 6, 8 by the above mentioned
method. Figure 1 display the exact solution and
numerical solutions for N = 6, 8. Figure 2 dis-
plays error function N = 6 and Figure 3 displays
error function N = 8 Figure 3 compare the error
functions and EN (x) for N = 6, 8.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

Exact solution
N=6
N=8

Figure 1. Comparison of exact solu-
tion and approximate solutions of Ex-
ample 1 for various N .
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
x 10

−6

N
e
=6

Figure 2. Error functions of Exam-
ple 1 for various N .

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

−7

N
e
=8

Figure 3. Error functions of Exam-
ple 1 for various N .

Example 2. Let us consider the following panto-
graph equation of first-order [21]

y′(x) + 2y2(
x

2
) = 1 (23)

with y(0) = 0 and exact solution is y(x) = sin(x).
Table 2 shows numerical solutions Eq.(23) with
N = 5, 7 and 9 by present method. We see that
the approximation solutions obtained by present
method has good agreement with exact solution.
In Table 2 compare the absolute errors and EN (x)
some selected points. Figure 4 display values of
the absolute error and EN (x).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−4

E
C

(5)

N
e
=5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−7

E
C

(7)

N
e
=7

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
x 10

−9

E
C

(9)

N
e
=9

Figure 4. Comparison of error func-
tions and EN (x)of Example 2 for var-
ious N.

Example 3. Let us consider the linear delay dif-
ferential equation with constant coefficients and
proportional delay qx

y′(x) = ay(x) + by(qx), 0 < q < 1 (24)

with initial condition

y(0) = γ

arose in the mathematical modeling of the wave
motion in the supply line to an overhead current
collector (pantograph) of an electric locomotive [1-
2]. For values of a = −1,b = −1, q = 0.8 and
γ = 1 [8], Table 3 shows solutions of Eq.(24) with
N = 8 by present method. Moreover, the previous
results of Walsh series approach (WSA) [34], de-
layed unit step function series approach (DUSFA)
[35], Laguerre series approach (LSA) [36], Tay-
lor series method (TSM) [8] and present method
(PM) are also given in Table 3 for comparison.
The present method seems more rapidly conver-
gent than Laguerre series and Taylor series and
with errors more under control than Walsh or
DUSFA series. The truncated errors for Eq.(24)
are O(9) and O(15) for N = 8 and N = 15 re-
spectively are also indicated.

Example 4. Consider the nonlinear pantograph
equation of third order [11,20],
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y′′′(x) = −1 + 2y2(
x

2
),

y(0) = 0, y′(0) = 1,′′ (0) = 0 (25)

which has the exact solution y(x) = sin(x). If
we take N = 9, we get the difference between
the exact and numerical solutions given in Table
4. Table 4 shows previous results of HPM [20],
Adomian decomposition method (ADM) [11] and
Present method (PM) for comparison. This shows
that the errors are very small. Then, Figure 5 dis-
plays the comparison of error function and EN (x)
for N = 15.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−15

E
C

(9)

N
e
=9

Figure 5. Comparison of error func-
tion and E15(x)of Example 4.

Example 5. We consider the equation with
y(0) = 1

y′(x) = −y(x) + µ1(x)y(0.5x)

+µ2(x)y(0.25x) (26)

Here µ1(x) = −exp−0.5xsin(0.5x), µ2(x) =
−2exp−0.75xcos(0.5x)sin(0.25x). It can be seen
that the exact solution of Eq.(26) is y(x) =
e−xcos(x). Using present method, we obtain the
numerical solution for N = 10. In Figure 6 we
give the exact solution and numerical solutions
corresponding.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
x 10

−6

E
C

(10)

N
e
=10

Figure 6. Comparison of error func-
tion and E10(x)of Example 5.

6. Conclusion

A new method based on the truncated Cheby-
shev series of the second kind is developed to
numerical solve generalized pantograph equations
with mixed conditions. Pantograph equations are
usually difficult to solve analytically. In many
cases, it is required to obtain the approximate
solution. For this propose, the present method
can be proposed. In this paper, the second kind
Chebyshev polynomial approach has been used
for the approximate solution of generalized pan-
tograph equations. Thus the proposed method is
suggested as an efficient method for generalized
pantograph equations. Examples with the satis-
factory results are used to demonstrate the ap-
plication of this method. Suggested approxima-
tions make this method rather attractive and con-
tributed to the good agreement between approxi-
mate and exact values in the numerical examples
for only a few terms. Then examples shows trun-
cated errors, absolute errors and EN (x) are coher-
ent, and performed on the computer using a pro-
gram written in Maple 13. Moreover, suggested
method is applicable for the approximate solution
of the pantograph-type integro-differential equa-
tions with variable delays.
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Applied Mathematics at the Muğla Sıtkı Koçman Uni-
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Table 1. Numerical results of Example 1 for different N.

Present Method
x Exact Solution N = 4 Ne = 4 N = 6 Ne = 6 N = 8 Ne = 8

-1.0 0.367879 0.367649 0.229E-3 0.367878 0.592E-6 0.367879 0.129E-7
-0.8 0.449328 0.448526 0.802E-3 0.449331 0.245E-5 0.449328 0.253E-9
-0.6 0.548811 0.548746 0.646E-4 0.548816 0.481E-5 0.548811 0.119E-7
-0.4 0.670320 0.670909 0.589E-3 0.670318 0.113E-5 0.670320 0.753E-7
-0.2 0.818730 0.818730 0.591E-3 0.818726 0.405E-5 0.818730 0.553E-7
0.0 0.999999 1.000000 0.000E-0 1.000000 0.221E-6 0.999999 0.700E-14
0.2 1.221402 1.221402 0.737E-3 1.221408 0.525E-5 1.221402 0.314E-7
0.4 1.491824 1.491824 0.107E-2 1.491824 0.373E-5 1.491824 0.109E-6
0.6 1.822118 1.822118 0.726E-3 1.822117 0.125E-5 1.822118 0.818E-7
0.8 2.225540 2.225540 0.102E-3 2.228543 0.211E-6 2.225540 0.506E-7
1.0 2.718281 2.718281 0.838E-3 2.718284 0.244E-5 2.718281 0.123E-6

Table 2. Numerical results of Example 2 for different N.

Present Method
x Exact Solution E5 Ne = 5 E7 Ne = 7 E9 Ne = 9

-1.0 -0.841470 0.913568E-4 0.200902E-5 0.477454E-6 0.224832E-9 0.149014E-8 0.115905E-10
-0.8 -0.717356 0.359449E-4 0.319621E-5 0.840162E-8 0.773644E-8 0.448240E-9 0.833401E-11
-0.6 -0.564642 0.157055E-4 0.469280E-5 0.102028E-6 0.147040E-7 0.363683E-9 0.626964E-11
-0.4 -0.389418 0.269612E-4 0.149996E-5 0.127995E-6 0.697329E-8 0.144294E-9 0.357318E-10
-0.2 -0.198669 0.737766E-5 0.418202E-5 0.191299E-7 0.149003E-7 0.193295E-9 0.290406E-10
0.0 0.000000 0.287867E-4 0.000000E-0 0.131290E-6 0.000000E-0 0.368155E-9 0.000000E-0
0.2 0.198669 0.737766E-5 0.418202E-5 0.191299E-7 0.149003E-7 0.193295E-9 0.290406E-10
0.4 0.389418 0.269612E-4 0.149996E-5 0.127995E-6 0.697329E-8 0.144294E-9 0.357318E-10
0.6 0.564642 0.157055E-4 0.469280E-5 0.102028E-6 0.147040E-7 0.363683E-9 0.626964E-11
0.8 0.717356 0.359449E-4 0.319621E-5 0.840162E-8 0.773644E-8 0.448240E-9 0.833401E-11
1.0 0.814470 0.913568E-4 0.200902E-5 0.477454E-6 0.224832E-9 0.149014E-8 0.115905E-10

Table 3. Comparison of the solution of Eq.(24)

x WSA DUSFA LSA TSM TSM PM PM PM
m = 100 n = 20 N = 8 E19 N = 8 N = 15 E15

0.0 1.000000 1.000000 0.999971 1.000000 0.844E-14 1.000000 1.00000000000 0.200E-18
0.2 0.665621 0.664677 0.664703 0.664691 0.138E-13 0.664691 0.66469100082 0.318E-16
0.4 0.432426 0.433540 0.433555 0.433561 0.322E-3 0.433560 0.43356077877 0.170E-15
0.6 0.275140 0.276460 0.276471 0.276483 0.125E-13 0.276481 0.27648233022 0.972E-15
0.8 0.170320 0.171464 0.171482 0.171494 0.738E-14 0.171484 0.17148411197 0.206E-14
1.0 0.100856 0.102652 0.102679 0.102744 0.155E-13 0.102670 0.10267012657 0.814E-14
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Table 4. Comparison of the solution of Eq.(25)

x Exact solution ADM HPM PM
0.0 0.0 0.0 0.0 0.0
0.2 0.19866933079506122 0.19866933079506122 0.19866933079506122 0.19866933079506121
0.4 0.38941834230865050 0.38941834230865050 0.38941834230865050 0.38941834230865049
0.6 0.56464224733950355 0.56464224733950355 0.56464224733950355 0.56464247339503535
0.8 0.71735609089952280 0.71735609089952270 0.71735609089952280 0.71735609089952276
1.0 0.84147109848078965 0.84147109848078966 0.84147109848078965 0.84141098480789650
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