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 This paper aims to decide on the number of facilities and their locations, 

procurement for pre and post-disaster, and allocation to mitigate the effects of 

large-scale emergencies. A two-stage stochastic mixed integer programming 

model is proposed that combines facility location- prepositioning, decisions on 

pre-stocking levels for emergency supplies, and allocation of located distribution 

centers (DCs) to affected locations and distribution of those supplies to several 

demand locations after large-scale emergencies with uncertainty in demand. 

Also, the use of the model is demonstrated through a case study for 

prepositioning of supplies in probable large-scale emergencies in the eastern and 

southeastern Anatolian sides of Turkey. The results provide a framework for 

relief organizations to determine the location and number of DCs in different 

settings, by using the proposed model considering the main parameters, as; 

capacity of facilities, probability of being affected for each demand points, 

severity of events, maximum distance between a demand point and distribution 

center.  
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1. Introduction 

Large-scale emergency incidents, both natural, such as 

flood, earthquake, etc., and human made, such as 

terror (or bio-terror) attacks, can cause a big increment 

in demand for food, water, medical supplies or 

protective materials. In the early stage of post-

emergencies, the demand for medical supplies and 

protective materials are the most vital components in 

reducing the number of injured people and casualties. 

In case of emergency, the initial supplies are needed to 

be delivered to the affected regions within 24 hours 

[1]. Sheu [2] indicates that efficient logistics play a 

significant role in relieving the impact of emergencies. 

To be able to deliver supplies on time, the locations of 

DCs play a critical role in humanitarian relief logistics 

management. 

Prepositioning the DCs is a challenging task in 

emergency management system.  Particularly, this 

paper addresses the location of facilities which is a 

critical strategic decision for suchlike systems. One of 

the most significant applications of location theory is 

the location of medical and protective supplies. Jia et 

al. [3, 4] introduce models and solution approaches to 

determine the facility location of medical supplies in 

response to large-scale emergencies. 

Besides location decisions, capacities of supply 

providers are key decisions in emergency response 

management. However, comparatively limited 

research has been found on the topic of pre-

positioning particular supplies [5]. The existing 

models usually do not consider uncertainty in demand. 

There has been a few works on pre- positioning first 

responders for large scale emergencies. Locating first-

response commodities is different from locating and 

stocking supplies, where multiple commodities must 

be considered, the commodities may have different 

storage necessities and transportation conditions and 

costs [5].  

In this paper, a mathematical model is proposed that 

combines facility location- prepositioning, decisions 

on pre-stocking levels for emergency supplies, and 

allocation of located DCs to affected locations and 

distribution of those supplies to several demand 

locations after large-scale emergencies; with 

uncertainty in demand and number of affected 

locations where high demand requirements occur. The 

proposed mathematical formulation is a two-stage 

stochastic mixed integer programming (SMIP) model, 



2                                                E. Celik et al. / IJOCTA Vol.7, No.1, pp.1-15 (2017) 

which is addressed as NP hard problems [6]. In many 

situations, parameters of the optimization problems 

cannot be known with certainty [5, 7, 8, 9, 10], in such 

cases stochastic programming (SP) methodologies are 

one of the strategies to apply. In two-stage stochastic 

programming, first-stage decisions are made in the 

existence of uncertainty for future scenarios. Second-

stage decisions are made after the realization of the 

random parameters are known, and are dependent on 

the first-stage decisions [5, 11]. 

In our model, potential locations and severity of the 

uncertain large scale emergency events are 

represented via a set of discrete scenarios with 

probabilities. The first-stage decisions in the SP model 

involve the DCs’ locations and allocation of the 

located DCs to affected regions, as well as the amount 

of stocking for multiple types of supplies (medical and 

protective). In the second-stage, recourse decisions are 

made including the distribution of available stocked 

and projected to be bought supplies, after large-scale 

emergencies occur, to reply particular scenario events.   

In the next section, the literature on related topics is 

reviewed as emergency management, facility location 

and allocation, and prepositioning. In Section 3, the 

formulation of the proposed mathematical model is 

presented. We demonstrate the use of the model 

through a case study for pre positioning of supplies in 

probable large-scale emergencies in the eastern and 

southeastern Anatolian sides of Turkey. Data setup 

and results and analysis are presented in detail, in 

Section 4. Section 5 delivers conclusions and 

directions for future work.  

2. Literature review 

A survey on general insight to emergency 

management for operations research and management 

sciences is presented by Altay and Green [12]. 

Galindo and Batta [13] also present an extended 

literature review that covers the years between 2005 

and 2010, inspired by Altay and Green’s [12] paper. 

The optimization models in emergency logistics 

problems are reviewed in detail by Caunhye et al. 

[14]. In this paper, we present a literature review of 

the humanitarian relief logistics management taking 

into account disaster operations, as the facility 

location, prepositioning, and allocation problems, 

using deterministic and stochastic programming 

models.  

The facility location problem is determined as one of 

the main operations of the preparedness in 

humanitarian relief operations. The early paper on 

facility location models for humanitarian relief 

operations are presented by Toregas et al. [15], 

Psaraftis et al. [16] and Iakovou et al. [17]. Jia et al. 

[3,4] and Huang et al. [18] presented only the location 

problem. Murali et al. [1] present locate-allocate 

heuristic for capacitated facility location to response 

large-scale emergencies under demand uncertainty. 

Shui et al. [19] present a mixed integer programming 

model in order to determine the locations and amounts 

of the emergency logistics DCs. Yushimito et al. [20] 

propose a heuristic algorithm based on Voronoi 

diagrams in order to solve the distribution center 

location problem.  

As a preparation for an emergency, the prepositioning 

of supplies aims to minimize the response time, 

enhance emergency response capacity [21], and cover 

the maximum required inventory. The two-stage 

stochastic programming models are presented for 

prepositioning of relief inventory in Rawls and 

Turnquist [5, 22], Verma and Gaukler [23], Döyen et 

al. [24], Hong et al. [25], Salmerón and Apte [26], 

Lodree et al. [27], Campbell and Jones [28]. The relief 

routing [29] and disruption of network [30] is taken 

into consideration along with prepositioning.  

Location and allocation models enable to decide 

where to open facilities and determine how to assign 

demand to facilities to increase the utilization of 

resources. Mitsakis et al. [31] present an optimal 

allocation model for emergency response to minimize 

maximum and average response time using existence 

resources. Chang et al. [32], Mete and Zabinsky 

[33,34], and Gunnec and Salman [35] propose two 

stage stochastic programming model for location and 

allocation of emergency relief source. Yi and 

Özdamar [36], Sheu [55], and Rawls and Turnquist 

[43] presented dynamic allocation model to optimize 

for preparedness and response activities. A genetic 

algorithm [56], particle swarm optimization algorithm 

[38], an epsilon constrained approach [45] are also 

proposed for location and allocation model for 

emergency response. The location-allocation plans 

often fail, because the uncertain and unusual nature of 

emergencies is not explicitly accounted [41, 57]. 

Stochastic programming is specified as a suitable 

optimization tool to plan the humanitarian relief 

logistics activities, because of reflecting uncertainty 

by probabilistic scenarios representing disasters and 

their outcomes [33]. Uncertainty is the nature of 

natural and man made disasters.  

In summary, Table 1 categorizes facility location 

models according to the problem and data type that 

use deterministic or stochastic parameters. Firstly, 

most of the studies consider location but 

prepositioning. Secondly, most of the studies deal 

with either pre or post disaster procurements. Almost 

none of them take into account both procurement 

types. Bozorgi-Amiri et al. [38] is one of the studies 

that consider both procurement types. Lastly, 

approximately half of the studies solves problem with 

only deterministic parameters. In this study, we 

propose a two-stage stochastic optimization model to 

solve the location, prepositioning and allocation and 

post disaster procurement problem for critical items to 

be prepared in responding to large scale emergencies. 

The proposed model aims to support and improve the 

decisions made at strategic and operational levels for 

large-scale emergencies. The strategic decisions 

contain the location of DCs. The operational part  

 



 

Table 1. Facility location problems and data type 

Author Objective Location Location/ 

Prepositioning 

Location/ 

Allocation 
Deterministic Stochastic 

Stochastic Stochastic/Uncertain Parameters 
Yi and Ozdamar [36] Unsatisfied Demand Minimization 


 

  Yushimito and Ukkusuri [28] Cost Minimization  



  Jia et al. [3] Distance Minimization 

   
 Demand 

Chang et al. [32] Distance Minimization 





 Demand 

Jia et al. [4] Coverage Minimization 
  


  Günneç and Salman [35] Time and Risk Minimization 





 Demand 

Mete and Zabinsky [33] Cost and Time Minimization 





 Demand and time 

Balcik and Beamon [11] Coverage Maximization 
  


  Shui et al. [19] Cost and Time Minimization 

  


  Mete and Zabinsky [34] Cost Minimization 





 Demand time and supply 

Rawls and Turnquist [5] Cost Minimization  
  

 Demand and link availability 

Salmeron and Apte [26] Unsatisfied Demand Minimization 
 

 


 Demand and time 

Huang et al. [18] Coverage Maximization/Distance Minimization 
  


  Han et al. [37] Distance Minimization 

  


  Verma and Gaukler [23] Distance Minimization  
  

 Distance 

Campell and Jones [28] Cost Minimization 
 





  Duran et al. [21] Time Minimization  

  
 Demand/ Supply 

Rawls and Turnquist [22] Cost Minimization  
  

 Demand and link availability 

Bozorgi-Amiri et al. [38] Cost Minimization 





 Procuring cost, demand and inventory 

Naji-Azimi et al. [39] Distance Minimization 
   


  Döyen et al. [24] Cost Minimization   


 Demand 

Yushimito et al. [20] Cost Minimization and Coverage Maximization 
  


  Galindo and Batta [30] Cost Minimization  

  
 Demand 

Murali et al. [1] Coverage Maximization 
   

 Demand 

Lin et al. [40] Cost Minimization 


 
  Paul and Hariharan [41] Cost Minimization 


 

  Afshar and Haghani [42] Unsatisfied Demand Minimization 
  


  Rawls and Turnquist [43] Cost Minimization 





 Demand and link availability 

Hong et al. [25] Cost Minimization  
  

 Demand and transportation capacity 

Lodree et al. [27] Cost Minimization 
 


  

 Demand 

Rath and Gutjahr [44] Cost Minimization 
  


  Abounacer et al. [45] Unsatisfied Demand and Time Minimization 


 

  Sheu and Pan [46] Distance, operational and physiological costs minimization 


 
  Verma and Gaukler [47] Cost Minimization      Earthquake damage and distances 

Salman and Gül [48] Time Minimization 


 
  Caunhye et al. [49] Time Minimization 


 

  Renkli and Duran [50] Distance Minimization 
 

 


 Survivability of infrastructure 

Rath et al. [51] Coverage maximization and cost minimization 
  




 Route accessibility cost 

Kılcı et al. [52] Maximization of the minimum weight of open shelter areas 
  


  Aydin [53] Distance Minimization 





 Failure of existing infrastructure 

Tofighi et al. [54] Distribution time and total cost minimization  
  

 Demand, supply and network availability 

Our Study Cost Minimization      Demand 
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consists the prepositioning and allocation of critical 

items. The model also considers the penalty cost in the 

lack of critical items to satisfy demand (medical and 

protective).The paper basically contributes to 

emergency management literature. Additionally, the 

contributions of the paper on stochastic prepositioning 

and facility location and allocation literature are 

significant. Another contribution of the paper is to 

present a real world case study from the eastern and 

southeastern Anatolian sides of Turkey for response to 

any large scale emergency(s). It is a novel case study 

and unique for this region.  

3. Two stage stochastic facility location-allocation 

model 

In this section, we propose a capacitated facility 

location and allocation problem (CFLAP) formulation 

as a two-stage SP problem. As explained earlier, the 

objective is to minimize total cost of prepositioning, 

procurement, inventory holding, transportation and 

penalty cost of unsatisfied demand.   

Now, CFLAP formulation is given as a two-stage SP 

problem, starting with the notation presented as 

follows. 

Notation and mathematical formulation: 

Sets: 

IE: set of existing facility locations,  

IP: set of possible facility locations,  

I: set of all facility sites, I = IE ⋃ IP , 𝑓𝑜𝑟 ∀𝐺, ∀𝑁𝐺  

JA: set of affected regions,  

JN: set of non- affected (safe) regions,  

J: set of all demand points, J = JA ⋃ JN  𝑓𝑜𝑟 ∀𝐺, ∀𝑁𝐺 

S: set of all possible scenarios,  

K: set of commodities, 

G: set of governmental organizations, 

NG: set of non-governmental organizations, 

Parameters: 

𝑓𝑖: fixed cost for facility 𝑖 ∈ I, 𝑓𝑜𝑟 ∀𝐺, ∀𝑁𝐺 

𝑐𝑎𝑝𝑖: capacity of facility 𝑖 ∈ I, 𝑓𝑜𝑟 ∀𝐺, ∀𝑁𝐺  

𝑠: a possible future scenario and 𝑠 ∈ S 

𝑝𝑠: occurrence probability of scenario 𝑠 ∈ S  

𝑟𝑗
𝑠:= 1 if region 𝑗 ∈ J is affected in scenario 𝑠 ∈ S , 0 

otherwise  

𝑑𝑗
𝑘𝑠: demand of commodity 𝑘 ∈ 𝐾 in scenario 𝑠 ∈ 𝑆 

for region 𝑗 ∈ J 
𝑐𝑘: procurement cost for each unit of commodity 𝑘 ∈
K 

ℎ𝑘: holding cost for each unit of commodity 𝑘 ∈ K 

𝑣𝑘: volume of each unit of commodity 𝑘 ∈ K 

𝑢𝑘: penalty cost for each unsatisfied unit of 

commodity 𝑘 ∈ K  

𝑑𝑖𝑠𝑖𝑗: distance between facility 𝑖 ∈ I and region 𝑗 ∈ J 

𝑚𝑎𝑥𝑑𝑖𝑠: maximum distance allowed to transport any 

commodity 

𝑚𝑑𝑗
𝑘: minimum pre-disaster procurement percentage 

of demand for commodity 𝑘 ∈ K in region 𝑗 ∈ J 
𝑡𝑖𝑗: transportation cost of one unit of commodity 𝑘 ∈

K from facility 𝑖 ∈ I to region 𝑗 ∈ J 

Decision variables: 

 𝑥𝑖:= 1 if facility 𝑖 ∈ I is opened, 0 otherwise 

𝛽𝑖𝑗:= 1 if facility 𝑖 ∈ I is assigned to region 𝑗 ∈ J, 0 

otherwise 

𝛼𝑗
𝑘𝑠: unsatisfied demand from commodity 𝑘 ∈ K at 

region 𝑗 ∈ J in scenario 𝑠 ∈ S 

𝑦𝑖𝑗
𝑘 : pre-disaster procurement from commodity 𝑘 ∈ K 

at facility 𝑖 ∈ I to be transported to region 𝑗 ∈ J 

𝑧𝑖𝑗
𝑘𝑠: post-disaster procurement of commodity 

𝑘 ∈ K at facility 𝑖 ∈ I to be transported to 

region 𝑗 ∈ J in scenario 𝑠 ∈ S 

In the scenario based formulation of CFLAP, each 

scenario denotes a different circumstance, the affected 

regions and non- affected regions with a different 

level of severity. Each scenario 𝑠 ∈ 𝑆 occurs with a 

different probability,ps, and ∑ ps = 1s∈S . In total, in 

case of independent affecting possibilities, we have 

|S| = 2|J| possible scenarios. Please note that our 

model does not necessitate any assumption on 

independence of each scenario. Furthermore, each unit 

of demand that is not satisfied by any of facility(s) 

cause a large penalty,u𝑘  𝑘 ∈ K, cost. This penalty can 

be incurred due to casualties or finding an alternative 

source to treat disaster victims. There are some 

assumptions need to be highlighted such as all costs 

are known in advance i.e., fixed cost of locating 

facilities, holding cost, procurement cost, 

transportation cost, penalty cost of unsatisfied 

demand. Distance between facilities and affected 

regions are gathered from Google Maps [58]. 

Population of the affected regions is gathered from 

TUIK [59].  A maximum distance is assumed so that 

the maximum traveling distance between affected 

regions and the allocated facility cannot exceed a 

specific value. Also some limitations are need to be 

specified such as, if applicator has uncertainty in 

supply, time, cost etc. the modeler will need to 

redesign the mathematical model, and if there are 

larger number of nodes in the network the 

mathematical model will need to be solved via 

heuristics or metaheuristics solution approaches.     

Here, the CFLAP is formulated as a two-stage 

stochastic programming problem. In the first stage, the 

location decisions are made before random large-scale 

emergencies occur. In the second stage, following the 

events, the affected region-facility assignments 

decisions are made for each affected region given that 

the particular regions are affected and facilities are 

located. The objective is to determine the set of 

facilities to be located while minimizing the total cost 

of open facilities and the expected cost of satisfying 

demand for affected regions from new opened 

facilities.  

Using the notation, we present the mathematical 

model for the scenario based CFLAP as a two-stage 

stochastic program as below, starting with the 

objective function. 
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Minimize            ∑ fixi

i∈I

+ ∑ ∑ ∑(ck + hk)yij
k

k∈Kj∈Ji∈I

+ ∑ ps (∑ ∑ ∑ ckzij
ks

k∈Kj∈Ji∈Is∈S

+ ∑ ∑ ∑ tij(yij
k + zij

ks)

k∈Kj∈Ji∈I

+ ∑ ∑ ukαj
ks

k∈Ki∈I

)                            (1) 

Subject to 

∑ ∑ vk(yij
k + zij

ks)

k∈Kj∈J

≤ capixi     ∀i ∈ I, s ∈ S           (2) 

∑(yij
k + zij

ks)

i∈I

+ αj
ks ≥ dj

ks𝑟𝑗
𝑠    ∀j ∈ J, k ∈ K, s ∈ S  (3) 

∑ yij
k

i∈I

≥ mdj
kdj

ks     ∀j ∈ J, k ∈ K, s ∈ S                      (4) 

vk(yij
k + zij

ks) ≤ 𝑐𝑎𝑝𝑖βij    ∀i ∈ I, j ∈ J, k ∈ K, s ∈ S (5) 

βij ≤ xi     ∀i ∈ I, j ∈ J                                                     (6) 

disijβij ≤ max𝑑𝑖𝑠     ∀i ∈ I, j ∈ J                                  (7) 

yij
k, zij

ks, αj
ks ∈ int and ≥ 0     ∀i ∈ I, j ∈ J, k ∈ K, s

∈ S                                                     (8) 

xi, 𝛽𝑖𝑗 ∈ {0,1}    ∀i ∈ I, j ∈ J                                          (9) 

 

The objective function in formulation (1) minimizes 

the total fixed cost of locating facilities and the 

expected second stage cost of satisfying demand 

through opened facilities. Constraint (2) ensures that 

the total procured commodities at a facility do not 

exceed its capacity. Constraint (3) ensures that 

demand of each demand point is satisfied by either 

open facilities or alternative sourcing, or penalized. 

Constraint (4) ensures minimum procurement amounts 

for each commodity and facility. Constraints (5) and 

(6) prevent procurement at a facility and assignment 

of any demand point to a facility if it is not opened.  

Constraint (7) ensures that demand points are assigned 

to facilities that are within maximum distance. Finally, 

the constraints (8) and (9) are integrality constraints. 

The proposed model provides a generic scenario based 

model to handle uncertainty in demand. The model 

can be applied to any region or case where uncertainty 

occurs in demand. Additionally, the model is easy 

adaptable to the cases where capacity of the facilities 

are not issue. By replacing cap
i
 in the right hand side 

of constraints (2) and (5) by a big number (let say 𝑀) 

is enough to develop an uncapacitated version of the 

model. Furthermore if maximum distance to travel per 

region is not an issue removing constraint (7) will be 

good enough to revise the model and apply. Another 

robustness of the model is that it can be solved by 

heuristics approaches if number of scenarios or 

number of nodes or number of regions is very large. 

4. The case of Turkey 

In this section, we present a case study motivated by a 

real-world problem from eastern and southeastern 

parts of Turkey. We describe the case details in 

Section 4.1 and present the results in Section 4.2. 

4.1. Case description and data acquisition 

This case study focuses on locating new DCs at the 

eastern and southeastern Anatolian sides of Turkey in 

response to possible large-scale emergencies. Turkish 

Red Crescent (TRC) is responsible for administration 

of Turkish domestic relief networks with a number of 

DCs, which preserve inventory for emergency 

supplies [60]. Balcik and Ak [60] note that the TRC 

currently works on pre-positioning some emergency 

supplies for a large scale emergency. One of our 

motivations is to determine the number of DCs to 

effectively satisfy all demands that may be caused by 

large scale emergencies. 

Although facility location problems are widely 

experienced in large-scale emergency field, the 

detailed data related to this problem and DCs’ features 

are not publicly available. Furthermore, there is no 

standard data set that contains data for emergency 

event scenarios and demand estimates for relief 

supplies. We obtain the most of our data from 

governmental and non-governmental organizations; 

for the missing parts we develop sample problem sets 

to perform numerical analysis. Subsequently, the 

parameters are set realistically without any limiting 

assumptions. Therefore, the results from these data set 

samples can be generalized. Medical and protective 

materials are the most critical supplies for the victim's 

survival and health. An emergency event might be 

very severe and affect thousands of people in a very 

short time period. Therefore, it is very important to 

distribute medical and protective materials to demand 

points immediately after or before (if the event is 

expected beforehand) the emergency event occurs. 

In this case study, we address the problems of pre-

positioning DCs at specified regions of Turkey and 

procurement of multiple items (medical and protective 

materials) at these DCs for pre and post large scale 

emergencies. The population of the regions (demand 

points), the distance between DCs and regions, the 

locations and capacities of current DCs and the cost of 

critical items are problem specific and based on real 

data. Therefore, we propose the demand scenarios and 

related parameters as explained below. 

Demand Scenarios: Each scenario represents the set of 

regions that might be affected by emergency event and 

the severity level of the event. Demand of each region 

for a specific scenario is calculated via logic in Jia et 

al. [4]. Four levels are used in Jia et al. [4], such as 

‘’low, intermediate, intermediate-high and high’’. We 

practice four levels of severity as well. Let sev 

(:={0.03,0.05,0.07,0.09}) be the severity set of the 
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emergency event, and 
s

wsev  be the scenario s’s 

severity at level w,w∈sev. Let j  denote the 

population of the affected region j. The population 

data of demand points are obtained from Turkish 

Statistical Institute’s database from its formal website 

[59] and provided in Table 2. Note that, the demand 

for different types of commodities is considered to be 

the same, which is a non-restrictive assumption and 

easily can be generalized. Then, demand for a scenario 

is calculated as below. 

dj
ks = sev𝑤

𝑠  ρ𝑗     ∀𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑤 ∈ 𝑠𝑒𝑣, 𝑠 ∈ 𝑆    (11) 

Lastly, note that each problem set consists of 1024 

(|S| = 2|#of Demand Points|) scenarios. The 

deterministic equivalent formulation has variables xi,

βij, yij
k, zij

ksand αj
ks, in total  

|I||+|I|×|J|+|I|×|J|×|K|+|I|×|J|×|K|×|S|+|J|×|K|×|S|= 

10+10×10+10×10×2+10×10×2×1024+10×2× 1024 = 

225,590 variables. Similarly, it has constraints (2), (3), 

(4), (5), (6), (7) and (8), in total 461,200 constraints.   

Table 2. The populations of the regions (demand 

points) 

Region Population Region Population 

1 2,125,635 6 762,366 

2 1,592,167 7 1,063,174 

3 778,195 8 773,026 

4 1,799,558 9 1,762,075 

5 1,483,674 10 1,051,975 

 
Minimum Stocked Demand: Medical and protective 

materials are vital for victims; therefore, these 

supplies need to be distributed immediately to the 

affected regions. Pre-positioning a particular amount 

of supplies at DCs is one of the best ways to respond 

emergency events on time. Thus, we add the minimum 

demand constraints to the formulation. As described 

earlier, mdj
k represents the minimum percentage of 

demand in affected region j from commodity 𝑘 that 

needs to be procured pre-disaster. We practice one for 

mdj
k (: = {0.3}). The minimum demand that needs be 

procured is calculated as the production of demand 

and percentage levels (mdj
kdj

ks). Since pre-positioning 

is the first stage decision variables in SP, the amount 

of demand that needs to be stocked has to satisfy the 

constraints in (4) for all scenarios. 

Scenario Probabilities: In generating the scenarios, 

we assume that the regions are affected independently 

and identically, as the events have Bernoulli 

distribution with probability  𝑞𝑗 (i.e., the occurrence 

probability of the event at region 𝑗). In our 

experiments, we use two types of occurrence 

probabilities; uniform failure probability (i.e., 𝑞𝑗 =

1, … , |𝐽| = 𝑞), which considers the cases 𝑞 =
{0.3, 0.5, 0.8}, and randomly selected values.  

Capacity: Based on the information obtained from a 

non-governmental organization, whose major 

motivation is to manage the distribution of supplies to 

victims who are affected by disasters, the capacity of 

DCs varies between 15𝐾𝑚3 and 50𝐾𝑚3. Therefore, 

we test eight capacity levels in this study, such as 

15𝐾 𝑚3,  20𝐾𝑚3,  25𝐾𝑚3,  30𝐾𝑚3,  35𝐾𝑚3, 

  40𝐾𝑚3,  45𝐾𝑚3 and 50𝐾𝑚3.  

Max Distance: Since responding large-scale 

emergencies is like racing with time, we consider 

maximum distance constraints, what ensure that a 

commodity can only be transported from a distribution 

center to affected regions that are in a specific range. 

In other words, the service distance levels are 

identified. Detailed information on service distance 

minimization can be found in Jia et al. [4] and Lin et 

al. [40]. The experimental samples are tested with 

respect to six different levels of distance ranges, such 

as 350𝑘𝑚, 400𝑘𝑚,  450𝑘𝑚,  500𝑘𝑚,  550𝑘𝑚 

and 600𝑘𝑚. 

Table 3. Distances between distribution centers and regions (demand points) 

  Distances between DCs and Regions (km) 

DCs 1 2 3 4 5 6 7 8 9 10 

Adana 0 522 808 209 191 392 189 534 346 899 

Diyarbakir 522 0 324 313 509 251 369 95 176 377 

Elazig 490 153 318 345 477 98 321 248 329 475 

Erzurum 808 324 0 637 795 416 639 419 500 414 

Mus 742 258 266 571 729 350 573 353 434 223 

Gaziantep 209 313 637 0 196 247 80 325 137 690 

Hatay 191 509 795 196 0 379 176 521 333 886 

Malatya 392 251 416 247 379 0 223 346 269 573 

Sanliurfa 346 176 500 137 333 269 217 188 0 553 

Van 899 377 414 690 886 573 746 452 553 0 
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Figure 1. Regions and locations of DCs 

Table 4. Effects of capacity on location decisions and total cost 

Capacity Impact Objective Open Decisions Impact Objective Open Decisions 

15K 

 50,599,764 1,2,3,4,5,6,7  187,188,418 1,2,3,4,5,6,7,8,9,10 

20K 
 

51,984,362 1,3,5,6,7,9 
 

166,402,454 1,2,3,4,5,6,7,8,9,10 

25K 
 

52,035,866 5,6,7,8,9 
 

147,390,098 1,2,3,4,5,6,7,8,9,10 

30K 

0
.0

3
 52,509,772 5,6,7,8,9 

0
.0

7
 132,785,959 1,2,3,4,5,6,7,8,9,10 

35K 51,397,250 5,6,7,9 124,952,934 1,2,3,4,5,6,7,8,9,10 

40K 
 

51,828,149 5,6,7,9 
 

122,077,183 1,3,4,5,6,7,8,9,10 

45K 
 

52,424,826 5,6,7,9 
 

119,405,632 1,3,5,6,7,8,9,10 

50K 
 

50,696,695 5,7,9  116,448,701 1,3,6,7,8,9,10 

15K 

 94,740,147 1,2,3,4,5,6,7,8,9,10  320,907,135 1,2,3,4,5,6,7,8,9,10 

20K  87,766,262 1,2,3,4,5,6,7,8,9,10  265,670,113 1,2,3,4,5,6,7,8,9,10 

25K 
 

87,536,511 1,3,4,5,6,7,8,9,10 
 

242,583,042 1,2,3,4,5,6,7,8,9,10 

30K 

0
.0

5
 86,923,893 1,3,5,6,7,8,9,10 

0
.0

9
 220,700,621 1,2,3,4,5,6,7,8,9,10 

35K 85,888,361 1,3,6,7,8,9,10 199,740,250 1,2,3,4,5,6,7,8,9,10 

40K 
 

84,395,974 3,6,7,8,9,10 
 

181,120,654 1,2,3,4,5,6,7,8,9,10 

45K 
 

84,988,539 4,6,7,8,9,10 
 

166,774,135 1,2,3,4,5,6,7,8,9,10 

50K 
 

83,031,958 3,6,7,9,10  157,792,895 1,2,3,4,5,6,7,8,9,10 

 

 
Distances between DCs and demand points are 

obtained from the Republic of Turkey General 

Directorate of Highways’ database [61]. The distances 

between projected to be opened DCs and regions 

(demand points) are presented in Table 3. 

Regions: We group the regions based on their 

populations (i.e., including overcrowded cities) and 

strategic importance (i.e., location, population, 

locating military quarters, etc.). Ten regions are 

determined at eastern and southeastern Anatolian sides 

of Turkey. Each region is numbered and differently 

colored as in Figure 1. The triangles show the possible 

locations to set up DCs at.Other Costs: Set up cost for 

each DC changes based on its capacity level. 

Furthermore, this cost does not increase linearly with 

the incremental in capacity. Set up cost is determined 

as follows: Incremental cost for one of unit capacity 

up to 15𝐾𝑚3 is 100(𝑇𝐿 − 𝑇𝑢𝑟𝑘𝑖𝑠ℎ 𝐿𝑖𝑟𝑎), between 

15𝐾 and 20𝐾 is 95(𝑇𝐿), and for the ranges between 

20𝐾 − 25𝐾, 25𝐾 −  30𝐾, 30𝐾 − 35𝐾, 35𝐾 − 40𝐾, 

40𝐾 − 45𝐾 and 45𝐾 − 50𝐾 are 90, 85, 80, 75, 70, 

and 65 (𝑇𝐿), respectively. Then, for instance, cost of 
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locating a DC with 15𝐾𝑚3 is 1.5𝑀 (= 15,000𝑥100) 

and with 20𝐾𝑚3is 1.9𝑀 (= 20,000𝑥95). As 

mentioned earlier, two types of commodities (medical 

and protective materials) are considered here. 

Purchasing cost of each unit is 70 (𝑇𝐿) and 40 (𝑇𝐿) 

for medical and protective supplies, consecutively. 

Holding cost for one unit of medical supply 

is 30 (𝑇𝐿), and for one unit of protective materials is 

20 (𝑇𝐿). Penalty cost for each unit of unsatisfied 

demand is considered as 500(𝑇𝐿) for medical, 

and 300(𝑇𝐿) for protective materials. 

4.2. Results and discussions 

The case samples are solved by using IBM 

ILOG/CPLEX 12.1.0 on a desktop computer with 

Intel (R) Core (TM) i5-2400M 3.10GHz CPU.  

Effect of capacity decisions: In this subsection, 

minimum average demand is fixed to 30%, maximum 

distance to 400(𝑘𝑚), and scenario probabilities are 

considered to be random. 

Changes in capacities have larger effect on facility 

decisions when large-scale emergencies have low 

impact. In other words, results show that the number 

of opened facilities is more sensitive to capacities in 

cases of low impact events. On the contrary, the 

capacity changes have less effect on location 

decisions, when large-scale emergencies have larger 

impact. For instance, when capacity is increased from 

its minimum value (15𝐾) to the maximum value 

(50𝐾), the number of opened facilities decreases from 

seven to three, under the impact factor 0.03, and from 

ten to five, under the impact factor 0.05. Since a large 

number of facilities are necessary to create extra 

capacity for responding to large-scale emergencies, 

more possible facility locations are needed to be 

determined; because even if all facilities are decided 

to be opened with the maximum capacity, the demand 

is still not fully satisfied. 

As seen in Table 4, the number of opened facilities 

reduces along with the increment in capacities. Seven 

facilities are decided to be located when capacity is 

15𝐾, six when 20𝐾 , five when 25𝐾 and 30𝐾, four 

when 35𝐾, 40𝐾 and 45𝐾, and three when 50𝐾, under 

the 0.03 impact factor case. The same changes can be 

observed when impact factor is increased to 0,05. All 

facilities are opened if selected capacity is less 

than 25𝐾. Number of opened facilities continuously 

reduces from 10 to 5, when capacity is increased up 

to 50𝐾. The reason of opening all facilities can be 

explained with the lack of capacity to satisfy all 

demand. The lack of capacity causes to open all 

facilities in almost all cases except when capacity is 

higher than 35𝐾 under 0.07 impact factor case. All 

facilities are opened when impact factor is 0.09. This 

explanation can be fortified by analyzing the cost 

elements that constitute the expected total cost. For 

instance, in the case when impact factor is 0.09 and 

capacity is 15𝐾, then 67% of expected total cost is 

the penalty cost of not being able to satisfy demand, 

while 5%, 18%, and 10% are fixed, pre-procurement 

and post-procurement costs, consecutively. The 

transportation cost constitutes only less than 1% of 

expected total cost. Moreover, the results indicate that 

larger number of facilities would be used only for 

meeting demand requirements if reserve capacities are 

set sufficiently large. 

The results in Figure 2 indicate that the expected total 

cost generally is sensitive to facility capacities, 

especially when large-scale emergencies have higher 

impact. Expected total cost decreases by 62% when 

capacity is increased to its maximum level from its 

minimum level under high impact events. In other 

words, the 67.5% of the expected total cost is caused 

from expected penalty cost when capacity is at its 

minimum level (15𝐾), and penalty cost reduces to 

4.75% when capacity is at its maximum level (50𝐾). 

The same conclusion is attained from the case 

with 0,07 impact events. As a result, larger savings in 

penalty costs occur in the cases with high impact 

events via increased facility capacity. Since total 

available capacity is sufficiently enough to satisfy all 

demand under low impact events (i.e.0.03), expected 

total cost may increases, because of redundancy in 

capacity. We conclude that, any large-scale 

emergency with a lower impact than 0.03 can be 

responded with the minimum cost and 100% 

satisfaction. This satisfaction can be responded either 

by seven facilities with 15𝐾 capacity level or three 

one with  50𝐾 capacity level. Therefore, it is valuable 

information for decision makers to locate facilities 

with higher capacities to response high impact events 

and lower capacities to response low impact events. 

Effect of maximum distance: In this subsection, 

minimum average demand is fixed to 30%, capacity 

to 30𝐾 𝑎𝑛𝑑 50𝐾, separately, and scenario 

probabilities are considered to be random. 

Facility capacities and maximum distance may highly 

affect the total costs in settings under high and low 

impact large-scale emergencies. The samples include a 

combination of scenarios with high and low impact 

events, and demand fluctuations across scenarios are 

large. In this section, we test the sensitivity of costs 

and location decisions with respect to the changes in 

capacities and maximum distance. Specially, we 

perform experiments with maximum distance values 

that range from 350 𝑡𝑜 600 (𝑘𝑚) and facility 

capacities. Two levels of capacities are performed, 

such as 30𝐾 and 50𝐾. as shown in Table 5, total costs 

and number of opened facilities are sensitive to 

maximum distance and capacity, which is consistent 

with our previous observations. 
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Figure 2. Effects of capacity on total cost 

Table 5. Effects of maximum distance on location decisions and total cost 

    

 

Capacity=30,000 

 

Capacity=50,000 

    Impact Objective Open Decisions 

 

Objective Open Decisions 

 

350 

0.03 

52,510,024 5,6,7,8,9   50,703,287 5,7,9 

400 52,509,772 5,6,7,8,9   50,696,695 5,7,9 

 

450 51,464,657 6,7,9,10   49,797,837 7,9,10 

500 51,153,242 6,7,9,10   49,694,821 7,9,10 

 

550 51,153,242 6,7,9,10   49,694,821 7,9,10 

600 51,062,473 6,7,9,10   49,691,690 7,9,10 

 

350 

0.05 

88,091,898 1,3,4,5,6,7,8,9   85,546,944 4,6,7,8,9,10 

400 86,923,893 1,3,5,6,7,8,9,10   83,031,958 3,6,7,9,10 

M
a

x
im

u
m

 D
is

ta
n

ce
(k

m
) 

450 86,809,666 1,3,4,6,7,8,9,10   81,774,616 6,7,9,10 

500 86,798,057 1,3,4,6,7,8,9,10   81,255,582 6,7,9,10 

550 86,798,057 1,3,4,6,7,8,9,10   81,255,582 6,7,9,10 

600 86,797,263 1,3,4,6,7,8,9,10   81,104,293 6,7,9,10 

350 

0.07 

140,215,849 1,2,3,4,5,6,7,8,9,10   120,816,966 1,3,4,6,7,8,9,10 

400 132,785,959 1,2,3,4,5,6,7,8,9,10   116,448,701 1,3,6,7,8,9,10 

450 132,226,870 1,2,3,4,5,6,7,8,9,10   116,214,909 1,4,6,7,8,9,10 

500 132,144,639 1,2,3,4,5,6,7,8,9,10   116,142,857 1,4,6,7,8,9,10 

 

550 132,144,639 1,2,3,4,5,6,7,8,9,10   116,142,857 1,4,6,7,8,9,10 

600 132,080,556 1,2,3,4,5,6,7,8,9,10   116,140,350 1,4,6,7,8,9,10 

 

350 

0.09 

229,490,054 1,2,3,4,5,6,7,8,9,10   168,121,111 1,2,3,4,5,6,7,8,9,10 

400 220,700,621 1,2,3,4,5,6,7,8,9,10   157,792,895 1,2,3,4,5,6,7,8,9,10 

 

450 219,702,659 1,2,3,4,5,6,7,8,9,10   157,420,474 1,2,3,4,5,6,7,8,9,10 

500 219,585,144 1,2,3,4,5,6,7,8,9,10   157,364,838 1,2,3,4,5,6,7,8,9,10 

 

550 219,584,994 1,2,3,4,5,6,7,8,9,10   157,364,838 1,2,3,4,5,6,7,8,9,10 

600 219,438,357 1,2,3,4,5,6,7,8,9,10   157,340,757 1,2,3,4,5,6,7,8,9,10 

 
The samples, in which the maximum distances are 

increased to 600𝑘𝑚 of their minimum levels, 

(350𝑘𝑚), lead to less expected total cost in all cases 

and less opened facilities in some cases. For instance, 

in low impact events (0.05) six facilities 

(4, 6, 7, 8,9, and 10) are opened when maximum 

distance is restricted to 350𝑘𝑚. However, the number 

of opened facilities is reduced to five 

(3, 6, 7,9, and 10) when maximum distance is 

increased to 400𝑘𝑚. The only change is not restricted 

with the number of opened facilities. Design of the 

solution is changed; facilities 4 and 8 are not selected 

to be opened and facility 3 is opened instead. 
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a) Capacity=30.000 

 

 
b) Capacity=50.000 

Figure 3. Effect of maximum distance on total costs 

 
As realized in Figure 3, expected total costs are more 

sensitive to maximum distance under high impact 

events and less sensitive to low impact events. Total 

expected costs decrease continuously with the 

increments in maximum distance. In Figure 3 a), 

expected total cost decreases by 4% under 0.09 

impact factor, when maximum distance increases from 

350𝑘𝑚 to 600𝑘𝑚. Expected total cost decreases by 

6%, 1% and 3% under 0,07, 0,05 and 0,03 impact 

factor cases, consecutively. The same observation can 

be gained in Figure 3 b). Expected costs decrease by 

2%, 5%, 4%, and 6% for cases 0.03, 0.05, 0.07, and 

0.09 impact factors, consecutively. Note that 

capacities are considered 30,000 and 50,000 in 

Figure 3 a) and b), sequentially. Another observation 

is that the expected total costs decrease even if the 

solutions (number of and opened facilities) do not 

change. We conclude that maximum distance and 

capacity decisions have relatively high impact on 

expected total cost and solution.  

Effect of scenario probability: In this subsection, 

minimum average demand is fixed to 30%, capacity 

to 30𝐾 𝑎𝑛𝑑 50𝐾, separately, and maximum distance 

is considered as 4,5 𝑘𝑚. 

In this subsection, we analyze the effects of scenario 

probabilities on expected total costs and location 

decisions. We perform experiments with scenario 

probability values that range from 0.3 𝑡𝑜 0.8 (𝑘𝑚). 

Lastly, we make a test with a random scenario 

probability. In the unique cases, demand points are 

subjected to be affected with the same probability 

(i.e., 0.3), while they are subjected to be affected 

based on their strategic importance and population in 

the random case. 

According to Figure 4 a) and b), we conclude that 

expected total costs are very sensitive to scenario 

probabilities. Note that, figure in a) shows the 

fluctuations of expected total costs respect to scenario 

probabilities when facilities’ capacities are selected as 

30K, while figure b) shows the changes when 

facilities’ capacities are selected as 50K. In both cases, 

expected total costs increase with the increase in 

scenario probabilities. In figure a), expected total cost 

is about 24𝑀 when demand points are subjected to be 

affected with 0.3 probability with a low impact event 

(i.e., 0.03). Expected total cost increases to 92𝑀 if 

being effected probability is increased to 0.8; this 

means an 377% increment in expected total cost. 

Scenario probability has higher effect on higher 

impact events in terms of expected total cost. For 

instance, the increment in expected total cost is 449% 

when scenario probability is increased from 0.3 to 0.8, 

under high impact events (0.05). Expected total costs 

are very high under very high impact events (0.07 

and 0.09). This is because even if all facilities are 

opened, demands of affected regions are still not 

satisfied and penalty cost occurs. The same analyzes 

are showed for the results shown in Figure4 b). 

As expected, fewer facilities are needed to satisfy 

demand with a minimum cost under low occurrence 

probability of an event or less impact events and/or 

higher facility capacities. It is clearly seen from Table 

6.  We compare the case where impact factor is 

0,05 in Table 6; only two facilities (5 and 6) are 

opened if capacity is 50𝐾 and three facilities (in 

regions 6,9 and 10) are opened if capacity is 30𝐾. The 

number of opened facilities and solution change and 

expected total cost decreases. 

In summary, given the same data, considering 

different large-scale emergencies’ impact levels in 

scenario generation may have different cost 

implications. Therefore, it is important to test the 

inferences of alternative set of large-scale emergency 

scenarios in making decisions. In particular, the 

effects of high impact large-scale emergencies must be 

wisely analyzed in establishing response strategies. 

As can be implied from the analysis, managers face 

tradeoffs between capacity, number of facilities and 

cost/distance minimization. To handle these tradeoffs 

the analyses provided above are good guides to take 

strategical decisions. 

5. Conclusions and future directions 

This study addresses a facility location problem for 

responding large-scale emergencies. We aim to pre-

position DCs at the eastern and southeastern Anatolian 

sides of Turkey to response to any large-scale 

emergency. Multi supplies, such as medical and 

protective materials, are considered. 
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a) Capacity=30,000  

 

     
b) Capacity=50,000 

 
Figure 4. Effect of scenario probability 

 
A relief organization must determine the optimal 

number of opened DCs and locations of DCs pre-

disaster under demand uncertainty. We illustrate the 

uncertainty in demands by defining a set of 

probabilistic scenarios and developing a scenario 

based stochastic programming model. Scenarios are 

created based on impact (severity) of the event and 

probability of being affected. We perform numerical 

experiments on a real case study to understand the 

effects of parameters that may influence the solution. 

Capacity of facilities, probability of being affected for 

each demand points, severity of events, maximum 

distance between a demand point and distribution 

center are main parameters that are tested. The results 

provide a framework for relief organizations to 

determine the location and number of DCs in different 

settings. The key contribution of this study is to design 

a response strategy to distribute supplies in a large-

scale emergency, that considers distance coverage and 

demand uncertainty, in addition, multi-type supplies. 

The contributions of the paper to the literature are 

specified as follows: (1) The existing facilities are 

capacitated; (2) the demand is satisfied which depends 

on distance to DCs. If distance between any DC and 

an affected region exceeds a non-desirable distance, 

then no supply is distributed between them. This is 

because while planning response to a large-scale 

emergency scenario, it is rational to assume that the 

number of people expected to be assigned to a specific 

DC decreases as their distance to that DC increases; 

(3) given the unpredictability as to when and where 

such an emergency scenario could occur and how 

many people would be affected, there is a significant 

uncertainty in demand values. Since the amount of 

demand is uncertain and unknown, a two stage 

stochastic programming model is developed to express 

the effects of uncertainty on the strategic decisions; 

(4) the goal is to determine locations of new DCs 

while taking into consideration the existing DCs’ 

locations and capacities. Consideration of existing 

DCs while determining the location of the new DCs is 

an important contribution to the large-scale 

emergencies literature; (5) multi type supplies are 

considered, because in the case of large-scale 

emergencies not only medical materials but also 

 

0

2.000

4.000

6.000

8.000

10.000

0,3 0,4 0,5 0,8 RandEx
p

e
ct

e
d

 T
o

ta
l C

o
st

 (1
0

0
0

0
0

0)

Scenario Probability

0,03 0,05 0,07 0,09

0

30

60

90

120

150

180

210

240

0.3 0.4 0.5 0.8 Rand

E
xp

e
ct

e
d

 T
o

ta
l 

C
o

st
 (

1
0

0
0

0
0

0
)

Scenario Probability

0.03 0.05 0.07 0.09

0

500

1.000

1.500

2.000

2.500

0.3 0.4 0.5 0.8 Rand

Ex
p

e
ct

e
d

 T
o

ta
l C

o
st

 (
1

0
0

0
0

0
0

)

Scenario Probability

0.03 0.05 0.07 0.09

0

50

100

150

200

250

0.3 0.4 0.5 0.8 Rand

E
xp

e
ct

e
d

 T
o

ta
l 

C
o

st
 (

1
0

0
0

0
0

0
)

Scenario Probability

0.03 0.05 0.07 0.09



12                                                E. Celik et al. / IJOCTA Vol.7, No.1, pp.1-15 (2017) 

protective materials should be considered; (6) a real 

world case study is presented from the eastern and 

southeastern Anatolian sides of Turkey to response to 

any large-scale emergency. It is a novel case study and 

unique for this region; (7) it is aimed that, the 

proposed method will be used in different regions of 

different countries, to evaluate and improve their 

response strategies to any type of large-scale 

emergencies.

Table 6. Effect of scenario probability on expected total cost and location decisions 

  

  

Capacity=30,000 

 

Capacity=50,000 

  

 

Impact Objective Open Decisions 

 

Objective Open Decisions 

 

0.3 

0.03 

24,555,936 5.6 
 

25,702,438 6,10 

0.4 29,495,398 7,9,10 
 

29,157,840 6,10 

 

0.5 45,252,520 6,7,9,10 
 

44,574,995 7,9,10 

0.8 92,658,994 1,2,4,6,7,8,9,10 
 

98,246,602 1,2,4,6,7,8,9,10 

 

Rand 51,464,657 6,7,9,10 
 

49,797,837 7,9,10 

0.3 

0.05 

40,029,240 6,9,10 
 

39,260,126 5,6 

S
ce

n
a

ri
o

 P
ro

b
a
b

il
it

y
 

0.4 48,382,553 7,8,9,10 
 

46,159,088 7,9,10 

0.5 76,311,612 1,3,6,7,8,9,10 
 

71,421,004 6,7,9,10 

0.8 179,579,410 1,2,3,4,5,6,7,8,9,10 
 

157,134,539 1,2,4,6,7,8,9,10 

Rand 86,809,666 1,3,4,6,7,8,9,10 
 

81,774,616 6,7,9,10 

0.3 

0.07 

55,530,956 6,8,9,10 
 

54,751,772 6,9,10 

0.4 67,909,481 6,7,8,9,10 
 

63,880,905 7,8,9,10 

0.5 109,898,741 1,2,3,4,5,6,7,8,9,10 
 

100,492,515 6,7,8,9,10 

0.8 2,721,559,062 1,2,3,4,5,6,7,8,9,10 
 

240,715,621 1,2,3,4,5,6,7,8,9,10 

 

Rand 132,226,870 1,2,3,4,5,6,7,8,9,10 
 

116,214,909 1,4,6,7,8,9,10 

0.3 

0.09 

71,119,761 6,7,8,9,10 
 

68,257,643 7,9,10 

 

0.4 89,018,805 1,5,6,7,8,9,10 
 

81,966,059 6,7,8,9,10 

0.5 164,871,554 1,2,3,4,5,6,7,8,9,10 
 

135,735,487 1,3,4,5,6,7,8,9,10 

 

0.8 9,059,054,031 1,2,3,4,5,6,7,8,9,10 
 

2,368,833,930 1,2,3,4,5,6,7,8,9,10 

Rand 219,702,659 1,2,3,4,5,6,7,8,9,10 
 

157,420,474 1,2,3,4,5,6,7,8,9,10 

 
Since there is lack of studies on these topics, we 

discuss several future researches. Firstly, some other 

sources can be used to satisfy demand besides 

prepositioning, such as framework agreements. More 

than one option can be considered simultaneously, 

which may be more effective in response to 

large-scale emergencies. For example, a future 

research can consider the decisions related to the 

amount of supplies to pre-position and reserve from 

framework agreements in an integrated way. 

Secondly, since the presented problem is a cost 

minimization problem, budget constraints can be 

incorporated into the model. Thus, the problem will be 

held into a more realistic way. Thirdly, as DCs are 

located before the large-scale emergencies occur, they 

may already got affected by the events. Therefore, 

future research can focus on developing models which 

incorporate the reliability of the DCs as another 

uncertainty while designing the network. Lastly, since 

capacitated facility location problems are very 

difficult problems, in terms of computational cost, 

approximation methods such as sample average 

approximation, genetic algorithms, etc. can be used to 

solve larger networks. 
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