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Abstract. In this paper, we apply the sine-Gordon expansion method which is one of the powerful 

methods to the generalized-Zakharov equation with complex structure. This algorithm yields new 

complex hyperbolic function solutions to the generalized-Zakharov equation with complex structure. 

Wolfram Mathematica 9 has been used throughout the paper for plotting two- and three-dimensional 

surface of travelling wave solutions obtained. 
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1. Introduction 

The new complex exact travelling wave solutions 

of nonlinear partial differential equations plays an 

important role in various fields such as 

engineering, plasma physics, solid state physics, 

optical fibers, quantum field theory, 

hydrodynamics, fluid dynamics and applied 

sciences. They submit to the literature new 

reviews in terms of better understanding of 

mathematical models of physical problems. 

Especially various type travelling wavesolutions 

such as dark, complex, elliptic, Jacobi elliptic, 

exponential, rational, hyperbolic and 

trigonometric function solutions means that they 

have new properties of physical problems.  In the 

process many powerful methods such as sumudu 

transform method, Riccati-Bernoulli sub-ODE 

method,G G -expansion method, Exp-function 

method, Fitted finite difference method, extended 

jacobi elliptic function expansion method, 

modified simple equation method and Generalized 

Bernoulli Sub-ODE method, functional variable 

method, variational iteration method, improved 

Bernoulli sub-equation function method, Laplace-

variationaliteration method, finite difference 

method, generalized Kudryashov method and so 

on have been used to find new solutions of 

nonlinear evolution equations [1-14,27-50]. In the 

rest of this paper, we present the general properties 

of the sine-Gordon expansion method(SGEM) in 

comprehensive manner in section 2. In section 3, 

we obtain the complex travelling wavesolutions to 

the generalized- Zakharov equation with complex 

structure which reads as following [15]: 

 

2

2

2 2 0,

0,

t xx

tt xx
xx

iu u a u u uv

v v u

   

  
                   

(1) 

where a  is real constants and non-zero. In the last 

section of manuscript, a comprahensive 

conclusion has been submitted by mentioning 

significant properties of  ,u x t  and  ,v x t .  

Shi Jin, P. A. Markowich and C. Zheng have 

applied the time-splitting spectral method for 

obtaining numerical solutions of Eq.(1) [24]. 

Yuhuai Sun et al. have considered the first integral 

method for finding exact explicit solutions of 

Eq.(1) [25]. Malomed B. et al. have investigated 
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the Dynamics of Solitary Waves of Eq.(1) [26]. 

2. General facts of the SGEM 

Let’s consider the following sine-Gordon equation 

[16-18, 51]; 

 2 sin ,xx ttu u m u 
                                    

(2) 

where  , ,u u x t and m is real constant. When 

we apply the wave transform  x ct   to 

Eq.(2), we obtain the nonlinear ordinary 

differential equation (NODE) as following; 

 
 

2

2 2
sin ,

1

m
U U

c
 


                               (3) 

where   ,U U  and,  is the amplitude of the 

travelling wave, c is the velocity of the travelling 

wave. If we reconsider Eq.(3), we can write in the 

full simplified version as following; 

 

2

2
2

2 2
sin ,

2 21

U m U
K

c

          
    

            

(4) 

where K is the integration constant. When we 

resubmit as  0, ,
2

U
K w    and 

 

2
2

2 21

m
a

c



 in Eq.(4), we can obtain 

following equation; 

 sin .w a w 
                                              

(5) 

If we put as 1a   in Eq.(5)( 1a  , for 

convenience [16]), we can obtain following 

equation; 

 sin .w w 
                                                 

(6) 

If we solve Eq.(6) by using separation of variables, 

we find the following two significant equations; 

    

 

2 2

1

2
sin sin ,

1

sec ,

p

pe
w w

p e

h










 




           (7) 

or 

    

 

2 2

2 2

1

1
cos cos ,

1

tanh ,

p

p e
w w

p e











 




          

(8) 

where p  is the integral constant and non-zero. For 

obtaining the solution of following nonlinear 

partial differential equation; 

 , , , 0,x tP u u u 
                                 

(9) 

let’s consider as  

     

 

1

1

0

tanh [ sec

tanh ] .

n
i

i

i

i

U B h

A A

  









 


         (10) 

We can rewrite Eq.(10) according to Eqs.(7,8) as 

following; 

     

 

1

1

0

cos [ sin

cos ] .

n
i

i

i

i

U w w B w

A w A







 



                 

(11) 

Under the terms of homogenous balance 

technique, we can determine the values of n under 

the terms of NODE . Let the coefficients of 

   sin cosi jw w all be zero, it yields a system of 

equations. Solving this system by using Wolfram 

Mathematica 9 give the values of , , ,i iA B c . 

Finally, substituting the values of , , ,i iA B c in 

Eq.(10), we can find the new travelling wave 

solutions to the Eq.(9). 

3. Implementations of proposed method 

In this subsection of this paper, we provide some 

experimental results to illustrate the performance 

of the travelling wave algorithm proposed. 

 

Example: We consider the traveling wave 

transformation defined by  

   

   

, , ,

, , 2 ,

iu x t e U x t

v x t V x t

    

  

  

  
                 

(12) 

where ,   are real constant and non-zero. When 

we can apply Eq.(12) to the Eq.(1), we can find the 

following NODE under the some simplifications 

[15]; 

 
 2

2
,

4 1

c U
V










                       (13) 

where c is second integration constant and the first 

one is taken to zero. Considering Eq.(13), we 

rewrite the  following ODE [15]; 

 
3 0,RU SU TU                           (14) 

where 
2

2

2
1, ,

4 1

c
R S  


    



2

1
2 .

4 1
T a



 
  

 
When we reconsider the 

Eq.(11) for homogenous balance method between

U and 
3U , we obtain the value of n  as 

following; 

1.n                                                                (15) 
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If we put Eq.(15) in Eq.(11), we obtain follows; 

 

     1 1 0sin cos ,U w B w A w A            (16)

       2

1 1cos sin sin ,U w B w w A w    (17)

       

   

2 3

1

2

1

cos sin sin

2 sin cos .

U w B w w w

A w w

    


   

(18) 

 

Substituting Eqs.(16,18) in Eq.(14) by using 

Wolfram Mathematica 9, we can obtain following 

equation; 

 

   

     

     

     

     

     

   

3 2

0 0 1 0 1

2 2 2

1 1 0

3 3 3 3

1 1 1

2 3

1 1

2

0 1 0 1 1

2 2 2 2

1 1 1 0

2 2

1 1

cos 3 cos

2 cos sin 3 cos

cos sin sin

sin cos sin (19)

3 sin 6 sin cos

3 sin cos 3 sin

3 cos sin 0.

SA TA S w A TA A w

RA w w TA A w

TA w SB w TB w

B R w w RB w

TA B w TA A B w w

TA B w w TB A w

TB A w w

  

 

  

 

 

 

 

 

 

When we equal to zero all the same power of 

trigonometric terms, we find the following 

equations; 

 

 

 

 

   

3 2

0 0 1 0

2

1 0 1

2 2

1 1 0 1 1 1

2 2 2

1 0 1 0

0 1 1

tan : 3 0,

sin : 3 0,

cos : 2 3 3 0,

sin : 3 3 0,

sin cos : 6 0, (20)

Cons t SA TA TA A

w SB TA B

w SA RA TA A TB A

w TB A TA A

w w TA A B

  

 

   

 



   

 

 

2 2

1 1 1

3 3

1 1

3 3 2

1 1 1 1

cos sin : 3 0,

sin : 0,

cos : 2 3 0.

w w B R TA B

w TB RB

w RA TA TB A

 

 

  

 

 

Solving the system of equations Eq.(20) yields the 

following coefficients: 

 

 

2

0 1
2

2 4

12

1 4
0, ,

1 1 4

2 2 7 4
, 0.

1 4

A A
a

c
B





 




  
 

  

  
 

 

         (21) 

 

 

2

0 1
2

2 4

12

1 4
0, ,

1 1 4

2 2 7 4
, 0.

1 4

A A
a

c
B





 




 
 

  

  
 

 

         (22) 

 

 

  

0 1 1 1

2 2

2 2

1

0, , 0,

1
1 4 2 ,

2

1 1
.

1 4

A A A B

c

a
A

  



  

    

 


            

(23) 

 

Substituting Eq.(21) coefficients in Eq.(12) along 

with Eq.(16) for  ,u x t  and in Eq.(13) for 

 ,v x t , we obtain the complex hyperbolic 

function solution to the Eq.(1) as following; 

 

   

   

( )

1

2 ( ) 2

1 2

, tanh 2 , (24)

1
, tanh 2 ,

1 4

i x wt

i x wt

u x t re x t

c
v x t e x t








 





 

  
 

 

where 

 

 

2 2 4

2
2

2

1 4 2 2 7 4
, ,

1 41 1 4

1 1 4 .

c
r w

a

a

  



 

     
 

   

   

 

When we consider the Eq.(22) coefficients in 

Eq.(12) along with Eq.(16) for  ,u x t  and in 

Eq.(13) for  ,v x t , we find another complex 

hyperbolic function solution to the Eq.(1) as 

following; 

 

     

 
 

 

2

2

2

2 2

, tanh 2 , (25)

, tanh 2 ,
1 4

i x kt

i x kt

u x t pe x t

c e
v x t x t








 





 

  
 

where 

 
 

2
2

2

2 4

2

1 4
, 1 1 4 ,

1 1 4

2 2 7 4
.

1 4

p a
a

c
k


 



 



 
    

  

  


 

 

 

Substituting the Eq.(23) coefficients in Eq.(12) 
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along with Eq.(16) for  ,u x t  and in Eq.(13) for 

 ,v x t , we find another hyperbolic function 

solution to the Eq.(1) as following; 

 

     

 
   

3 1

2 2 2

1

3 2

, tanh 2 ,

2 tanh 2
, ,

2 8

i x t

i x t

u x t Ae x t

e A x t
v x t

 

 



 







 

 


     

(26) 

where   2 21 4 2 .         

4. Tables and Figures 

In this subsection of paper, we have plotted two- 

and three-dimensional surfaces of travelling wave 

solutions obtained in this paper under the suitable 

values of parameters by using SGEM as follows. 

 

 

 
Figure 1. The 3D surfaces of 1u of Eq.(24) under the terms of considering the values 

5, 4, 3, 8 8, 1 1.c a x t          

      
Figure 2. The 3D surfaces of 1v of Eq.(24) under the terms of considering the values 

5, 4, 3, 8 8, 1 1.c a x t          

 
Figure 3. The 2D surfaces of 1u of Eq.(24) under the terms of considering the values 

5, 4, 3, 0.5, 8 8.c a t x        

5 5
x

0.4

0.2

0.2

0.4

Im u

5 5
x

0.4

0.2

0.2

0.4

Re u
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Figure 4. The 2D surfaces of 1v of Eq.(24) under the terms of considering the values 

5, 4, 3, 0.5, 8 8.c a t x        

 

 

 
Figure 5. The 3D surfaces of 2u of Eq.(25) under the terms of considering the values 

5, 4, 3, 8 8, 1 1.c a x t            

 

 

 
Figure 6. The 3D surfaces of 2v of Eq.(25) under the terms of considering the values 

5, 4, 3, 8 8, 1 1.c a x t            
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Re v
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Figure 7. The 2D surfaces of 2u of Eq.(25) under the terms of considering the values 

5, 4, 3, 0.5, 8 8.c a t x          

 

 

 
Figure 8. The 2D surfaces of 2v of Eq.(25) under the terms of considering the values 

5, 4, 3, 0.5, 8 8.c a t x          

 

 

 
Figure 9. The 3D surfaces of 3u of Eq.(26) under the terms of considering the values 

12, 4, 3, 8 8, 1 1.A x t             
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Figure 10. The 3D surfaces of 3v of Eq.(26) under the terms of considering the values 

12, 4, 3, 8 8, 1 1.A x t             

 

 

  
Figure 11. The 2D surfaces of 3u of Eq.(26) under the terms of considering the values 

12, 4, 3, 0.01, 8 8.A t x           

 

 

 

Figure 12. The 2D surfaces of 3v of Eq.(26) under the terms of considering the values 

12, 4, 3, 0.01, 8 8.A t x           
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5. Discussion and remark 

In fact, the coefficients found in this paper such as 

Eqs.(21,22,23) belong to Eq.(11) defined as  

       1

1

0

cos sin cos

.

n
i

i i

i

U w w B w A w

A





   





According to fundamental properties of SGEM 

which includes the interesting equations such as 

Eq.(7) and Eq.(8), we have used the Eq.(10) 

because Eq.(11) equal to Eq.(10) defined by 

       1

1

0

tanh sec tanh

,

n
i

i i

i

U B h A

A

   



   





for finding the hyperbolic function solutions to the 

Eq.(1).  

6. Conclusion 

To be brief, SGEM has been successfully applied 

to the generalized-Zakharov equation with 

complex structures for obtaining the complex 

travelling wavesolutions. We have plotted two- 

and three-dimensional surfaces for the Eq.(1) 

under the suitable values of parameters.   

When we consider all the results and Figures (1-

12), we can say that this method is efficient and 

suitable for obtaining new travelling wave 

solutions to the ordinary differential equations 

with powerful nonlinearity. These hyperbolic 

function solutions have been introduced to the 

literature with important physical meaning about 

the generalized-Zakharov equation. Moreover, 

travelling wave solutions Eqs.(24,25,26) are dark 

soliton solutions to the Generalized-Zakharov 

equation with complex structures [19-21]. It has 

been observed that they are related to physical 

features of hyperbolic functions [22, 23]. It is 

estimated that they are related to the physical 

properties of dark soliton solutions. 

We think that this method play an important role 

for finding travelling wave solutions to such 

models. To the best of our knowledge, the 

application of SGEM to the Eq.(1) has not been 

submitted to literature in advance. 
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