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 This study is based on new soliton solutions of the system of equations for the 

ion sound wave under the action of the ponderomotive force due to high-

frequency field and for the Langmuir wave. The generalized Kudryashov method 

(GKM), which is one of the analytical methods, has been tackled for finding 

exact solutions of the system of equations for the ion sound wave and the 

Langmuir wave. By using this method, dark soliton solutions of this system of 

equations have been obtained. Also, by using Mathematica Release 9, some 

graphical simulations were designed to see the behavior of these solutions.  
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1. Introduction 

Nonlinear evolution equations are widely used as 

models to define large numbers of  physical 

phenomena [1-4]. The system of equations for the ion 

sound wave under the action of the ponderomotive 

force due to high-frequency field and for the 

Langmuir wave, which is one type of nonlinear 

evolution equations, will be handled in this work. The 

investigation of new soliton solutions for the ion 

sound wave and the Langmuir wave has a highly 

important position among the authors. A number of 

researchers have focused on the Langmuir solitons. L. 

M. Degtyarev et al. have tackled some properties of 

Langmuir solitons [5]. Then, they have considered the 

Langmuir wave energy dissipation [6]. Some 

scientists have found the numerical simulations of 

Langmuir collapse [7-10]. E. S. Benilov has indicated 

the stability of solitons by using the Zakharov 

equations which defines the interaction between 

Langmuir and ion-sound waves [11].  

V. E. Zakharov et al. have presented the modelling of 

Langmuir turbulence [12]. A. I. Dyachenko et al. have 

done computer simulations of Langmuir collapse [13]. 

A. M. Rubenchik et al. have handled strong Langmuir 

turbulence in laser plasma [14]. S. L. Musher et al. 

have introduced weak Langmuir turbulence [15]. 

Also, some scholars have focused on Langmuir  

waves [16-18]. I. Y. Dodin et al. have investigated 

Langmuir wave evolution in nonstationary plasma 

[19]. A. Zavlavsky et al. have presented spatial 

localization of Langmuir waves [20]. Also, Langmuir 

wave spectral energy densities have been derived from 

the electric field and compared to the weak turbulence 

results by H. Ratcliffe et al. [21]. 

We introduce the system of equations for the ion 

sound wave under the action of the ponderomotive 

force due to high-frequency field and for the 

Langmuir wave [22], 
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where
piw t

Ee


 is the normalized electric field of the 

Langmuir oscillation and n  is  the normalized density 

perturbation. The spatial variable x  and the time 

variable t  are also normalized appropriately [22]. The 

system of equations Eq. (1) for the ion sound and 

Langmuir waves has been formulated by V. E. 

Zakharov [23]. 
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In this paper, the basic  interest is to construct the new 

soliton solutions of the system of equations for the ion 

sound and Langmuir waves by performing GKM. In 

Sec. 2, we discuss general structure of GKM [24-29]. 

In Sec. 3, we get dark soliton solutions of the system 

of equations for the ion sound and Langmuir waves by 

implementing GKM. 

2. Basic facts of the GKM 

We survey a common nonlinear partial differential 

equation (NLPDE) 

 , , , , , 0.t x xx xxxP u u u u u                                (2) 

Step 1.  Initially, we must perform the travelling wave 

solution of Eq.(2) as following form; 

   , , , ,iu x t e u kx mt px rt          (3) 

where , ,k m p  and r  are arbitrary constants. Eq.(2)  

was reduced to a nonlinear ordinary differential 

equation: 

( , , , , ) 0,N u u u u                               (4)

        

where  the prime denotes differentiation with regard to 

.  

Step 2. Suggest that the exact solutions of Eq.(4) can 

be tackled as follows; 
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where Q  is 1

1 e
. We highlight that the function 

Q  is solution Eq. (6)  
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Step 3. The solution of Eq.(4) can be expressed as 

follows: 
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To compute the values M and N  in Eq.(10) that is 

the pole order for the general solution of Eq.(4), we 

develop comparably as in the classical Kudryashov 

method on balancing the highest order nonlinear terms 

in Eq.(4) and we can establish a relation of M and 

N . We can find values of M and N . 

Step 4. Substituting Eq.(5) into Eq.(4)  ensures a 

polynomial  R Q  of Q . Extracting the coefficients 

of   R Q  to zero, we get a system of algebraic 

equations. Solving this system, we can identify c   and 

the variable coefficients of

0 1 2 0 1 2, , , , , , , , ,N Ma a a a b b b b . Thus, we gain 

the exact solutions to Eq.(4). 

3. GKM for the system of equations for the ion 

sound and the Langmuir waves 

In this section, we seek the exact solutions of the 

system of equations for the ion sound and Langmuir 

waves by using GKM. 

In an effort to find travelling wave solutions of the Eq. 

(1), we get the transformation by use of the wave 

variables 
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where , ,k m p  and r  are  arbitrary constants.   

Inserting Eqs. (12-14) into Eq. (1), 
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tiE me u ir e u                                          (12) 

2 22 ,i i i

xxE k e u ipk e u p e u                      (13) 

   
22 2 2 2, , ,tt xx

xx

n r v n p v E p u
         (14)                                                                                                        

we obtain the following system 
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    0,i r pk u                            

                 

(15) 

 2 22 2 0,p u m k u uv                              (16) 

   2 2 2 22 0.r p v p u
                              (17) 

By setting the integration constant to zero, we 

integrate function v with respect to  , we find 
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Putting  Eq.(18) into Eq.(16) and by using Eq. (15), 

we gain 

    2 2 2 2 31 1 2 4 0,p k u k m k u u       (19) 

where the prime remarks the derivative with respect to 

 . 

Substituting Eqs. (5) and (8) into Eq. (19) and 

balancing the highest order nonlinear terms of u  and  
3u  in Eq. (19), then the following formula is found 
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The exact solutions of Eq.(1) is obtained as the 

following;  
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When we substitute Eq.(25) into Eq.(21), we get dark 

soliton solutions of Eq.(1)  
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Case 2 
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If we substitute Eq.(27) into Eq.(21), we gain dark 

soliton solutions of Eq.(1) 
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where 
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When we substitute Eq.(30) into Eq.(21), we have 

dark soliton solutions of Eq.(1) 
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In Figures 1-2, we plot two and three dimensional 

graphics of  1 ,E x t  in Eq. (26), which explain the 

vitality of solutions with suitable parameters. In 

Figure 3, we draw two and three dimensional graphics 

of  1 ,n x t  in Eq. (26), which indicate the dynamics 

of solutions with proper parameters. Also, in Figures 

4-5, we plot two and three dimensional graphics of 

 3 ,E x t  in Eq. (30), which express the vitality of 

solutions with appropriate parameters. Finally, in 

Figure 6, we draw two and three dimensional graphics 

of  3 ,n x t  in Eq. (30), which show the dynamics of 

solutions with proper parameters. 

Remark 1. The exact solutions of Eq. (1) were found 

via GKM, have been calculated by using Mathematica 

9. As far as we know, the solutions of Eq. (1) obtained 

in this study, are new and are not observable in former 

literature. 

 

 

 

  

Figure 1. Graph of imaginary values of  1 ,E x t in Eq. (26) is shown at 3, 5, 2, 4, 35 35, 1 1k m p r x t           and the 

second graph represents imaginary values of  1 ,E x t in Eq. (26) for 35 35, 1.x t        
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Figure 2. Graph of real values of  1 ,E x t in Eq. (26) is indicated at 3, 5, 2, 4, 15 15, 1 1k m p r x t           and the 

second graph introduces real values of  1 ,E x t in Eq. (26) for 15 15, 1.x t        

 

 

 

 

  

Figure 3. Graph of  1 ,n x t in Eq. (26) is shown at 3, 2, 4, 25 25, 1 1k p r x t          and the second graph represents 

 1 ,n x t  in Eq. (26) for 25 25, 1.x t     

 

 

 

Figure 4. Graph of imaginary values of  3 ,E x t in Eq. (30) is indicated at 2, 3, 4, 6,k m p r     

25 25, 1 1x t       and the second graph denotes imaginary values of  3 ,E x t in Eq. (30) for 25 25, 1.x t     
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Figure 5. Graph of real values of  3 ,E x t in Eq. (30) is shown at 2, 3, 4, 6, 15 15, 1 1k m p r x t           and the 

second graph remarks real values of  3 ,E x t in Eq. (30) for 15 15, 1.x t     

 

 

 

  

Figure 6. Graph of  3 ,n x t in Eq. (30) is shown at 2, 4, 6, 30 30, 1 1k p r x t          and the second graph represents 

 3 ,n x t  in Eq. (26) for 30 30, 1.x t     

 

4. Physical explanation 

In this section, we will present physical interpretation 

of the system of equations for the ion sound wave 

under the action of the ponderomotive force due to 

high-frequency field and for Langmuir wave. 

Solitons are very special types of solitary waves. 

Soliton solutions occur in two kinds such as dark 

soliton and bright soliton. If the solution is in terms of 

sech function, the soliton is called bright soliton. But 

if the solution is in terms of tanh function, the soliton 

is called dark soliton. In the view of such information, 

the solutions Eqs. (26), (28) and (30) of Eq. (1) are 

dark soliton solutions. 

5. Conclusion 

In this paper, we obtain dark soliton solutions of the 

system of equations for the ion sound and Langmuir 

waves by using GKM. Then, for suitable parametric 

choices, we plot two and three dimensional graphics 

of some dark soliton solutions of this system of 

equations by using Mathematica Release 9. This 

method provides us to do complicated and tedious 

algebraic calculations. That is to say the availability of 

computer programmes such as Mathematica facilitates 

the tedious algebraic calculations. 

The above results show that GKM has been efficient 

for the analytical solutions of the system of equations 

for the ion sound and Langmuir waves. Also, this 

method is a powerful mathematical tool in finding 

new dark and bright soliton solutions. Thus, we can 

point out that GKM has a key role to obtain analytical 

solutions of NLPDEs. The graphical demonstrations 

clearly indicate the effectiveness of the recommended 

method. We suggest that this method can also be 

applied to other NLPDEs. 
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