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Abstract. In this work, an optimal control approach is presented in order to propose an optimal ther-

apy for the treatment HIV infection using a combination of two appropriate treatment strategies. The

optimal treatment duration and the optimal medications amount are considered. The main objective

of this study is to be able to maximize the benefit based on number of healthy CD4+ T-cells and CTL

immune cells and to minimize the infection level and the overall treatment cost while optimizing the

duration of therapy. The free terminal time optimal control problem is formulated and the Pontrya-

gin’s maximum principle is employed to provide the explicit formulations of the optimal controls. The

corresponding optimality system with the additional transversality condition for the terminal time is

derived and solved numerically using an adapted iterative method with a Runge-Kutta fourth order

scheme and a gradient method routine.
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1. Introduction

Recent data from the World Health Organization
[19] show that approximately 34 million people
worldwide are infected with HIV, more than 30
million people died of AIDS-related causes since
twenty years. HIV/AIDS is the sixth leading
cause of death overall, and the third leading cause
of death in poor countries, where an estimated
3.4 million children are infected with HIV/AIDS.
Mathematical modeling allows public health offi-
cials to compare, plan, implement, evaluate and
optimize various programs for the detection, pre-
vention, treatment and control of this disease.
Mathematical modeling of infectious diseases at
the molecular level is a relatively new science. If
epidemiology has a long history, it is only recently

that mathematicians and immunologists have be-
gun to work together to create models to predict
the evolution of a disease. Since the discovery
of human immunodeficiency virus (HIV) and the
assertion that it is the cause of the acquired im-
mune deficiency syndrome (AIDS), many scien-
tific studies have focused on the HIV infection
[8, 9, 11, 12, 23, 31, 39] and various mathematical
models have been developed in order to suggest
possible optimal treatment strategies for HIV in-
fection [6, 7, 13, 29, 30, 33, 49, 51].

The HIV infection [19, 36] affects the im-
mune system and particularly the body’s natu-
ral defenses against disease. If the infection is
not treated, serious illnesses can occur. Nor-
mally, harmless infections like flu or bronchi-
tis can get worse and become very difficult to
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treat sometimes involving even death of the in-
fected patients. The human immunodeficiency
virus (HIV) approaches the Antigen-presenting
cells (APCs) [54], once entered by phagocytosis;
it joined the molecular recognition system of the
cell. The HIV virus is a retrovirus, the RNA
of this virus is converted into DNA inside the
CD4+ T-cell. Thus, when the infected CD4+ T-
cells begin to multiply for fighting this pathogen,
eventually more viruses are produced in parallel.

The scientific research continues for the devel-
opment of an effective drug therapy hence the
interest of optimal control theory [33] which is
presented as an indispensable tool for a better
understanding of the dynamics of immune sys-
tem and the evolution of HIV infection in or-
der to propose an appropriate treatment strategy
[6, 13, 20, 29, 30].

The HIV infection is usually treated with
highly active antiretroviral therapy (HAART)
[1, 18] which commonly refers to the combination
of antiretroviral treatments struggling against
the HIV. The different classes of antiretroviral
agents act by disrupting different stages of the
HIV replication cycle. This has the effect of re-
ducing the number of virions in the body. The
HAART has proven to be very effective limiting
significantly the progression of HIV in order to
minimize the viral load and to reduce both mor-
bidity and mortality. There are several classes of
antiretroviral drugs including: Reverse transcrip-
tase inhibitors [24], HIV fusion inhibitor [48],
CCR5 receptor antagonist class [37] and Protease
inhibitors [40].

The Interleukin-2 [32, 34] is one of the chemi-
cal signals used by immune cells to communicate.
This cytokine plays a role in the activation and
the proliferation of healthy CD4+ T-cells that are
the target cells for HIV virus. The Interleukin-2
is currently used in addition to the antiretrovi-
ral therapy (HAART) for increasing the natural
immunity of HIV patients. Indeed, the HAART
controls the replication of the virus in the blood
and IL-2 helps to regenerate more healthy CD4+

T-cells causing effectively the maturation and the
proliferation of target immune cells.

In this work, an optimal control approach with
free terminal time is proposed for the treatment
of HIV infection during an optimal therapeutic
period. This approach is based on the introduc-
tion of two optimal controls characterizing a com-
bination treatment using both HAART and IL-2
immunotherapy. A free terminal time optimal

tracking control problem [3, 27, 28, 41, 46, 47] is
formulated by defining a suitable objective func-
tion that summarizes the main objectives of the
adopted treatment strategy. The corresponding
optimality system is expanded to include the nec-
essary condition on free terminal time. However,
the Pontryagin maximum principle [17, 44, 45]
is used to characterize the formulation of opti-
mal controls. Finally, for the numerical resolu-
tion of the optimality system with the additional
transversality condition for the terminal time, an
adapted iterative method known as the Forward
backward sweep method (FBSM) [33, 38]is im-
plemented using a Runge-Kutta [33] fourth order
scheme and a gradient method routine [3].

This paper is organized as follows: Section 2
describes the mathematical control model of HIV
treatment using a combination treatment of both
HAART and IL-2 immunotherapy. The analysis
of the free terminal time optimal tracking control
problem is also presented in the same section. In
section 3, the iterative method is introduced and
the numerical simulations are discussed. Finally,
the results of this therapeutic approach are ex-
plored in the conclusion in section 4.

2. Mathematical model

2.1. Presentation of the treatment model

In this section, a system of ordinary differential
equations modeling the treatment of HIV infec-
tion is presented. The adopted therapeutic ap-
proach is based on the introduction of a treat-
ment strategy using combination of both Highly
active antiretroviral therapy (HAART) and IL-2
immunotherapy with tolerated doses. The basic
HIV dynamics model was originally discussed by
Roy et al. in [50] and the control model providing
optimal treatment strategies has been studied in
[20].

The HIV dynamics model [50] explores the
possible interactions between immune cells and
HIV-producing cells in the presence of appropri-
ate therapeutic agents. The obtained biological
results have provided a better understanding of
dynamics and behavior of the immune system,
especially after stimulation of CTL cells that are
produced after a maximum proliferation of CD4+

T-cells, which ultimately enables to design the bi-
ological reasons that led to such a reaction of the
immune system [42, 43, 56, 57].

Note with interest that it has been proven that
results from mathematical analysis of the model
is fully compatible with clinical and experimental
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observations. In addition, it was verified analyt-
ically that this system is globally asymptotically
stable under specific conditions [50].

The main purpose of this work [50] is the de-
velopment of an adequate mathematical frame-
work which must be consistent with medical ex-
periments and biological observations in order
to provide thereafter a set of optimal therapeu-
tic strategies for the treatment of HIV infection.
Clinical findings from biological results of treat-
ment strategies that exploit antiretroviral ther-
apy using Lamivudine and Zidovudine show that
these treatment strategies enable reducing the vi-
ral load (10 to 100 %) and allow increasing the
concentration of healthy CD4+ T-cells by almost
25 %, provided that the treatment duration must
exceed one year [42, 43, 58].

Since this study is interested primarily in the
possible biological changes resulting from the in-
troduction of an appropriate treatment in the
equilibrium state [50], the mathematical analy-
sis shows that any state variable relating to the
dynamics of HIV particles can be omitted [50],
which explains the absence of any specific com-
partment that characterizes the evolution of HIV
concentration in the studied model.

However, it should be noted that it was nec-
essary to introduce in this same mathematical
model, a new state variable z(t) that describes
the behavior and models the dynamics of CTL
cells during HIV infection [50]. Three compart-
ments characterizing the different biological pop-
ulations are defined as follows: x(t) the unin-
fected CD4+ T-cells, y(t) the infected CD4+ T-
cells and z(t) the immune response measured by
the rate of the cytotoxic T-cells (CTL). There-
fore, the mathematical control model represent-
ing the immune system dynamics in presence of
appropriate treatments is governed by the follow-
ing equations:

dx

dt
= λ+ px(1−

x

Tm
)− dx− (1− u1)βxy

+u2x,
dy

dt
= (1− u1)βxy − ay − lyz,

dz

dt
= sy − bz.

(1)

where X(t) =





x(t)
y(t)
z(t)



 is the state vector and

u(t)=(u1(t),u2(t)) is the control function which

describes the medication used for the treatment
of HIV infection. For biological specificities char-
acterizing the HIV infection at AIDS stage, the
initial values estimations assigned to state vari-
ables of the system (1) are measured in units of
cells mm−3day−1 [50] and verify [16, 26] at t = 0:

x0 = 50, y0 = 50, z0 = 2. (2)

Note that u1(t) represents the HAART control
function which inhibits the viral production in
order to reduce the number of infected CD4+ T-
cells. It is important to observe that the param-
eter β represents both rates of infection and viral
replication, which explains the choice of intro-
duction of control u1. The values of u1(t) vary
between 0 if no treatment is used and 1 if totally
effective HAART therapy is exploited.

However, u2(t) represents the IL-2 im-
munotherapy control function that stimulates
immune cells and restores the immune response.
The Interleukin-2 is administered to patients
with HIV by daily injections following a continu-
ous process for an optimal immunotherapy period
where u2(t) = α = 0.003 is the maximum toler-
ated dose (MTD) [25, 30] producing the desired
effect without unacceptable toxicity.

The descriptions of parameters used in the
state system (1) are ranged in the table (1). No-
tice that the experimental observation period is
fixed T = 600 days [50] and the main objective
of this study is to find the optimal duration of
treatment T ∗ which allows to reach all goals set
in the optimal control problem.

Note with interest that the scientific works
[15, 21] present results of an optimal control
approach which aims to introduce a notion of
isoperimetric constraint representing the exact
total amount of immunotherapy that could be
administered to the patient during the treatment
period reducing subsequently the total cost of
therapy. Furthermore, the biological results ob-
served during the discontinuous administration
of immunotherapeutic agents to patients, follow-
ing a pulse vaccination process, are the subject
of a recent study [52] presenting an optimal con-
trol problem with a view to suggesting optimal
treatment strategies.

Finally, in the presence of an additional initial
pathogen concentration, the enhancement of im-
mune response via immunotherapy was adopted
using a neighboring optimal control approach in
order to restore the optimality conditions of con-
trol system [22].
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Table 1. The parameters descriptions [50].

Parameters Descriptions

λ Production rate of healthy CD4+ T cells

β Infection rate and viral replication rate

d Natural mortality rate of healthy CD4+ T cells

p Maximum proliferation rate of healthy

CD4+ T cell

a Natural mortality rate of infected CD4+ T cells

l Mortality rate of virus-producing cells

by CTL cells

s Production rate of CTL cells

b Natural mortality rate of CTL cells

Tm Number of CD4+ T cells after

a maximum proliferation

2.2. The optimal control problem

A free terminal time optimal tracking control
problem is formulated in order to propose an op-
timal therapeutic schedule for an optimal treat-
ment duration. For that purpose, an objective
function is defined as follows:

J(u1, u2, T ) =
1

2

∫ T

0
x2(t) + z2(t)− y2(t)

−A1u
2
1(t)−A2u

2
2(t)dt,

(3)

where the positive parameters A1 ≥ 0 and A2 ≥ 0
balance the terms size and characterize weight
factors which are based on benefits and costs of
the treatment.

The principal aim of this therapeutic strat-
egy suggested for the treatment of HIV infection
is to maximize the benefit based on the count
of healthy CD4+ T-cells and CTL immune cells
while minimizing the number of infected CD4+

T-cells and the concentration of infectious HIV
population allowing thereafter to minimize the
harmful side effects and costs based on the per-
centage effect of HAART and IL-2 immunother-
apy given (i.e. u∗1 and u∗2).

All elements constituting the objective func-
tion (3) are quadratic to ensure a better homo-
geneity of optimal control problem. Note with
interest that the optimal duration T ∗ of the treat-
ment program is also considered. Mathemati-
cally, the optimal controls (u∗1, u

∗
2) ∈ U are sought

such that:

J(u∗1, u
∗
2, T

∗) = max J(u1, u2, T ), (4)

Over the control set U defined as follows:
U = U1 × U2

where

U1 = {u1 continuous, 0 ≤ u1(t) ≤ 1, t ∈ [0, T ]},

and

U2 = {u2 continuous, 0 ≤ u2(t) ≤ α, t ∈ [0, T ]}.

Notice that the scientific work [14] dealing with
an optimal control problem has outlined the
study results of a same objective function J(u),
presenting initially a quadratic cost and subse-
quently a linear cost [14].

The control system (1) is rewritten implicitly
as follows:

X
′

(t) = f(t,X(t), u1(t), u2(t)),
X(0) = X0 given.

(5)

where X(t) =





x(t)
y(t)
z(t)



 is the state vector and

u(t) = (u1(t), u2(t)) is the control pair. Thus,
the objective function (3) is implicitly defined at
control u(t) = (u1, u2) as follows:

J(u1, u2, T ) =

∫ T

0
g(t,X(t), u1(t), u2(t))dt

+θ(T,X(T )),
(6)

Consider the optimal control problem:

max

∫ T

0
g(t,X(t), u1(t), u2(t))dt+ θ(T,X(T )),

subject to X
′

(t) = f(t,X(t), u1(t), u2(t)),

where X(0) = X0 given,

(7)
The corresponding adjoint system is expressed as
follows:

ψ′(t) = −gX(t,X(t), u1(t), u2(t))

−ψfX(t,X(t), u1(t), u2(t)),

where ψ(T ∗) = θX(T
∗, X(T ∗)),

and 0 ≤ u1(t) ≤ 1 and 0 ≤ u2(t) ≤ α.

(8)

The Pontryagin’s Maximum Principle [17, 44, 45]
is used to determine the precise formulation of
the optimal control pair u∗(t) = (u∗1(t), u

∗
2(t)).
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In order to characterize the optimal control u∗,
the Hamiltonian is defined from the formulation
of cost function (3) as follows:

H(X,u, ψ) = g(t,X, u1, u2) + ψf(t,X, u1, u2)

where ψ(t) =





ψ1(t)
ψ2(t)
ψ3(t)



 is the adjoint variable

vector.

Explicitly:

H(X,u, ψ) =
1

2
× (x2 + z2 − y2

−A1u
2
1 −A2u

2
2)

+ψ1[λ+ px(1−
x

Tm
)

−dx− (1− u1)βxy + u2x]

+ψ2[(1− u1)βxy − ay − lyz]

+ψ3[sy − bz].
(9)

The existence of an optimal control solution is
satisfied using a classical result of existence that
was developed by Fleming in [17]. Indeed, the
following properties have to be checked:

(1) The class of all initial conditions with
controls u1 and u2 in the admissible con-
trol set U = U1 × U2 along with state
system equations (1) is not empty;

(2) The admissible control set U is convex
and closed;

(3) The right-hand side of the state system
is continuous, is bounded above by a sum
of the bounded control and the state, and
can be expressed as a linear function of
controls u1 and u2 with coefficients de-
pending on time and state.

(4) The integrand g(t,X, u1, u2) of the objec-
tive functional J(u, T ) is concave on U ;

(5) There exist positive constants b1, b2 > 0
and β > 1 such that the integrand of the
objective functional J(u, T ) is bounded
below by g(t,X, u1, u2) ≤ b2 − b1(|u1|

2 +

|u2|
2)

β

2 ;

(6) The payoff function θ(T,X(T )) in the ob-
jective functional J(u) is continuous at
the terminal time T .

Proof. Since the system has bounded coeffi-
cients and any state system solution is bounded
on a finite interval [0, T ] [5], a classical result es-
tablished by Lukes [35] is used to prove the exis-
tence of solutions for the state system (1). The
admissible control set U is convex and closed by
definition.

The system (1) is bilinear in controls u1 and u2
and each right-hand side of this state system (1)
is continuous since each term has a nonzero de-
nominator and can be written as a linear function
of controls u1 and u2 with coefficients depending
on time and state.

Moreover, the fact that state variables x, y, z
and controls u1 and u2 are bounded on time in-
terval [0, T ] involves the rest of the third prop-
erty. In order to verify that the integrand
g(t,X, u1, u2) in the objective functional (3) is
concave on U , the following condition should be
verified:

h(t,X, (1− λ)ui + λvi) ≤ (1− λ)h(t,X, ui)

+λh(t,X, vi)
(10)

where

h(t,X(t), ui(t)) = −g(t,X(t), ui(t))

=
1

2
× (−x2(t)− z2(t) + y2(t)

+Aiu
2
i (t)),

(11)
This inequality (10) is rewritten in the following
form:

A = h(t,X, (1− λ)ui + λvi)− (1− λ)h(t,X, ui)

−λh(t,X, vi) ≤ 0
(12)

where λ ∈ [0, 1], ui, vi ≥ 0 and with i = 1, 2.
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A =
1

2
Ai((1− λ)2u2i − (1− λ)u2i + λ2v2i − λv2i

+2λ(1− λ)uivi)

=
1

2
Ai(u

2
i ((1− λ)2 − (1− λ)) + v2i (λ

2 − λ)

+2λ(1− λ)uivi)

=
1

2
Ai(u

2
i (λ

2 − λ) + v2i (λ
2 − λ)

−2(λ2 − λ)uivi)

=
1

2
Ai(λ

2 − λ)(u2i + v2i − 2uivi)

=
1

2
Ai(λ

2 − λ)(ui − vi)
2 ≤ 0

(13)

Since λ ∈ [0, 1], this implies that λ ≥ λ2.
Thus, the inequality (10) is verified which proves
that the integrand g(t,X, u1, u2) is concave.
Thus, since h is convex on U =⇒ g is concave on
U . In addition, notice that there exists positive
constants b1, b2 > 0 and β > 1 satisfying:

g(t,X(t), u1(t), u2(t)) ≤ x2(t) + z2(t)−A1u
2
1(t)

−A2u
2
2(t)

≤ b2 − b1(|u1|
2 + |u2|

2)
β

2

(14)

where the positive constant b2 depends on the up-
per bounds on x and z and by analogy it would
be appropriate to set b1=inf(A1, A2) and β=2.

If the control pair u(t) = (u1(t), u2(t)) and the
corresponding state X(t) are optimal, there ex-
ists an adjoint vector ψ(t) such that the Hamil-
tonian H(t,X, u1, u2, ψ) reaches its maximum on
the set U at u∗,T ∗. It ensues the following theo-
rem:

Theorem 1. Given an optimal control vector
u∗=(u∗1,u

∗
2), an optimal terminal time T ∗, and

solutions of corresponding state system (1), there
exists an adjoint vector ψ=[ψ1, ψ2, ψ3] satisfying

the following equations:

ψ
′

1(t) = −x+ ψ1(
2px∗

Tm
+ d− p− u∗2)

+βy∗(1− u∗1)(ψ1 − ψ2),

ψ
′

2(t) = y + βx∗(1− u∗1)(ψ1 − ψ2)

+ψ2(a+ lz∗)− ψ3s,

ψ
′

3(t) = −z + ψ2ly
∗ + ψ3b.

(15)

with final conditions

ψj(T ) = 0, j = 1, 2, 3.

The transversality condition for the terminal
time is defined as follows:

1

2
× (x2(t) + z2(t)− y2(t)−A1u

2
1(t)

−A2u
2
2(t)) = 0 at t = T ∗

(16)

Further, u∗1 and u∗2 are represented by:

u∗1(t)

= min(1,max(0, βx
∗(t)y∗(t)(ψ1(t)−ψ2(t))

A1
)),

(17)
and

u∗2(t) = min(α,max(0,
x∗(t)ψ1(t)

A2
)). (18)

Proof. Due to the existence of an optimal cou-
ple (X∗, u∗) which maximizes the objective func-
tion J subject to the state system (1), the ad-
joint equations can be obtained using Pontrya-
gin’s maximum principle [17, 44, 45] such that:

ψ
′

1 = −
∂H

∂x
,

ψ
′

2 = −
∂H

∂y
,

ψ
′

3 = −
∂H

∂z
.

(19)

The terminal time T variable of the objective
function J (3) should be exploited to provide all
necessary information concerning the optimal fi-
nal time T ∗ [33]. For this, consider a real number
σ ≥ −T ∗ in order that T ∗ + σ is an admissible
final time and T ∗ + σ ∈ R

+.

Note that the corresponding state X∗ and the
control function u∗ are considered on an inter-
val larger than [0, T ∗] [33]. Suppose that u∗ is
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left-continuous at T ∗, then set u∗(t) = u∗(T ∗)
for all t > T ∗ in order that u∗ is continuous
at T ∗. Now, x∗ and z∗ are also defined for
t > T ∗. As J(u1, u2, T ) reaches its maximum
at u∗ = (u∗1, u

∗
2),T

∗, the following equality is es-
tablished [33]:

0 = lim
σ→0

J(u∗, T ∗ + σ)− J(u∗, T ∗)

σ
, (20)

Hence,

0 = lim
σ→0

[

∫ T ∗+σ

0
g(t,X∗(t), u∗(t))dt

+θ(T ∗ + σ,X∗(T ∗ + σ))

−

∫ T ∗

0
g(t,X∗(t), u∗(t))dt− θ(T ∗, X∗(T ∗))].

(21)

0 = lim
σ→0

[

∫ T ∗+σ

0
g(t,X∗(t), u∗(t))dt

+θ(T ∗ + σ,X∗(T ∗ + σ))

−

∫ T ∗

0
g(t,X∗(t), u∗(t))dt− θ(T ∗, X∗(T ∗))]

= lim
σ→0

∫ T ∗+σ

T ∗

g(t,X∗(t), u∗(t))dt

+
θ(T ∗ + σ,X∗(T ∗ + σ))− θ(T ∗, X∗(T ∗))

σ

= g(T ∗, X∗(T ∗), u∗(T ∗)) + θt(T
∗, X∗(T ∗))

+θX(T
∗, X∗(T ∗))

X∗

dt
(T ∗)

= g(T ∗, X∗(T ∗), u∗(T ∗))

+ψ(T ∗)f(T ∗, X∗(T ∗), u∗(T ∗))

+θt(T
∗, X∗(T ∗))

= H(T ∗, X∗(T ∗), u∗(T ∗), ψ(T ∗))

+θt(T
∗, X∗(T ∗)).

(22)

Taking into account that θt(T
∗, X∗(T ∗)) = 0 and

ψj(T ) = 0 for j = 1, 2, 3. Thus, the transver-
sality condition (16) for the terminal time is ob-
tained.

Since controls u1(t) and u2(t) are bounded, the
optimal controls u∗1 and u∗2 can be solve from the
following optimality conditions:

∂L

∂u1
= 0 and

∂L

∂u2
= 0.

In order to find the characterization of optimal
controls (17) and (18), the Lagrangian L is used
and defined as follows:

L = H+ω11(1−u1)+ω12u1+ω21(α−u2)+ω22u2
(23)

where ω11, ω12, ω21, ω22 > 0 are the penalty
multipliers which ensure the boundedness of con-
trols u1(t) and u2(t) and satisfy the two following
conditions [5, 27]:

ω11(1− u∗1) = ω12u
∗
1 = 0 at u1 = u∗1,

ω21(α− u∗2) = ω22u
∗
2 = 0 at u2 = u∗2.

(24)

The maximization problem (4) is redefined as
follows:

L(T ∗, X∗, u∗1, u
∗
2, ψ, ωij)

= maxL(T,X∗, u1, u2, ψ, ωij)
(25)

Differentiating the Lagrangian L with respect
to u1 on the set U1 : {t | 0 ≤ u1(t) ≤ 1} allows to
obtain the following optimality equation:

dL

du1
= −A1u1 + βxy(ψ1 −ψ2)− ω11 + ω12 = 0

at u1 = u∗1.

Thus, the control is expressed:

u∗1(t) =
βx∗(t)y∗(t)(ψ1(t)− ψ2(t))− ω11 + ω12

A1

According to the conditions (24), three cases
are distinguished:

⋆ if 0 < u∗1(t) < 1 then w11 = w12 = 0. There-
fore, the control is expressed as follows:

u∗1(t) =
βx∗(t)y∗(t)(ψ1(t)− ψ2(t))

A1

⋆ if u∗1(t) = 0 then w11 = 0. Therefore, the
control is expressed as follows:

u∗1 =
βxy(ψ1 − ψ2) + ω12

A1
= 0

=⇒ ω12 = A1u1 − βxy(ψ1 − ψ2).

Knowing that ω12(t) ≥ 0 and A1 > 0, the control
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is expressed as follows:

u∗1 = 0 ≤ βxy(ψ1 − ψ2) ≤
βxy(ψ1 − ψ2)

A1

⋆ if u∗1(t) = 1 and w12(t) = 0 then the con-
trol is expressed as follows:

u∗1 =
βxy(ψ1 − ψ2)− ω11

A1
= 1

=⇒ ω11(t) = −A1u1 + βxy(ψ1 − ψ2).

Given that w11(t) ≥ 0 and A1 > 0, the con-
trol is expressed as follows:

u∗1 = 1 ≥
βxy(ψ1 − ψ2)

A1

Combining these three results, the optimal con-
trol u∗1(t) is characterized as follows:

u∗1(t) =
βxy(ψ1 − ψ2)

A1

if 0 <
βxy(ψ1 − ψ2)

A1

< 1,

u∗1(t) = 0 if
βxy(ψ1 − ψ2)

A1

≤ 0,

u∗1(t) = 1 if
βxy(ψ1 − ψ2)

A1

≥ 1.

(26)

Thus, the optimal control u∗1(t) is formulated
as follows:

u∗1(t) = min(max(0,
βx∗(t)y∗(t)(ψ1(t)− ψ2(t))

A1
, 1))

Differentiating the Lagrangian L with respect to
u2 on the set U2 : {t | 0 ≤ u2(t) ≤ α} allows to
obtain the following optimality equation:

dL

du2
= −A2u2 + ψ1x− ω21 + ω22 = 0 at u2 = u∗2.

Thus, the control is expressed as follows:

u∗2(t) =
ψ1x− ω21 + ω22

A2

According to the conditions (24), three cases
are distinguished:

⋆ if 0 < u∗2(t) < α then w11 = w12 = 0. There-
fore, the control is expressed as follows:

u∗2(t) =
ψ1(t)x

∗(t)

A2

⋆ if u∗2(t) = 0 then w11 = 0. Therefore, the
control is expressed as follows:

u∗2 = 0 =
ψ1x+ ω22

A2

=⇒ ω22 = A2u2 − ψ1x.

Knowing that ω22(t) ≥ 0 and A2 > 0, the control
is expressed as follows:

u∗2 = 0 ≤
ψ1(t)x

A2

⋆ if u∗2(t) = α and w12(t) = 0, then the con-
trol is expressed as follows:

u∗2 = α =
ψ1x− ω21

A2

=⇒ ω21(t) = ψ1x−A2u2.

Given that w21(t) ≥ 0 and A2 > 0,
the control is expressed as follows:

u∗2 = α ≥
ψ1(t)x

A2

Combining these three results, the optimal con-
trol u∗2(t) is characterized as follows:

u∗2(t) =
ψ1x

A2
if 0 <

ψ1x

A2
< α,

u∗2(t) = 0 if
ψ1x

A2
≤ 0,

u∗2(t) = α if
ψ1x

A2
≥ α.

(27)

Thus, the optimal control u∗2(t) is formulated as
follows:

u∗2(t) = min(max(0,
ψ1x

∗(t)

A2
, α))

3. Numerical simulations

3.1. Model parameters

The main purpose of the theoretical analysis de-
veloped by Roy et al. [50] was intended to explore
the equilibrium of dynamical system and to study
the various aspects of the stability of solutions in
order to determine the threshold values of stud-
ied model parameters for which the disease can
be controlled.

In this sense, any optimal control approach
elaborated for the studied dynamical model and
which aims to provide treatment strategies for
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the HIV infection, should absolutely explore the
equilibria and consider the theoretical results
of stability analysis [50], which implies respect-
ing the established conditions and constraints
that characterize the different model parameters,
thus allowing to define specific parametric regions
where the equilibrium is locally or globally sta-
ble.

Indeed, the standard values of parameters [50]
have been chosen in the context of this theoret-
ical analysis in order to observe the particular
dynamical behavior of state variables x, y and
z with the threshold values that enable control-
ling the disease from a well-defined initial state
(x(0) = 50, y(0) = 50, and z(0) = 2). Note
with interest that analytical study and numeri-
cal resolution of the system have been developed
entirely on the basis of these model parameters
set to their standard values [50].

Subsequently, studying the influence of model
parameters, allowed to observe the impact of
these parameters on the dynamical behavior of
state variables. The stability analysis shows that
for the positive equilibrium of the dynamical sys-
tem, the disease can only be controlled if the pa-
rameter p (Proliferation constant rate of CD4+

T-cells) is greater than the parameter d (Death
rate of Uninfected CD4+ T-cells) [50].

Moreover, it is observed that if the parameter
p increases, we note a considerable growth in the
concentration of immune cells (Healthy CD4+ T-
cells and CTL immune cells) and we notice a sig-
nificant decrease of oscillations characterizing the
evolution of the state variables that manage to
converge more quickly to their respective equi-
librium states [50].

The study also allows to note that increasing of
the parameter value β (0, 0008 to 0, 01) denoting
the rate of infection, causes a development of the
HIV infection followed by a rise in the number of
CTLs and a substantial decline in the concentra-
tion of healthy CD4+ T-cells [50].

However, we note that any increase of param-
eters k (0, 001 to 0, 005) and s (0, 01 to 0, 05) im-
plies a significant growth in the count of active
immune cells (Healthy CD4+ T-cells and CTL
immune cells) and an important decrease in the
level of virus producing cells [50]. In addition,
the theoretical analysis enables to determine a
specific stability criteria of the equilibrium in the
parametric space of β, p and k [50].

Finally, it is clear that the possibility of
proposing a control approach for the treatment

of HIV infection requires the exploitation of nu-
merical results obtained in this analytical study.

Therefore, since the main purpose of this study
is to use optimal control theory in the context
of a free terminal time optimal tracking con-
trol problem which should be coherent and com-
patible with the parametric conditions obtained
analytically in [50], in order to suggest an opti-
mal strategy for the treatment of HIV infection
during an optimal therapeutic period, the ba-
sic parameters set to their standard values and
found in [4, 12, 42, 50, 56] are kept and it is
stated that the stability properties [50] of the
state system (1) are stored for these parameters
which are rearranged in the table (2).

Table 2. The standard parameter
values [50].

Parameters Values
λ 10 mm−3day−1 [12, 42]
β 0.002 mm−3day−1 [4]
d 0.01 day−1 [42]
p 0.03 day−1 [42, 56]
a 0.024 day−1 [12]
l 0.001 mm−3day−1 [4]
s 0.2 day−1 [4]
b 0.02 day−1 [4]
Tm 1500 mm−3 [42, 56]

3.2. Numerical method

Various numerical methods are used to solve the
optimality system and find an optimal solution
for controls u1 and u2 [10, 55]. In this work, an it-
erative method known as the Forward-Backward
sweep method (FBSM) [33, 38] is developed us-
ing a Runge-Kutta [33] fourth order scheme in
order to characterize numerical solutions for the
optimality system resulting from the studied free
terminal time optimal tracking control problem
(4).

The general principle of this numerical method
is that from an initial guess for the control vari-
ables u1 and u2 and terminal time T , the state
system (1) with initial conditions is solved for-
ward in time and subsequently the adjoint system
(15) with terminal conditions is solved backward
in time. Taking into account the nature of the
optimal control problem with free terminal time
(4), a specific numerical technique is considered
for the numerical resolution of the optimality sys-
tem.
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Indeed, an adapted iterative Forward back-
ward sweep method is extended using a gradi-
ent algorithm with the Formulae of sensitivity to
change of end-time [3] view to finding the op-
timal solutions u∗1,u

∗
2 and T ∗ while considering

the transversality condition for the terminal time
(16).

This numerical resolution process comprises
a number of numerical computation tech-
niques summarized in the algorithm given be-
low. Here the vector approximations for state

variable ~X=(X1,...,XN+1) and adjoint variable
~ψ=(ψ1,...,ψN+1).

Algorithm

Step 0:

. Make an initial guess for the terminal time T ;

. Make an initial guess for the controls ~u1 and
~u2 over the time interval;

Step 1:

. Solve the state system (1) with initial condi-
tions X1=X(0) forward in time using the stored
values for the controls ~u1 and ~u2;

Step 2:

. Solve the adjoint system (15) with terminal
conditions ψN+1=ψ(T ) backward in time using
the stored values for the controls ~u1 and ~u2 and
the state variable ~X;

Step 3:

. Update the controls ~u1 and ~u2 using by the
Forward backward sweep method;
. Update the terminal time by the gradient
method defined as follows:

Ti+1

= Ti − h[H(Ti, Xi(Ti), ψi(Ti), u1i(Ti), u2i(Ti))

−∇J(Ti, Xi(Ti))],
(28)

for i = 1, .., n with h is a small positive constant,

. Test the convergence: If the difference of values
of these variables in this iteration and the last it-
eration is sufficiently small, output the obtained
current values as solutions. If the difference is
not considerably small, go to Step 1.

3.3. Numerical results

The estimates of initial values assigned to the
state variables at time t = 0 (2) and specifically

the number of healthy CD4+ T-cells which is far
below than 200 cell units, indicate that the dis-
ease has reached the AIDS stage [16].

This biological phase of HIV infection is gen-
erally characterized by the progressive weaken-
ing of the immune system and the occurrence
of various anomalies and opportunistic diseases
[26]. Without therapeutic intervention, the state
variables converge logically to their respective
equilibrium points [20, 50]. The concentration
of healthy CD4+ T-cells after an observation pe-
riod which lasts 600 days shows that the immune
system is weak and defective and the general con-
dition of the HIV patient is clearly deteriorated
[20].

However, introducing a treatment strategy us-
ing both highly active antiretroviral therapy and
IL-2 immunotherapy provides biological results
which are satisfactory and especially promising
(Figures 1, 2 and 3). Indeed, at the end of an
observation therapeutic period of 600 days, the
treatment effectively helps to maximize the num-
ber of healthy CD4+ T-cells which reached 1400
cell units (Figure 1).

Similarly, the infection level has gradually de-
creased and the number of infected CD4+ T-
cells has achieved values lower than 5 units to-
wards the end of the therapeutic period (Figure
3). Henceforth, the immune system makes full
use of its defensive function and the immune re-
sponse reacts actively to the evolution of the HIV
infection: Any increase in the concentration of in-
fected cells is followed immediately by a consid-
erable proliferation of CTL immune cells (Figure
3).

However, it was observed that the count of im-
mune cells which are stimulated for the immune
response has naturally decreased after the min-
imization of the viral load thereby reducing the
side effects resulting from a prolonged maximiza-
tion of the immune cells level (Figure 3).

Considering the shape and the behavior of the
optimal controls u∗1 and u∗2 (Figures 4 and 5)
during the optimal duration of treatment, it is
noted with interest that the therapeutic process
has adopted an appropriate treatment approach
which takes into consideration the progression of
HIV infection and the development of infected
cells in order to achieve the objectives of the op-
timal control problem (4).

Compared to the initial observation period
lasting 600 days, this free terminal time optimal
tracking control problem (4) situated within the
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framework of a treatment strategy of HIV infec-
tion, has allowed to find an optimal terminal time
T ∗ (Figure 6) satisfying the transversality condi-
tion (16) and has enabled to define an optimal
treatment duration of 512 days, ensuring there-
fore a more consequent reduction of the overall
cost of treatment and a minimization of the side
effects resulting from the adopted therapy.

In fact, from the optimal terminal time T ∗, it
is observed that even after stopping the treat-
ment process, the optimality conditions remain
satisfied (Figures 1, 2 and 3), allowing subse-
quently to generate an important increase in the
level of healthy CD4+ T-cells (Figure 1) and a
large reduction of infection level (Figure 2). Fi-
nally, for testing the effectiveness of the treat-
ment approach which is adopted in this study, a
new terminal time is fixed T = 500 days with the
aim of finding a new optimal terminal time T ∗

able to further reduce the treatment duration and
thereby allowing to further minimize the overall
cost of treatment.

However, it is noticed that the obtained bi-
ological results (Figures 7, 8 and 9) show that
this new therapeutic approach has not achieved
the key objectives defined in the optimal control
problem (4). Although the number of healthy
CD4+ T-cells is significantly important during
the treatment period (Figure 7), the gradual re-
duction of the controls concentration in the last
30 days of the treatment period generates a sub-
stantial increase in the level of infected CD4+

T-cells (Figure 8).

Moreover, despite a maximum stimulation of
CTL immune cells (Figure 9), the HIV infec-
tion remains unstable and the concentration of
infected CD4+ T-cells increases abruptly just be-
fore the end of treatment, which explains the in-
ability of the immune system that fails to limit
the HIV infection progression and to restrict the
action of the HIV particles. These recent obser-
vations prove the efficiency of the initial optimal
control approach with free terminal time T ∗ for
the treatment of HIV infection in an optimal du-
ration which lasts 512 days.

Using standard parameter values given in ta-
ble (2) [50], the behavior of the state variables
has been observed in the presence of the natural
immune response and without the intervention of
any specific therapy. Indeed, the state variables
converge respectively towards their equilibrium
states [20, 50].

However, from a biological point of view, de-
spite the weak growth in the level of immune cells

and the limited reduction in viral load, this equi-
librium state fails to reach the expected biologi-
cal objectives since the concentration of healthy
CD4+ T-cells is still low and the general con-
dition of the HIV patient remains critical [26].
By exploiting the different results of the study
conducted by Roy et al. [50], the interest of
adopting an appropriate therapeutic strategy for
treatment of the HIV infection is well confirmed,
thereby justifying the introduction of the control
u1 that limits the growth of the parameter β in
order to reduce the level of infection and viral
load and the control u2 that stimulates the pro-
liferation of active immune cells. Finally it is
important to note that the effectiveness of drug
used in the treatment process is assumed to be
fully controlled by drug dose level.

The continuous character [6, 13, 29, 30, 33] of
optimal solutions u∗1 and u∗2 (Figures 4 and 5)
is essentially acquired from the definition of the
admissible control set U . This continuity aspect
characterizing the controls u1 and u2 permits the-
oretically to find optimal solutions that achieve
the objectives set in the optimal control problem,
thus enabling to provide a general profile of ther-
apeutic strategies to be adopted with a view to
treating the HIV infection (Figures 4 and 5).

For clinical tests and trials, the treatment
strategies relating to the optimal controls u∗1 and
u∗2 that are represented by continuous functions
would be difficult to implement from a practical
point of view. As part of an optimal control prob-
lem presenting an objective function with linear
control, the optimal control may just take the
extreme constant values (The solution is of the
bang-bang type) [33] provided that it is possible
to prove the absence of singular arcs [33].

However, the problem studied in this work de-
fines a quadratic objective function in order to
ensure more consistency to the optimal control
problem by minimizing the contributions of small
variations [53]. Hence the interest to provide
functions approaching the optimal solutions and
which are much easier to prescribe practically in
the context of the adopted treatment strategy.

At first, the curves illustrating the evolution
of optimal controls u∗1 and u∗2 were fitted [2] with
the aim of reducing the irregularities and the
singularities characterizing these curves (Figures
10,11,20 and 21) and thus enabling to mitigate
the observed disturbances. Then, on the basis
of obtained results, piecewise constant functions
are defined to characterize the control functions
u1 and u2 (Figures 10,11,20 and 21).
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The impact of applying these new treatment
regimens u

′

1 and u
′

2 (Figures 10 and 11) on the
behavior of the state variables is observed by il-
lustrating graphically the evolution of the vari-
ables x, y and z using the two types of control
functions (Figures 12,13 and 14). Over an obser-
vation period of 600 days, although the results of
the optimal treatment strategy are better than
those obtained with piecewise constant control
functions, the treatments u

′

1 and u
′

2 (Figures 10
and 11) allow to obtain satisfactory biological re-
sults and manage to reach all objectives of opti-
mal control problem.

Indeed, using constant control functions mod-
eling the adopted treatment, the healthy CD4+

T-cells follow an increasing evolution. The pro-
liferation peak occurs around the 600th day by
reaching the count of 1320 cell units (Figure 12).
Similarly, the immune response is active allowing
the stimulation of immune cells thus generating a
significant proliferation of the CTL immune cells
(Figure 14) when the viral load is growing. The
infection is reduced considerably and the concen-
tration of virus producing cells reaches very low
levels towards the end of the observation period
(Figure 13).

A number of scientific works [29, 30, 33] show
that the administration of a treatment strategy
during early stages of the HIV infection is more
beneficial for the therapeutic process. For ex-
ample, the immunotherapy adopted in an earlier
stage increases the levels of healthy CD4+ T-cells
[29, 30].

In this respect, we use numerical data sug-
gested in the scientific work developed by But-
ler et al. [6] and which characterizes a new ini-
tial state corresponding to a clinical case pre-
senting an infection appeared since only 74 days
(x(0) = 494.3 and y(0) = 0.04) [6]. During this
stage of the disease which is known as the Acute
HIV syndrome that precedes the stage of clini-
cal latency, we note a wide spread of the virus
particles in the body and a replication of HIV in
lymphoid organs.

Indeed, towards the 20th day of treatment, a
severe increase in the concentration of infected
CD4+ T-cells is observed due to the biological
resistance of these virus producing cells to the in-
troduction of therapeutic agents involved in the
treatment process (Figure 16). The stimulation
of cells involved in immune response (Figure 17)
and the action of optimal controls (Figures 18
and 19), allow to reduce the viral load in the
short term from the 23th day (Figure 16). The

level of infection is stabilizing from the 200th day.

Furthermore, the count of infected CD4+ T-
cells reached values below 10 cell units from the
420th day of treatment (optimal final time T ∗

(Figure 22)) and it eventually reached values be-
low 2 cell units towards the end of the observa-
tion period (Figure 16). In addition, we note a
gradual growth in the number of healthy CD4+

T-cells from the 30th day, thus enabling to reach
a count of 1492 cell units by the end of the clinical
observation period (Figure 15).

Finally, note with interest that the introduc-
tion of an appropriate treatment strategy at an
early stage of HIV infection has achieved all the
objectives set in the optimal control problem
thereby allowing to further stimulating the im-
mune cell proliferation (Figures 15 and 17) and
reducing the viral load (Figure 16) while mini-
mizing the optimal treatment duration (Figure
22).

Compared to the first studied case (x(0) = 50,
y(0) = 50, z(0) = 2), the optimal treatment
duration was considerably minimized (T ∗=420
days) (Figure 22) and the concentration of con-
trols used in the therapeutic process has de-
creased significantly (Figures 18,19,20 and 21).

The results obtained have helped to reduce
side effects and overall costs of the adopted treat-
ment leading to a marked improvement in the
quality of life of HIV patients.
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Figure 1. The state variable x with
x(0)=50 units mm−3day−1, initial
terminal time T = 600 days and op-
timal terminal time T ∗ = 512 days.
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Figure 2. The state variable y with
y(0)=50 units mm−3day−1, initial
terminal time T = 600 days and op-
timal terminal time T ∗ = 512 days.
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Figure 3. The state variable z with
z(0)=2 units mm−3day−1, initial
terminal time T = 600 days and op-
timal terminal time T ∗ = 512 days.
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Figure 4. The optimal control u∗1(t)
with x(0)=50 units mm−3day−1,
y(0)=50 units mm−3day−1, z(0)=2
units mm−3day−1 and T ∗ = 512
days.
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Figure 5. The optimal control u∗2(t)
with x(0)=50 units mm−3day−1,
y(0)=50 units mm−3day−1, z(0)=2
units mm−3day−1 and T ∗ = 512
days.
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Figure 6. Estimation of optimal
terminal time T ∗, zero of ∇J with
initial terminal time T = 600 days,
x(0)=50 units mm−3day−1, y(0)=50
units mm−3day−1 and z(0)=2 units
mm−3day−1.
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Figure 7. The state variable x with
x(0)=50 units mm−3day−1 and ter-
minal time T = 500 days.
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Figure 8. The state variable y with
y(0)=50 units mm−3day−1 and ter-
minal time T = 500 days.
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Figure 9. The state variable z with
z(0)=2 unitsmm−3day−1 and termi-
nal time T = 500 days.
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Figure 10. The profile fitting of
the optimal control function u∗1(t)
(Left) and the piecewise constant

control function u
′

1(t) (Right) with
x(0)=50 units mm−3day−1, y(0)=50
units mm−3day−1, z(0)=2 units
mm−3day−1 and T ∗ = 512 days.
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Figure 11. The profile fitting of
the optimal control function u∗2(t)
(Left) and the piecewise constant

control function u
′

2(t) (Right) with
x(0)=50 units mm−3day−1, y(0)=50
units mm−3day−1, z(0)=2 units
mm−3day−1 and T ∗ = 512 days.
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Figure 12. The state variable x

using optimal controls u∗1(t) and
u∗2(t) (DashDot) and using piece-

wise constant control functions u
′

1(t)

and u
′

2(t) (Solid) with x(0)=50 units
mm−3day−1, initial terminal time
T = 600 days and optimal terminal
time T ∗ = 512 days.
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Figure 13. The state variable y

using optimal controls u∗1(t) and
u∗2(t) (DashDot) and using piece-

wise constant control functions u
′

1(t)

and u
′

2(t) (Solid) with y(0)=50 units
mm−3day−1, initial terminal time
T = 600 days and optimal terminal
time T ∗ = 512 days.
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Figure 14. The state variable z

using optimal controls u∗1(t) and
u∗2(t) (DashDot) and using piece-

wise constant control functions u
′

1(t)

and u
′

2(t) (Solid) with z(0)=2 units
mm−3day−1, initial terminal time
T = 600 days and optimal terminal
time T ∗ = 512 days.
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Figure 15. The state variable x

with x(0)=494.3 units mm−3day−1,
initial terminal time T = 600 days
and optimal terminal time T ∗ = 420
days.
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Figure 16. The state variable y

with y(0)=0.04 units mm−3day−1,
initial terminal time T = 600 days
and optimal terminal time T ∗ = 420
days.
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Figure 17. The state variable z

with z(0)=2 units mm−3day−1, ini-
tial terminal time T = 600 days
and optimal terminal time T ∗ = 420
days.
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Figure 18. The optimal con-
trol u∗1(t) with x(0)=494.3
units mm−3day−1, y(0)=0.04
units mm−3day−1, z(0)=2 units
mm−3day−1 and T ∗ = 420 days.
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Figure 19. The optimal con-
trol u∗2(t) with x(0)=494.3
units mm−3day−1, y(0)=0.04
units mm−3day−1, z(0)=2 units
mm−3day−1 and T ∗ = 420 days.
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Figure 20. The profile fitting of
the optimal control function u∗1(t)
(Left) and the piecewise constant

control function u
′

1(t) (Right) with
x(0)=494.3 units mm−3day−1,
y(0)=0.04 units mm−3day−1,
z(0)=2 units mm−3day−1 and
T ∗ = 420 days.

0 200 400 600
0

2

4

6
x 10

−6

Time: DaysT
h

e
 c

o
n

tr
o

l 
fu

n
c
ti
o

n
 u

2
(t

)

0 200 400 600
0

2

4

6
x 10

−6

Time: DaysT
h

e
 c

o
n

tr
o

l 
fu

n
c
ti
o

n
 u

2’
(t

)

Figure 21. The profile fitting of
the optimal control function u∗2(t)
(Left) and the piecewise constant

control function u
′

2(t) (Right) with
x(0)=494.3 units mm−3day−1,
y(0)=0.04 units mm−3day−1,
z(0)=2 units mm−3day−1 and
T ∗ = 420 days.
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Figure 22. Estimation of optimal
terminal time T ∗, zero of ∇J with
initial terminal time T = 600
days, x(0)=494.3 units mm−3day−1,
y(0)=0.04 units mm−3day−1 and
z(0)=2 units mm−3day−1.

4. Conclusion

In this work, a therapeutic approach has been
suggested with the aim of treating the HIV in-
fection by adopting a treatment strategy that
uses both highly active antiretroviral therapy
(HAART) to limit the virus evolution and an IL-
2 immunotherapy to stimulate the active immune
response.

In this sense, techniques of the optimal con-
trol theory have been used to develop an appro-
priate mathematical framework relating to this
treatment approach. Indeed, a free terminal time
optimal control problem was formulated by iden-
tifying a specific objective function that includes
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all the main objectives of the adopted therapeu-
tic strategy.

The Pontryagin’s maximum principle is used
to characterize the optimal controls related to
the used treatments. An adapted forward back-
ward sweep method is implemented using a
Runge-Kutta fourth order scheme and a gradient
method routine for numerical resolution of the
optimality system with the additional transver-
sality condition for the terminal time.

Taking into account all the theoretical and nu-
merical techniques used in the context of this
research work, the treatment strategy suggested
for the treatment of HIV infection has achieved
all the objectives defined in the optimal control
problem. Indeed, the adopted treatments have
led to maximize the healthy CD4+ T-cells and
to establish an active immune response while re-
ducing both the infection concentration and the
treatment duration.

Finally, this optimal control approach has en-
abled the minimization of side effects and there-
fore the overall cost of the medication treatment
allowing a significant improvement of the quality
of life of HIV patients.
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