
 Corresponding Author. Email: erdalaydemir@sdu.edu.tr

103

An International Journal of Optimization

and Control: Theories & Applications

Vol.6, No.2, pp.103-113 (2016) © IJOCTA

ISSN: 2146-0957 eISSN: 2146-5703

DOI: 10.11121/ijocta.01.2016.00268

http://www.ijocta.com

Using 2-Opt based evolution strategy for travelling salesman problem

Kenan Karagul
a

 Erdal Aydemir
b
 and Sezai Tokat

c

a

Department of Logistics, Honaz MYO, Pamukkale University, Denizli, Turkey

Email: kkaragul@pau.edu.tr
b

Department of Industrial Engineering, Engineering Faculty, Suleyman Demirel University, Isparta, Turkey

Email: erdalaydemir@sdu.edu.tr
c

Department of Computer Engineering, Engineering Faculty, Pamukkale University, Denizli, Turkey

Email: stokat@pau.edu.tr

(Received August 12, 2015; in final form March 24, 2016)

Abstract. Harmony search algorithm that matches the (µ+1) evolution strategy, is a heuristic method

simulated by the process of music improvisation. In this paper, a harmony search algorithm is directly

used for the travelling salesman problem. Instead of conventional selection operators such as roulette

wheel, the transformation of real number values of harmony search algorithm to order index of vertex

representation and improvement of solutions are obtained by using the 2-Opt local search algorithm.

Then, the obtained algorithm is tested on two different parameter groups of TSPLIB. The proposed

method is compared with classical 2-Opt which randomly started at each step and best known solutions

of test instances from TSPLIB. It is seen that the proposed algorithm offers valuable solutions.

Keywords: Travelling salesman problems; TSP; harmony search; HS; (µ+1) evolution strategy; 2-

Opt; TSPLIB.

AMS Classification: 68T20; 90-08

1. Introduction

The travelling salesman problem (TSP) is one of

the most popular combinatorial optimization

problems in complexity theory [1]. TSP for

minimizing the tour length is quite difficult to

solve and classified as NP-Hard, it will be time

consuming to solve larger instances. However,

TSP is used in many theoretical and practical

applications such as manufacturing planning,

logistics, and electronics manufacturing. Due to

the nature of TSP, obtaining the optimal solution

is not possible in polynomial time if solved via

integer programming. Also, it is known that the

solution time extends exponentially as the

problem size grows. Therefore, as an alternative

solution approach, the meta-heuristics are

commonly used to determine near optimal

solutions in acceptable solution times [2-8].

 In the related literature, many known meta-

heuristics were used to solve TSPs for minimizing

 the tour lengths. For instance, Freisleben and

Merz [9] presented an algorithm by using genetic

algorithm (GA) to find near-optimal solution for a

set of symmetric and asymmetric TSP instances

and obtained high quality solutions in a reasonable

time. Chowdhury et al. [10] also used GA for

solving a flow-shop scheduling problem to

minimize makespan via finding optimal order of

cities. The simulated annealing (SA) algorithm is

also used for TSP by Wang and Tian [11] in which

an improved SA is employed. Meta-heuristics

approach is generally used to solve the problem in

reasonable time if the problem size increases. For

large TSPs, Fiechter [12] used a parallel tabu

search algorithm. Similarly, different types of ant

colony algorithm are used for the TSP [13-15].

Also, Wang et al. [16] developed swap operator

and swap sequence in order to use particle swarm

optimization (PSO) for TSP.

 Recently, with the progresses in computational

sciences, the new meta-heuristics methods have

mailto:nozdemir@balikesir.edu.tr

104 K. Karagul, E. Aydemir, S. Tokat / Vol.6, No.2, pp.103-113 (2016) © IJOCTA

been developed and used for solving

combinatorial problems. Some of them are cuckoo

search algorithm [17-21], firefly algorithm [22-

24] and harmony search (HS) algorithm [25-28].

In Table 1, the main literature is chronologically

summarized.

In our study, the harmony search algorithm was

used as the core algorithm to solve TSPs. HS is

first proposed by Geem et al. [5]. Weyland [29]

proved that HS is theoretically a special case of an

evolution strategy known as (µ +1) evolution

strategy [30]. In Geem et al [5], the 20-cities TSP,

constraint optimization problem, and water

network pipeline design are solved. For 20-cities

TSP, neighbouring city-going and city-inverting

operators were designed. Their operators were

used to find the closest city that will be visited next

and to produce a new path on feasible nodes,

respectively. Geem et al [5] did not give the details

of the discrete structure. However, later Geem

[31] detailed the HS for TSP that uses stochastic

derivative for discrete variables

Table 1. Meta-heuristic studies on TSP

Meta-heuristics Literature directly on TSP

Genetic Algorithm (GA) Freisleben & Merz (1996), Chowdhury et al. (2013)

Simulated Annealing (SA) Wang & Tian (2013),

Tabu Search (TS) Fiechter (1994),

Ant Colony Optimization (ACO)
Stüzle & Hoss (1997), Randall & Montgomery (2003), Chu et al.

(2004)

Particle Swarm Optimization (PSO) Wang et al. (2003),

Cuckoo Search (CS)
Yang & Deb (2009), Ouyang et al. (2013), Ouaarab et al. (2013),

Ouaarab et al. (2014)

Firefly Algorithm (FA) Yang (2010), Jati & Suyanto (2011), Kumbharana & Pandey (2013a)

Harmony Search (HS)
Geem et al. (2001), Wang et al. (2010), Pan et al. (2011), Huang &

Peng (2013), Yuan et al. (2013), Weyland (2015)

Hybrid Studies

Pang et al. (2004) (PSO&Fuzzy); Thamilselvan & Balasubramanie

(2009) (GA&TS); Kaveh & Talatahari (2009) (PSO, ACO&HS); Yan

et al. (2011); Chen & Chien (2011) (GA&ACO); Chen & Chien (2011)

(GA,SA,PSO&ACO); Kumbharana & Pandey (2013b)

(GA,SA&ACO); Yun et al. (2013) (HS&ACO)

In addition, we directly use the index values of the

normally distributed harmony numbers in our

method. In this process, besides the use of meta-

heuristics algorithms, the hybrid approaches

involving the hybridization of two or more

heuristics were applied in order to eliminate the

weakness of single meta-heuristics for solving the

large scale TSP optimization problems [32-39].

On the other hand, HS is directly adapted for TSP.

 In TSP, the main goal is to find the shortest

closed tour that visits each city once and exactly

once in a given list with the best route. There are

tour construction methods such as the nearest

neighbor, greedy, insertion heuristics,

Christofides method. After the tour has been

generated by any tour construction heuristics, it is

improved with tour improvement heuristics such

as 2-Opt, 3-Opt, k-Opt, Lin-Kernighan, Tabu-

Search, Simulated Annealing, Genetic Algorithms

etc. The 2-Opt approach is a well-known method

used for this purpose. The 2-Opt is a simple local

search algorithm and it was first proposed by

Croes [2] for TSP. It swaps edges in a tour for

shortening the total tour length.

 The HS algorithm, a special case of evolution

strategy which is called (µ+1) evolution strategy,

is a meta-heuristic optimization method that

inspired by the mimics of the improvisation ability

of musicians. Using HS algorithm, the musical

instruments are played with discrete notes under

the musicians’ experience and their improvisation

ability randomly. The musical harmony, aesthetic

standard, pitches of instruments and the

improvisation process are design parameters of

HS algorithm. HS works with the harmony size

(HMS), the harmony considering rate and the

pitch adjusting rate as optimization operators [5,

31].

 A brief overview of TSP from the literature

especially on meta-heuristics is surveyed in this

section. The rest of the paper is organized as

follows: the proposed method in which the HS

algorithm with its continuous structure is directly

used for the TSP is presented in Section 2. With

the proposed algorithm, the transformation

mechanism for HS to solve the TSP is obtained by

Using 2-Opt based evolution strategy for travelling salesman problem 105

using 2-Opt local search algorithm. Then, in

Section 3, the obtained algorithm is tested on two

different parameter groups of TSPLIB.

2. Proposed algorithm: 2-Opt based

harmony search algorithm

The proposed algorithm that is called 2-Opt Based

Harmony Search Algorithm (2-Opt_cHS)

combines the algorithms of 2-Opt and the HS. The

first advantage of the proposed algorithm is to

convert the real numbers into index values for

solving combinatorial optimization problem such

as TSP. Thus, the modified algorithm provides to

solve discrete optimization problems.

 In general, for TSP problems, roulette wheel

selection is used in evolution strategies for the

transformation between randomly generated real

numbers of heuristic solutions and ordered

numbers of combinatorial problem solutions. In

this paper, HS algorithm with its continuous

structure is directly used for the travelling

salesman problem. The transformation of real

numbers of continuous HS algorithm to integer

numbers of discrete form is obtained by using 2-

Opt local search algorithm which is used to define

a function from continuous to discrete functions

and vice versa. The pseudo code of the HS

algorithm is given as Algorithm 1 in Table 2 [29]

and the proposed algorithm is given as Algorithm

2 in Table 3.

Table 2. The pseudo code of the harmony search algorithm [29]

Algorithm 1: The Harmony Search Algorithm

1: Initialize the harmony memory with HMS randomly generated solutions

2: repeat

3: create a new solution in the following way

4: for all decision variables do

5: with probability HMCR use a value of one of the solutions

 in the harmony memory (selected uniform random numbers)

 and additionally change this value slightly with probability PAR

6: otherwise (with probability 1-HMCR) use a random value

 for this decision variable

7: end for

8: if the new solution is better than the worst solution in the harmony memory then

9: replace the worst solution by the new one

10: end if

11: until the maximum number of iterations has been reached

12: return the best solution in the harmony memory

According to Algorithm 2, firstly, the objective

function is generated with real number arrays for

initial harmonics. And then, its limits and

bandwidths, and the values are defined as

parameters. The 2-Opt algorithm is used for

designing discrete variables and is defined with

the step size (v) and application parameter (opt).

By using v, the 2-Opt application is used once in

each v steps.

 The use of v parameter is the design idea of this

study as using 2-Opt at each step increases the

simulation time and decreases the effect of using

HS algorithm. When a solution is obtained after

HS with 2-Opt procedure, it will be evaluated

using the fitness function. Respecting to HMS and

fitness of new solution, the new solution may be

inserted in harmony memory or not. Eventually,

the termination criteria can be defined as a

problem dependent number of iterations or as

reaching to a specific quality of solution. In this

study, the algorithm will stop when maximum

number of iterations is met, and otherwise the

while loop case will be repeated for each iteration.

A sample TSP solution taken from TSPLIB,

known as Burma14, is demonstrated in Table 2.

As can be seen in Table 2, IH and NH are real

Harmony numbers. By using their index values in

HOI, the route information is obtained and then

improved by using 2-Opt. The proposed

algorithm with respect to the pseudo-code in

106 K. Karagul, E. Aydemir, S. Tokat / Vol.6, No.2, pp.103-113 (2016) © IJOCTA

Algorithm 2 by taking maximum number of

iteration as 5 is given. The 2-Opt is used instead

of the initial solution and the 3rd iteration. At

iteration 4, the optimal solution for Burma14 is

obtained as 3323. In Figure 1, the route

improvement at some steps are visualized for

Burma14.

Table 3. The pseudo code of the proposed algorithm: 2-Opt based harmony search

Figure 1. Burma14 solution graphs in the proposed algorithm iterations

Algorithm 2: The Proposed Algorithm: 2-Opt Based Harmony Search

1: Initialize the harmony memory with HMS randomly generated solutions

 Get Harmony Ordered Indexes

Get 2-Opt Ordered Indexes

2: repeat

3: create a new solution in the following way

4: for all decision variables do

5: with probability HMCR use a value of one of the solutions

 in the harmony memory (selected normal random numbers)

 and additionally change this value slightly with probability PAR

6: otherwise (with probability 1-HMCR) use a random value for this decision variable

 if (at each step size v) for the 2-Opt is provided

 Get Harmony Ordered Indexes

 Get 2-Opt Ordered Indexes

else
 Get Harmony Ordered Indexes

end if

7: end for

8: if the new solution is better than the worst solution in the harmony memory then

9: replace the worst solution by the new one

10: end if

11: until the maximum number of iterations has been reached

12: return the best solution in the harmony memory

Using 2-Opt based evolution strategy for travelling salesman problem 107

Table 4. The proposed algorithms solution steps for Burma14

Level Algorithms 2 3 4 5 6 7 8 9 10 11 12 13 14 Cost

Initial Solution IH 2.3033 -0.1139 0.7853 -2.6272 -0.4115 4.6309 0.4681 0.2114 -2.6841 -0.111 1.2406 1.7914 -1.0448

 HOI 10 5 14 6 3 11 9 8 4 12 13 2 7

2opt 2-Opt Not Applied 6290

1 NH -2.6455 -2.651 -1.0227 -0.3836 -0.1139 -0.158 0.2518 0.4681 0.7592 1.2074 2.1269 2.3215 4.5906

 HOI 3 2 4 5 7 6 8 9 10 11 12 13 14

2opt 2-Opt OI 8 13 7 12 6 5 4 3 14 2 10 9 11 3371

2 NH 0.2518 2.3688 -0.1647 2.0943 -0.1139 -0.3919 -1.0296 -2.6904 4.5745 4.2033 0.7515 0.5164 1.2113

 HOI 9 8 7 4 6 2 13 12 14 5 3 11 10

2opt 2-Opt OI 2 3 4 5 6 12 14 7 13 8 11 9 10 3448

3 NH 0.2146 -3.2888 -0.1647 2.0904 -3.436 0.7206 1.2203 -0.4167 0.5488 2.3025 4.244 -2.6809 4.5407

 HOI 6 3 13 9 4 2 10 7 8 5 11 12 14

2opt 2-Opt Not Applied 7927

4 NH 0.2617 2.3827 -0.1616 2.0943 -0.1314 0.7515 1.1767 -0.3962 0.5164 -1.0119 4.1601 -2.6559 4.5252

 HOI 13 11 9 4 6 2 10 7 8 5 3 12 14

2opt 2-Opt OI 2 14 3 4 5 6 12 7 13 8 11 9 10 3323

5 NH 0.2617 4.5213 2.3827 -0.1395 2.105 -0.0897 4.1389 0.7562 -2.638 1.1976 -1.0169 -0.3962 0.5506

 HOI 10 12 13 5 7 2 14 9 11 6 4 8 3

2opt 2-Opt OI 2 14 3 4 5 6 12 7 13 8 11 9 10 3323

Best Solution 2 14 3 4 5 6 12 7 13 8 11 9 10 3323

IH: Initial Harmonies, NH: New Harmonies, HOI: Harmony Ordered Indexes, 2-Opt OI: 2-Opt Ordered Indexes

3. Computational results

In this section, some benchmark problem sets

from TSPLIB95 [40] such as eil51, berlin52, st70,

pr76, eil76, kroA100, kroB100, eil101, bier127,

chr130, ch150, kroA150, kroB200 and lin318 are

considered. As the simulation platform, i7 CPU

and 4 GB RAM hardware and MATLAB® 8.2

software package are used. Also, some functions

of the Matlog: Logistics Engineering Matlab

Toolbox [41] are used. For the simulations, two

different parameter sets are chosen that are given

as two cases in Table 5.

Table 5. The parameter settings

Parameters Case 1 Case 2

HMS 20 1

𝒓𝒂𝒄𝒄𝒆𝒑𝒕 0.6 0.95

𝒓𝒑𝒂 0.7 0.7

v 4 3

For Case 1, the parameter values are taken as the

most frequently used ones in the literature. For

Case 2, on the other hand, the parameters are

obtained by trial and error and especially, in order

to shorten the simulation time, and as a result

HMS is chosen as 1. By trial and error, the

acceptable value of v is taken as 3. For Case 1, the

iteration is limited as 3600s or best known solution

(BKS) whereas for Case 2, 500s or BKS is used.

For both cases, each test instance is executed 100

times and the simulation results are analysed in

Table 6 and Table 7 for both cases of Table 5 using

the mentioned problem sets of TSPLIB.

In Table 6 and Table 7, #Opt/Run is the number

of BKS values obtained in total of 100 runs, BKS

is the best known solution, BSolj and WSolj are the

obtained best and worst solutions of 100 runs of

the jth instance, respectively. ASolj is the average

of Soli (i=1…100) for jth instance and can be

given as

(1)

where Soli (i=1…100) is each solution of 100

runs. ADevj and BDevj are the percentage

deviations of the ASolj and BSolj from BKSj,

respectively, and can be given as

(2)

(3)

100

1 =1..100, =1..14
100

i

i
j

Sol

ASol i j


100, 1..14
j j

j

j

BKS ASol
ADev j

BKS


  

100, 1..14
j j

j

j

BKS BSol
BDev j

BKS


  

108 K. Karagul, E. Aydemir, S. Tokat / Vol.6, No.2, pp.103-113 (2016) © IJOCTA

It can be seen from Table 6 and Table 7 that the

ADevj solutions of Case 2 are all better than Case

1 whereas BDevj (j=14) of Lin318 is only slightly

worse for Case 2. When #Opt/Run values are

taken into consideration, one can see that the

parameter set of Case 2 is better in finding the

BKS values in total simulations.

Table 6. Summary of computational results for the proposed method for Case 1

Name BKS BSol WSol ASol ADev BDev #Opt/Run

1 eil51 426.00 426.00 429 426.95 0.22 0.00 33/100

2 berlin52 7542.00 7542.00 7542 7542 0.00 0.00 100/100

3 st70 675.00 675.00 679 675.79 0.12 0.00 43/100

4 pr76 108159.00 108159.00 109161 108538.43 0.35 0.00 3/100

5 eil76 538.00 539.00 552 546.9 1.65 0.19 0/100

6 kroA100 21282.00 21282.00 21495 21345.38 0.30 0.00 8/100

7 kroB100 22141.00 22179.00 22522 22368,68 1.03 0.17 0/100

8 eil101 629.00 635.00 654 646.71 2.82 0.95 0/100

9 bier127 118282.00 118936.00 121730 120206.68 1.63 0.55 0/100

10 ch130 6110.00 6139.00 6309 6244.38 2.20 0.47 0/100

11 ch150 6528.00 6598.00 6796 6700.02 2.64 1.07 0/100

12 kroA150 26524.00 26846.00 27538 27188.09 2.50 1.21 0/100

13 kroA200 29368.00 29693.00 30594 30146.91 2.65 1.11 0/100

14 lin318 42029.00 43113.00 44418 43881.24 4.41 2.58 0/100

Table 7. Summary of computational results for the proposed method for Case 2

Name BKS BSol WSol ASol

ADev BDev #Opt/Run

1 eil51 426.00 426.00 428.00 426.07 0.02 0.00 94/100

2 berlin52 7542.00 7542.00 7542.00 7542.00 0.00 0.00 100/100

3 st70 675.00 675.00 675.00 675.00 0.00 0.00 100/100

4 pr76 108159.00 108159.00 108701.00 108324.39 0.15 0.00 5/100

5 eil76 538.00 538.00 546.00 542.46 0.83 0.00 1/100

6 kroA100 21282.00 21282.00 21319.00 21293.08 0.05 0.00 34/100

7 kroB100 22141.00 22141.00 22356.00 22259.81 0.54 0.00 1/100

8 eil101 629.00 634.00 647.00 641.74 2.03 0.79 0/100

9 bier127 118282.00 118724.00 120241.00 119527.81 1.05 0.37 0/100

10 ch130 6110.00 6133.00 6245.00 6192.18 1.35 0.38 0/100

11 ch150 6528.00 6556.00 6719.00 6644.63 1.79 0.43 0/100

12 kroA150 26524.00 26690.00 27161.00 26981.45 1.72 0.63 0/100

13 kroA200 29368.00 29622.00 30144.00 29896.52 1.80 0.86 0/100

14 lin318 42029.00 43153.00 44281.00 43764.46 4.13 2.67 0/100

In addition, the solution times of each case are

given in Table 8. Instead of berlin52 (i=2) Case 2

has better simulation times in average. This is an

expected situation as HMS value is 1 for Case 2.

Fig.2 is given in order to show the results ADevj

and BDevj respectively. When the deviations for

Using 2-Opt based evolution strategy for travelling salesman problem 109

both cases are investigated from Fig.2, it can be seen that ADevj has more deviation than BDevj.

Table 8. Simulation times for test instances of Case 1 and Case 2

Case 1 - Time (seconds)

Case 2 - Time (seconds)

Name

Best Worst Avg

Best Worst Avg

1 eil51 12.14 3600.16 975.68 16.08 503.50 421.35

2 berlin52 2.60 344.55 72.35 5.70 451.47 101.48

3 st70 2.63 2453.73 430.54 13.16 523.59 383.36

4 pr76 145.21 3602.20 3479.21 33.24 523.67 503.19

5 eil76 1464.98 3601.34 3579.00 500.00 524.40 507.15

6 kroA100 61.60 3606.30 2960.44 38.56 549.28 496.07

7 kroB100 2490.69 3605.85 3590.16 500.01 563.28 524.03

8 eil101 3600.01 3603.44 3600.76 500.42 543.10 515.96

9 bier127 3600.00 3604.34 3601.52 500.14 567.12 534.31

10 ch130 3600.02 3604.38 3601.77 501.76 609.22 545.59

11 ch150 3600.05 3617.40 3604.29 501.55 681.52 622.67

12 kroA150 3600.06 3616.69 3603.84 502.44 708.62 571.90

13 kroA200 3600.20 3626.39 3611.84 504.01 1137.15 728.29

14 lin318 3600.24 3825.49 3671.98 2046.31 2466.96 2208.23

0.000

1.000

2.000

3.000

4.000

5.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

ADevj

Case 1 Case 2

(a) ADevj

0.000

0.500

1.000

1.500

2.000

2.500

3.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

BDevj

Case 1 Case 2

(b) BDevj

Figure 2. The results of ADevj and BDevj for Case 1 and Case 2

In order to show the main contribution of this

study, the results of 2-Opt_cHS algorithm is

compared with classical 2-Opt solutions. The

comparison results are given in Table 9 where it is

seen that an improvement is obtained in

simulation performances by using the proposed

method. The classical 2-Opt is simulated by

randomly generating a new route information and

then applying only the 2-Opt algorithm at each

step.

The performances in Table 9 are also

evaluated in Table 10 as an indicator of the

solution quality using the ADevj, BDevj and

Opt/Run parameters between 2opt_cHS and

classical 2opt algorithms.

110 K. Karagul, E. Aydemir, S. Tokat / Vol.6, No.2, pp.103-113 (2016) © IJOCTA

Table 9. Solutions for test instances of 2opt_cHS and classical 2opt

 2opt_cHS Classical 2-opt

Name BKS BSol WSol ASol BSol WSol ASol

1 eil51 426.00 426.00 428.00 426.07 431.00 479.00 449.51

2 berlin52 7542.00 7542.00 7542.00 7542.00 7542.00 8821.00 8196.08

3 st70 675.00 675.00 675.00 675.00 678.00 774.00 712.13

4 pr76 108159.00 108159.00 108701.00 108324.40 108943.00 119484.00 112415.10

5 eil76 538.00 538.00 546.00 542.46 548.00 605.00 573.18

6 kroA100 21282.00 21282.00 21319.00 21293.08 21367.00 24069.00 22312.73

7 kroB100 22141.00 22141.00 22356.00 22259.81 22389.00 25201.00 23407.38

8 eil101 629.00 634.00 647.00 641.74 659.00 697.00 676.96

9 bier127 118282.00 118724.00 120241.00 119527.80 119408.00 133490.00 126352.70

10 ch130 6110.00 6133.00 6245.00 6192.18 6200.00 6909.00 6497.10

11 ch150 6528.00 6556.00 6719.00 6644.63 6717.00 7342.00 7019.57

12 kroA150 26524.00 26690.00 27161.00 26981.45 27155.00 29305.00 28369.89

13 kroA200 29368.00 29622.00 30144.00 29896.52 29856.00 32406.00 31204.24

14 lin318 42029.00 43153.00 44281.00 43764.46 43814.00 46295.00 44991.41

According to Table 10, it can be seen from the

BKS results of the proposed 2-Opt-cHS algorithm,

ADevj and BDevj average deviations are -1.10

and -0.44, respectively. On the other hand, for the

classical 2-Opt algorithm, ADevj and BDevj

average deviations are -6.38 and -1.72,

respectively. Therefore, it is seen that by using 2-

Opt together with HS, the performance is

improved with respect to classical 2-Opt

algorithm. Also, the proposed 2-Opt_cHS

algorithm can reach BKS values of seven test

instances. However, for the classical 2-Opt

algorithm, BKS value of one test instance

(berlin52) is obtained. Thus, less deviation values

and higher #Opt/Run values of 2-Opt_CHS show

the advantage obtained using the proposed

method. Thus, it is seen that using only classical

2-Opt at each step, optimal solutions cannot be

obtained in general. This is an indicator that the

proposed method has an improvement by applying

the faster HS at each step and slower 2-Opt at

some steps.

Table 11 is designed to compare our solutions

with the results obtained from literature. It can be

observed that all the average solution

performances of meta-heuristics including the

basic Discrete Cuckoo Search (DCS) have worse

results than proposed 2-Opt_cHS. On the other

hand, improved DCS of their study and proposed

2-Opt_cHS in our study, have similar

performances and both are better than the other

meta-heuristics mentioned in their study.

4. Conclusions and further research

The travelling salesman problems are mostly

studied in the class of NP-Hard problems. In order

to solve these problems many techniques and

solution approaches are designed in the literature.

In this paper, a harmony search algorithm is

directly used as a solution method. The

transformation of real numbers of continuous

harmony search algorithm to integer numbers of

discrete form is obtained by using index values

and the 2-Opt local search algorithm. As

computational test instances the problem sets of

eil51, berlin52, st70, pr76, eil76, kroA100,

kroB100, eil101, bier127, ch130, ch150, kroA150,

kroB200 and lin318 from TSPLIB are selected

and two different cases are designed for

experimental study. The results have shown that

acceptable solutions can be obtained with the

given algorithm.

The results of the proposed method are

compared with conventional 2-Opt algorithm and

also with other meta-heuristics. Consequently, it is

shown that by using the proposed 2-Opt_cHS

algorithm useful results could be obtained. The

proposed method can be used for all TSP variants

such as production planning, electronic

manufacturing, and logistics.

Using 2-Opt based evolution strategy for travelling salesman problem 111

Table 10. Relatively comparison for the solutions of 2opt_cHS and classical 2opt

 2opt_cHS 2-opt

Name ADev BDev #Opt/Run ADev BDev #Opt/Run

1 eil51 -0.02 0.00 94/100 -5.52 -1.17 0/100

2 berlin52 0.00 0.00 100/100 -8.67 0.00 1/100

3 st70 0.00 0.00 100/100 -5.50 -0.44 0/100

4 pr76 -0.15 0.00 5/100 -3.94 -0.72 0/100

5 eil76 -0.83 0.00 1/100 -6.54 -1.86 0/100

6 kroA100 -0.05 0.00 34/100 -4.84 -0.40 0/100

7 kroB100 -0.54 0.00 1/100 -5.72 -1.12 0/100

8 eil101 -2.03 -0.79 0/100 -7.62 -4.77 0/100

9 bier127 -1.05 -0.37 0/100 -6.82 -0.95 0/100

10 ch130 -1.35 -0.38 0/100 -6.34 -1.47 0/100

11 ch150 -1.79 -0.43 0/100 -7.53 -2.90 0/100

12 kroA150 -1.72 -0.63 0/100 -6.96 -2.38 0/100

13 kroA200 -1.80 -0.86 0/100 -6.25 -1.66 0/100

14 lin318 -4.13 -2.67 0/100 -7.05 -4.25 0/100

 Avg -1.10 -0.44 -6.38 -1.72

Table 11. Comparison of ASol results of the proposed method with different meta-heuristics from the

literature

Solution Methods

Compared Test Instances

Eil51 Berlin52 St70 Eil76 KroA100

BKS 426.00 7542.00 675.00 538.00 21282.00

Proposed 2-Opt_cHS 426.07 7542.00 675.00 542.50 21293.10

Basic DCS [20] 439.00 7836.40 696.90 565.70 22419.90

Improved DCS [21] 426.00 7542.00 675.00 538.00 21282.00

References

[1] Laporte G, The Traveling Salesman Problem: An

overview of exact and approximate algorithms,

European Journal of Operational Research,

Vol. 59, pp. 231-247, (1992).

[2] Croes GA, A Method for Solving Travelling-

Salesman Problems. Operations Research, Vol.

6, No. 6, pp. 791-812, (1958).

[3] Holland JH, Adaptation in Natural and Artificial

Systems. MIT Press, Cambridge, Mass., USA,

(1975).

[4] Kirkpatrick S, Gelatt JrCD, Vecchi MP,

Optimization by simulated annealing. Science,

Vol. 220, No. 4598, pp. 671–680, (1983).

[5] Geem ZW, Kim JH, Loganathan GV, A new

heuristic optimization algorithm: harmony

search. Simulation, Vol. 76, No. 2, pp. 60–68,

(2001).

[6] Yang XS, Harmony Search as a Metaheuristic

Algorithm. in Music-Inspired Harmony Search

Algorithm. 2009, Springer Berlin / Heidelberg.

pp. 1-14, (2009).

[7] Sureja N, New Inspirations in Nature: A Survey.

International Journal of Computer Applications

& Information Technology, pp.21-24, (2012).

[8] Abdel-Raouf O, Metwally MAB, A Survey of

Harmony Search Algorithm. International

Journal of Computer Applications, pp.17-26,

(2013).

112 K. Karagul, E. Aydemir, S. Tokat / Vol.6, No.2, pp.103-113 (2016) © IJOCTA

[9] Freisleben B, Merz P, Genetic local search

algorithm for solving symmetric and

asymmetric traveling salesman problems. in

Proceedings of the IEEE International

Conference on Evolutionary Computation

(ICEC ’96), pp. 616–621, (1996).

[10] Chowdhury A, Ghosh A, Sinha S, Das S, Ghosh

A, A novel genetic algorithm to solve travelling

salesman problem and blocking flow shop

scheduling problem. International Journal of

Bio-Inspired Computation, Vol. 5, No. 5, pp.

303-314, (2013).

[11] Wang Y, Tian D, An improved simulated

annealing algorithm for traveling salesman

problem. in Proceedings of the International

Conference on Information Technology and

Software Engineering, Vol. 211 of Lecture

Notes In Electrical Engineering, pp. 525–532,

(2013).

[12] Fiechter CN, A parallel tabu search algorithm

for large traveling salesman problems. Discrete

Applied Mathematics, Vol. 51, No. 3, pp. 243–

267, (1994).

[13] Stüzle T, Hoos H, MAX-MIN Ant system and

local search for the traveling salesman problem.

Reference Future Generations Computer

Systems, Vol. 16, No. 8, pp. 889–914, (1997).

[14] Randall M, Montgomery J, The accumulated

experience Ant colony for the traveling

salesman problem. International Journal of

Computational Intelligence and Applications,

Vol.3, No.2, pp. 189–198, (2003).

[15] Chu SC, Roddick JF, Pan JS, Ant colony system

with communication strategies. Information

Sciences, Vol. 167, No. 1–4, pp. 63–76, (2004).

[16] Wang KP, Huang L, Zhou CG, Pang W, Particle

swarm optimization for traveling salesman

problem. in Proceedings of the International

Conference on Machine Learning and

Cybernetics, pp. 1583–1585, (2003).

[17] Yang XS, Nature-Inspired Metaheuristic

Algorithms. Luniver Press, (2010).

[18] Yang XS, Deb S, Engineering optimisation by

cuckoo search. International Journal of

Mathematical Modelling and Numerical

Optimisation, Vol. 1, No. 4, pp. 330-343,

(2010).

[19] Ouyang X, Zhou Y, Luo Q, Chen H, A novel

discrete cuckoo search algorithm for spherical

traveling salesman problem. Applied

Mathematics & Information Sciences, Vol. 7,

No. 2, pp. 777–784, (2013).

[20] Ouaarab A, Ahiod B, Yang, XS, Discrete

Cuckoo Search Algorithm for the Travelling

Salesman Problem. Neural Computing and

Applications, Vol.24, No.7-8, pp 1659-1669,

(2014a).

[21] Ouaarab A, Ahiod B, Yang XS, “Improved and

Discrete Cuckoo Search for Solving the

Travelling Salesman Problem”, X.-S. Yang In

Cuckoo Search and Firefly Algorithm: Theory

and Applications, Vol. 516, pp. 63-84,

Switzerland: Springer(2014b).

[22] Jati GK, Suyanto S, Evolutionary Discrete

Firefly Algorithms for Travelling Salesman

Problem. Proceedings of the 2nd International

Conference on Adaptive and Intelligent

Systems, pp. 393-403, Klagenfurt, Austria:

Springer, (2011).

[23] Kumbharana SN, Pandey GM, Solving

Travelling Salesman Problem using Firefly

Algorithm. International Journal for Research

in Science & Advanced Technologies, pp. 53-

57, (2013a).

[24] Ismail MM, Che H, Mohd H, Mohamad SH,

Jaafar HI, A Preliminary Study on Firefly

Algorithm Approach for Travelling Salesman

Problem. In: Science & Engineering

Technology National Conference 2013, 3-4

July 2013, Kuala Lumpur, Malaysia, (2013).

[25] Wang L, Xu Y, Mao Y, Fei M, A Discrete

Harmony Search Algorithm. Communications

in Computer and Information Science, pp. 37-

43, (2010).

[26] Pan QK, Wang L, Gao L, A

chaotic harmony search algorithm for the flow

shop scheduling problem with limited buffers.

Applied Soft Computing, Vol.11(8), pp. 5270-

5280, (2011).

[27] Yuan Y, Xu H, Yang J, A hybrid harmony

search algorithm for the flexible job shop

scheduling problem. Applied Soft Computing,

Vol.13(7), pp. 3259-3272, (2013).

[28] Jian H, Qi-yuan P, Diversity Maintaining

Harmony Search and Its TSP Solution.

Application Research of Computer, pp. 3583-

3586, (2013).

http://www.inderscience.com/info/inarticle.php?artid=57172
http://www.inderscience.com/info/inarticle.php?artid=57172
http://www.inderscience.com/info/inarticle.php?artid=57172

Using 2-Opt based evolution strategy for travelling salesman problem 113

[29] Weyland, D, A critical analysis of the harmony

search algorithm—How not to solve Sudoku.

Operations Research Perspectives, Vol. 2, pp.

97–105, (2015).

[30] Rechenberg I., Evolutionsstrategie:

Optimierung technischer Systeme nach

Prinzipien der biologischen Evolution.

Frommann-Holzboog Verlag, Stuttgart, (1973).

[31] Geem ZW, Novel derivative of harmony search

algorithm for discrete design variables. Applied

Mathematics and Computations, Vol.199, pp.

223-230, (2008).

[32] Pang W, Wang KP, Zhou CG, Dong LJ, Fuzzy

discrete particle swarm optimization for solving

traveling salesman problem. in Proceedings of

the 4th International Conference on Computer

and Information Technology (CIT ’04), pp.

796–800, (2004).

[33] Thamilselvan R, Balasubramanie P, A genetic

algorithm with a Tabu search (GTA) for

traveling salesman problem. International

Journal of Recent Trends in Engineering, Vol.

1, No. 1, pp. 607-610, (2009).

[34] Kaveh A, Talatahari S, Particle swarm

optimizer, ant colony strategy and harmony

search scheme hybridized for optimization of

truss structures. Computers and Structures, Vol.

87, No. 5-6, pp. 267–283, (2009).

[35] Yan Y, Zhao X, Xu J, Xiao, Z, A mixed

heuristic algorithm for traveling salesman

problem. in Proceedings of the 3rd

International Conference on Multimedia

Information Networking and Security (MINES

’11), pp. 229–232, (2011).

[36] Chen SM, Chien CY, Parallelized genetic ant

colony systems for solving the traveling

salesman problem. Expert Systems with

Applications, Vol. 38, No. 4, pp. 3873–3883,

(2011a).

[37] Chen SM, Chien CY., Solving the traveling

salesman problem based on the genetic

simulated annealing ant colony system with

particle swarm optimization techniques. Expert

Systems with Applications, Vol. 38, No. 12, pp.

14439–14450, (2011b).

[38] Yun HY, Jeong SJ, Kim KS, Advanced

Harmony Search with Ant Colony

Optimization for Solving the Traveling

Salesman Problem. Journal of Applied

Mathematics, pp. 1-8, (2013).

[39] Kumbharana SN, Pandey GM, A comparative

study of ACO, GA and SA for solving traveling

salesman problem. International Journal of

Societal Applications of Computer Science,

Vol. 2, No. 2, pp. 224–228, (2013b).

[40] Reinelt, G, TSPLIB95. Retrieved Oct., 2013

from https://www.iwr.uni-

heidelberg.de/groups/comopt/software. (2013).

[41] Kay, M, Matlog: Logistics Engineering Matlab

Toolbox. Retrieved Apr., 2014 from.

www.ise.ncsu.edu/kay/matlog/ (2014).

Kenan Karagul studied industrial engineering for

his Bachelor degree and business administration

for MSc and PhD degrees. His field of study

includes operations research, logistics, vehicle

routing problems, metaheuristics and quantitative

models. He worked at various firms between 1996

and 2001. He has been working at Pamukkale

University as an instructor since 2001. He was

awarded the best PhD thesis on Graduate Tourism

Students Congress in Kuşadası (2014).

Erdal Aydemir is an assistant professor in Dept. of

Industrial Engineering at Suleyman Demirel

University (SDU), Isparta, Turkey. He was

received the BSc degree in Industrial Engineering

from Selcuk University in 2005 and the MSc

degree in Industrial Engineering from SDU in

2009. In 2013, he was awarded a PhD degree in

Mechanical Engineering (ME) at SDU. His

research interests are EPQ/EOQ models,

vehicle/inventory routing problems, uncertainty

modelling, grey system theory, decision

modelling of production, service systems and its

adaptation with artificial intelligence etc. on the

various fields.

Sezai TOKAT received the BSc and PhD degrees

in control and computer engineering from Istanbul

Technical University, Istanbul, Turkey, in 1994

and 2003, respectively. He received his MSc

degree in systems and control engineering from

Bogazici University, Istanbul, in 1997. Since 2011

he has been with Pamukkale University, Turkey as

associate professor. His research interests include

intelligent control techniques, robust control,

nonlinear control, optimization, vehicle routing

problems

