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Abstract. Harmony search algorithm that matches the (µ+1) evolution strategy, is a heuristic method 

simulated by the process of music improvisation. In this paper, a harmony search algorithm is directly 

used for the travelling salesman problem. Instead of conventional selection operators such as roulette 

wheel, the transformation of real number values of harmony search algorithm to order index of vertex 

representation and improvement of solutions are obtained by using the 2-Opt local search algorithm. 

Then, the obtained algorithm is tested on two different parameter groups of TSPLIB. The proposed 

method is compared with classical 2-Opt which randomly started at each step and best known solutions 

of test instances from TSPLIB. It is seen that the proposed algorithm offers valuable solutions. 

 

Keywords: Travelling salesman problems; TSP; harmony search; HS; (µ+1) evolution strategy; 2-
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1. Introduction 

The travelling salesman problem (TSP) is one of 

the most popular combinatorial optimization 

problems in complexity theory [1]. TSP for 

minimizing the tour length is quite difficult to 

solve and classified as NP-Hard, it will be time 

consuming to solve larger instances. However, 

TSP is used in many theoretical and practical 

applications such as manufacturing planning, 

logistics, and electronics manufacturing. Due to 

the nature of TSP, obtaining the optimal solution 

is not possible in polynomial time if solved via 

integer programming. Also, it is known that the 

solution time extends exponentially as the 

problem size grows. Therefore, as an alternative 

solution approach, the meta-heuristics are 

commonly used to determine near optimal 

solutions in acceptable solution times [2-8]. 

 In the related literature, many known meta-

heuristics were used to solve TSPs for minimizing

 the tour lengths. For instance, Freisleben and 

Merz [9] presented an algorithm by using genetic 

algorithm (GA) to find near-optimal solution for a 

set of symmetric and asymmetric TSP instances 

and obtained high quality solutions in a reasonable 

time. Chowdhury et al. [10] also used GA for 

solving a flow-shop scheduling problem to 

minimize makespan via finding optimal order of 

cities. The simulated annealing (SA) algorithm is 

also used for TSP by Wang and Tian [11] in which 

an improved SA is employed. Meta-heuristics 

approach is generally used to solve the problem in 

reasonable time if the problem size increases. For 

large TSPs, Fiechter [12] used a parallel tabu 

search algorithm. Similarly, different types of ant 

colony algorithm are used for the TSP [13-15]. 

Also, Wang et al. [16] developed swap operator 

and swap sequence in order to use particle swarm 

optimization (PSO) for TSP.  

 Recently, with the progresses in computational 

sciences, the new meta-heuristics methods have
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been developed and used for solving 

combinatorial problems. Some of them are cuckoo 

search algorithm [17-21], firefly algorithm [22-

24] and harmony search (HS) algorithm [25-28]. 

In Table 1, the main literature is chronologically 

summarized. 

In our study, the harmony search algorithm was 

used as the core algorithm to solve TSPs. HS is 

first proposed by Geem et al. [5]. Weyland [29] 

proved that HS is theoretically a special case of an 

evolution strategy known as (µ +1) evolution 

strategy [30]. In Geem et al [5], the 20-cities TSP, 

constraint optimization problem, and water 

network pipeline design are solved. For 20-cities 

TSP, neighbouring city-going and city-inverting 

operators were designed. Their operators were 

used to find the closest city that will be visited next 

and to produce a new path on feasible nodes, 

respectively. Geem et al [5] did not give the details 

of the discrete structure. However, later Geem 

[31] detailed the HS for TSP that uses stochastic 

derivative for discrete variables

Table 1. Meta-heuristic studies on TSP 

Meta-heuristics Literature directly on TSP 

Genetic Algorithm (GA) Freisleben & Merz (1996), Chowdhury et al. (2013) 

Simulated Annealing (SA) Wang & Tian (2013), 

Tabu Search (TS) Fiechter (1994), 

Ant Colony Optimization (ACO) 
Stüzle & Hoss (1997), Randall & Montgomery (2003), Chu et al. 

(2004) 

Particle Swarm Optimization (PSO) Wang et al. (2003), 

Cuckoo Search (CS) 
Yang & Deb (2009), Ouyang et al. (2013), Ouaarab et al. (2013), 

Ouaarab et al. (2014) 

Firefly Algorithm (FA) Yang (2010), Jati & Suyanto (2011), Kumbharana & Pandey (2013a) 

Harmony Search (HS) 
Geem et al. (2001), Wang et al. (2010), Pan et al. (2011), Huang & 

Peng (2013), Yuan et al. (2013), Weyland (2015) 

Hybrid Studies 

Pang et al. (2004) (PSO&Fuzzy); Thamilselvan & Balasubramanie 

(2009) (GA&TS); Kaveh & Talatahari (2009) (PSO, ACO&HS); Yan 

et al. (2011); Chen & Chien (2011) (GA&ACO); Chen & Chien (2011) 

(GA,SA,PSO&ACO); Kumbharana & Pandey (2013b) 

(GA,SA&ACO); Yun et al. (2013) (HS&ACO) 

 

 

In addition, we directly use the index values of the 

normally distributed harmony numbers in our 

method. In this process, besides the use of meta-

heuristics algorithms, the hybrid approaches 

involving the hybridization of two or more 

heuristics were applied in order to eliminate the 

weakness of single meta-heuristics for solving the 

large scale TSP optimization problems [32-39]. 

On the other hand, HS is directly adapted for TSP.  

 In TSP, the main goal is to find the shortest 

closed tour that visits each city once and exactly 

once in a given list with the best route. There are 

tour construction methods such as the nearest 

neighbor, greedy, insertion heuristics, 

Christofides method. After the tour has been 

generated by any tour construction heuristics, it is 

improved with tour improvement heuristics such 

as 2-Opt, 3-Opt, k-Opt, Lin-Kernighan, Tabu-

Search, Simulated Annealing, Genetic Algorithms 

etc. The 2-Opt approach is a well-known method 

used for this purpose. The 2-Opt is a simple local 

search algorithm and it was first proposed by 

Croes [2] for TSP. It swaps edges in a tour for 

shortening the total tour length.  

 The HS algorithm, a special case of evolution 

strategy which is called (µ+1) evolution strategy, 

is a meta-heuristic optimization method that 

inspired by the mimics of the improvisation ability 

of musicians. Using HS algorithm, the musical 

instruments are played with discrete notes under 

the musicians’ experience and their improvisation 

ability randomly. The musical harmony, aesthetic 

standard, pitches of instruments and the 

improvisation process are design parameters of 

HS algorithm. HS works with the harmony size 

(HMS), the harmony considering rate and the 

pitch adjusting rate as optimization operators [5, 

31].  

 A brief overview of TSP from the literature 

especially on meta-heuristics is surveyed in this 

section. The rest of the paper is organized as 

follows: the proposed method in which the HS 

algorithm with its continuous structure is directly 

used for the TSP is presented in Section 2. With 

the proposed algorithm, the transformation 

mechanism for HS to solve the TSP is obtained by 
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using 2-Opt local search algorithm. Then, in 

Section 3, the obtained algorithm is tested on two 

different parameter groups of TSPLIB.  

 

2. Proposed algorithm: 2-Opt based 

harmony search algorithm 

The proposed algorithm that is called 2-Opt Based 

Harmony Search Algorithm (2-Opt_cHS) 

combines the algorithms of 2-Opt and the HS. The 

first advantage of the proposed algorithm is to 

convert the real numbers into index values for 

solving combinatorial optimization problem such 

as TSP. Thus, the modified algorithm provides to 

solve discrete optimization problems.  

 In general, for TSP problems, roulette wheel 

selection is used in evolution strategies for the 

transformation between randomly generated real 

numbers of heuristic solutions and ordered 

numbers of combinatorial problem solutions. In 

this paper, HS algorithm with its continuous 

structure is directly used for the travelling 

salesman problem. The transformation of real 

numbers of continuous HS algorithm to integer 

numbers of discrete form is obtained by using 2-

Opt local search algorithm which is used to define 

a function from continuous to discrete functions 

and vice versa. The pseudo code of the HS 

algorithm is given as Algorithm 1 in Table 2 [29] 

and the proposed algorithm is given as Algorithm 

2 in Table 3. 

 
Table 2. The pseudo code of the harmony search algorithm [29] 

 
Algorithm 1: The Harmony Search Algorithm 

1: Initialize the harmony memory with HMS randomly generated solutions 

2: repeat 

3: create a new solution in the following way 

4: for all decision variables do 

5: with probability HMCR use a value of one of the solutions 

 in the harmony memory (selected uniform random numbers) 

 and additionally change this value slightly with probability PAR 

6: otherwise (with probability 1-HMCR) use a random value 

 for this decision variable 

7: end for 

8: if the new solution is better than the worst solution in the harmony memory then 

9: replace the worst solution by the new one 

10: end if 

11: until the maximum number of iterations has been reached 

12: return the best solution in the harmony memory 

 
 

According to Algorithm 2, firstly, the objective 

function is generated with real number arrays for 

initial harmonics. And then, its limits and 

bandwidths, and the values are defined as 

parameters. The 2-Opt algorithm is used for 

designing discrete variables and is defined with 

the step size (v) and application parameter (opt). 

By using v, the 2-Opt application is used once in 

each v steps. 

 The use of v parameter is the design idea of this 

study as using 2-Opt at each step increases the 

simulation time and decreases the effect of using 

HS algorithm. When a solution is obtained after 

HS with 2-Opt procedure, it will be evaluated 

using the fitness function. Respecting to HMS and 

fitness of new solution, the new solution may be 

inserted in harmony memory or not. Eventually, 

the termination criteria can be defined as a 

problem dependent number of iterations or as 

reaching to a specific quality of solution. In this 

study, the algorithm will stop when maximum 

number of iterations is met, and otherwise the 

while loop case will be repeated for each iteration. 

A sample TSP solution taken from TSPLIB, 

known as Burma14, is demonstrated in Table 2. 

As can be seen in Table 2, IH and NH are real 

Harmony numbers. By using their index values in 

HOI, the route information is obtained and then 

improved by using 2-Opt.  The proposed 

algorithm with respect to the pseudo-code in 
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Algorithm 2 by taking maximum number of 

iteration as 5 is given.  The 2-Opt is used instead 

of the initial solution and the 3rd iteration. At 

iteration 4, the optimal solution for Burma14 is 

obtained as 3323. In Figure 1, the route 

improvement at some steps are visualized for 

Burma14. 

 

Table 3. The pseudo code of the proposed algorithm: 2-Opt based harmony search 

 
 

 
 

Figure 1. Burma14 solution graphs in the proposed algorithm iterations 

 

Algorithm 2: The Proposed Algorithm: 2-Opt Based Harmony Search 

1: Initialize the harmony memory with HMS randomly generated solutions 

 Get Harmony Ordered Indexes 

Get 2-Opt Ordered Indexes 

2: repeat 

3: create a new solution in the following way 

4: for all decision variables do 

5: with probability HMCR use a value of one of the solutions 

 in the harmony memory (selected normal random numbers ) 

 and additionally change this value slightly with probability PAR 

6: otherwise (with probability 1-HMCR) use a random value for this decision variable 

  if  (at each step size v) for the 2-Opt is provided 

 Get Harmony Ordered Indexes 

 Get 2-Opt Ordered Indexes 

else 
 Get Harmony Ordered Indexes 

end if 

7: end for 

8: if the new solution is better than the worst solution in the harmony memory then 

9: replace the worst solution by the new one 

10: end if 

11: until the maximum number of iterations has been reached 

12: return the best solution in the harmony memory 
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Table 4. The proposed algorithms solution steps for Burma14 

 
Level Algorithms  2 3 4 5 6 7 8 9 10 11 12 13 14 Cost 

Initial Solution IH 2.3033 -0.1139 0.7853 -2.6272 -0.4115 4.6309 0.4681 0.2114 -2.6841 -0.111 1.2406 1.7914 -1.0448  

 HOI 10 5 14 6 3 11 9 8 4 12 13 2 7  

2opt  2-Opt Not Applied           6290 

1 NH -2.6455 -2.651 -1.0227 -0.3836 -0.1139 -0.158 0.2518 0.4681 0.7592 1.2074 2.1269 2.3215 4.5906  

 HOI 3 2 4 5 7 6 8 9 10 11 12 13 14  

2opt 2-Opt OI 8 13 7 12 6 5 4 3 14 2 10 9 11 3371 

2 NH 0.2518 2.3688 -0.1647 2.0943 -0.1139 -0.3919 -1.0296 -2.6904 4.5745 4.2033 0.7515 0.5164 1.2113  

 HOI 9 8 7 4 6 2 13 12 14 5 3 11 10  

2opt 2-Opt OI 2 3 4 5 6 12 14 7 13 8 11 9 10 3448 

3 NH 0.2146 -3.2888 -0.1647 2.0904 -3.436 0.7206 1.2203 -0.4167 0.5488 2.3025 4.244 -2.6809 4.5407  

 HOI 6 3 13 9 4 2 10 7 8 5 11 12 14  

2opt  2-Opt Not Applied           7927 

4 NH 0.2617 2.3827 -0.1616 2.0943 -0.1314 0.7515 1.1767 -0.3962 0.5164 -1.0119 4.1601 -2.6559 4.5252  

 HOI 13 11 9 4 6 2 10 7 8 5 3 12 14  

2opt 2-Opt OI 2 14 3 4 5 6 12 7 13 8 11 9 10 3323 

5 NH 0.2617 4.5213 2.3827 -0.1395 2.105 -0.0897 4.1389 0.7562 -2.638 1.1976 -1.0169 -0.3962 0.5506  

 HOI 10 12 13 5 7 2 14 9 11 6 4 8 3  

2opt 2-Opt OI 2 14 3 4 5 6 12 7 13 8 11 9 10 3323 

Best Solution 2 14 3 4 5 6 12 7 13 8 11 9 10 3323 

IH: Initial Harmonies, NH: New Harmonies, HOI: Harmony Ordered Indexes, 2-Opt OI: 2-Opt Ordered Indexes 

 

3. Computational results 

In this section, some benchmark problem sets 

from TSPLIB95 [40] such as eil51, berlin52, st70, 

pr76, eil76, kroA100, kroB100, eil101, bier127, 

chr130, ch150, kroA150, kroB200 and lin318 are 

considered. As the simulation platform, i7 CPU 

and 4 GB RAM hardware and MATLAB® 8.2 

software package are used. Also, some functions 

of the Matlog: Logistics Engineering Matlab 

Toolbox [41] are used. For the simulations, two 

different parameter sets are chosen that are given 

as two cases in Table 5. 

 

Table 5. The parameter settings 

Parameters Case 1 Case 2 

HMS 20 1 

𝒓𝒂𝒄𝒄𝒆𝒑𝒕 0.6 0.95 

𝒓𝒑𝒂 0.7 0.7 

v 4 3 

 
For Case 1, the parameter values are taken as the 

most frequently used ones in the literature. For 

Case 2, on the other hand, the parameters are 

obtained by trial and error and especially, in order 

to shorten the simulation time, and as a result 

HMS is chosen as 1. By trial and error, the 

acceptable value of v is taken as 3. For Case 1, the 

iteration is limited as 3600s or best known solution 

(BKS) whereas for Case 2, 500s or BKS is used. 

For both cases, each test instance is executed 100 

times and the simulation results are analysed in 

Table 6 and Table 7 for both cases of Table 5 using 

the mentioned problem sets of TSPLIB.  

In Table 6 and Table 7, #Opt/Run is the number 

of BKS values obtained in total of 100 runs, BKS 

is the best known solution, BSolj and WSolj are the 

obtained best and worst solutions of 100 runs of 

the jth instance, respectively. ASolj is the average 

of Soli (i=1…100) for jth instance and can be 

given as 

 

 
(1) 

where Soli (i=1…100) is each solution of 100 

runs. ADevj and BDevj are the percentage 

deviations of the ASolj and BSolj from BKSj, 

respectively, and can be given as  

 

 
(2) 

 

 

(3) 

100

1               =1..100,     =1..14
100

i

i
j

Sol

ASol i j


100,           1..14
j j

j

j

BKS ASol
ADev j

BKS


  
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j j

j

j

BKS BSol
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
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It can be seen from Table 6 and Table 7 that the 

ADevj solutions of Case 2 are all better than    Case 

1 whereas BDevj (j=14) of Lin318 is only slightly 

worse for Case 2. When #Opt/Run values are 

taken into consideration, one can see that the 

parameter set of Case 2 is better in finding the 

BKS values in total simulations. 

 

Table 6. Summary of computational results for the proposed method for Case 1 

 

# Name BKS BSol WSol ASol ADev BDev #Opt/Run 

1 eil51 426.00 426.00 429 426.95 0.22 0.00 33/100 

2 berlin52 7542.00 7542.00 7542 7542 0.00 0.00 100/100 

3 st70 675.00 675.00 679 675.79 0.12 0.00 43/100 

4 pr76 108159.00 108159.00 109161 108538.43 0.35 0.00 3/100 

5 eil76 538.00 539.00 552 546.9 1.65 0.19 0/100 

6 kroA100 21282.00 21282.00 21495 21345.38 0.30 0.00 8/100 

7 kroB100 22141.00 22179.00 22522 22368,68 1.03 0.17 0/100 

8 eil101 629.00 635.00 654 646.71 2.82 0.95 0/100 

9 bier127 118282.00 118936.00 121730 120206.68 1.63 0.55 0/100 

10 ch130 6110.00 6139.00 6309 6244.38 2.20 0.47 0/100 

11 ch150 6528.00 6598.00 6796 6700.02 2.64 1.07 0/100 

12 kroA150 26524.00 26846.00 27538 27188.09 2.50 1.21 0/100 

13 kroA200 29368.00 29693.00 30594 30146.91 2.65 1.11 0/100 

14 lin318 42029.00 43113.00 44418 43881.24 4.41 2.58 0/100 

 

Table 7. Summary of computational results for the proposed method for Case 2 

 

# Name BKS BSol WSol ASol 
 

ADev BDev #Opt/Run 

1 eil51 426.00 426.00 428.00 426.07  0.02 0.00 94/100 

2 berlin52 7542.00 7542.00 7542.00 7542.00  0.00 0.00 100/100 

3 st70 675.00 675.00 675.00 675.00  0.00 0.00 100/100 

4 pr76 108159.00 108159.00 108701.00 108324.39  0.15 0.00 5/100 

5 eil76 538.00 538.00 546.00 542.46  0.83 0.00 1/100 

6 kroA100 21282.00 21282.00 21319.00 21293.08  0.05 0.00 34/100 

7 kroB100 22141.00 22141.00 22356.00 22259.81  0.54 0.00 1/100 

8 eil101 629.00 634.00 647.00 641.74  2.03 0.79 0/100 

9 bier127 118282.00 118724.00 120241.00 119527.81  1.05 0.37 0/100 

10 ch130 6110.00 6133.00 6245.00 6192.18  1.35 0.38 0/100 

11 ch150 6528.00 6556.00 6719.00 6644.63  1.79 0.43 0/100 

12 kroA150 26524.00 26690.00 27161.00 26981.45  1.72 0.63 0/100 

13 kroA200 29368.00 29622.00 30144.00 29896.52  1.80 0.86 0/100 

14 lin318 42029.00 43153.00 44281.00 43764.46  4.13 2.67 0/100 

 
In addition, the solution times of each case are 

given in Table 8. Instead of berlin52 (i=2) Case 2 

has better simulation times in average. This is an 

expected situation as HMS value is 1 for Case 2. 

Fig.2 is given in order to show the results ADevj 

and BDevj respectively. When the deviations for 



Using 2-Opt based evolution strategy for travelling salesman problem                                  109 

 

both cases are investigated from Fig.2, it can be seen that ADevj has more deviation than BDevj. 

 
Table 8. Simulation times for test instances of Case 1 and Case 2 

 
 

 
 

Case 1 - Time (seconds) 
 

Case 2 - Time (seconds) 

# Name 
 

Best Worst Avg 
 

Best Worst Avg 

1 eil51  12.14 3600.16 975.68  16.08 503.50 421.35 

2 berlin52  2.60 344.55 72.35  5.70 451.47 101.48 

3 st70  2.63 2453.73 430.54  13.16 523.59 383.36 

4 pr76  145.21 3602.20 3479.21  33.24 523.67 503.19 

5 eil76  1464.98 3601.34 3579.00  500.00 524.40 507.15 

6 kroA100  61.60 3606.30 2960.44  38.56 549.28 496.07 

7 kroB100  2490.69 3605.85 3590.16  500.01 563.28 524.03 

8 eil101  3600.01 3603.44 3600.76  500.42 543.10 515.96 

9 bier127  3600.00 3604.34 3601.52  500.14 567.12 534.31 

10 ch130  3600.02 3604.38 3601.77  501.76 609.22 545.59 

11 ch150  3600.05 3617.40 3604.29  501.55 681.52 622.67 

12 kroA150  3600.06 3616.69 3603.84  502.44 708.62 571.90 

13 kroA200  3600.20 3626.39 3611.84  504.01 1137.15 728.29 

14 lin318  3600.24 3825.49 3671.98  2046.31 2466.96 2208.23 

 

0.000

1.000

2.000

3.000

4.000

5.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

ADevj

Case 1 Case 2

(a)  ADevj
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1.000
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2.000
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3.000
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BDevj

Case 1 Case 2

(b)  BDevj

  
Figure 2. The results of ADevj and BDevj for Case 1 and Case 2 

 
In order to show the main contribution of this 

study, the results of 2-Opt_cHS algorithm is 

compared with classical 2-Opt solutions. The 

comparison results are given in Table 9 where it is 

seen that an improvement is obtained in 

simulation performances by using the proposed 

method. The classical 2-Opt is simulated by 

randomly generating a new route information and 

then applying only the 2-Opt algorithm at each 

step. 

The performances in Table 9 are also 

evaluated in Table 10 as an indicator of the 

solution quality using the ADevj, BDevj and 

Opt/Run parameters between 2opt_cHS and 

classical 2opt algorithms.
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Table 9. Solutions for test instances of 2opt_cHS and classical 2opt 

 

    2opt_cHS  Classical 2-opt 

# Name BKS  BSol WSol ASol  BSol WSol ASol 

1 eil51 426.00  426.00 428.00 426.07  431.00 479.00 449.51 

2 berlin52 7542.00  7542.00 7542.00 7542.00  7542.00 8821.00 8196.08 

3 st70 675.00  675.00 675.00 675.00  678.00 774.00 712.13 

4 pr76 108159.00  108159.00 108701.00 108324.40  108943.00 119484.00 112415.10 

5 eil76 538.00  538.00 546.00 542.46  548.00 605.00 573.18 

6 kroA100 21282.00  21282.00 21319.00 21293.08  21367.00 24069.00 22312.73 

7 kroB100 22141.00  22141.00 22356.00 22259.81  22389.00 25201.00 23407.38 

8 eil101 629.00  634.00 647.00 641.74  659.00 697.00 676.96 

9 bier127 118282.00  118724.00 120241.00 119527.80  119408.00 133490.00 126352.70 

10 ch130 6110.00  6133.00 6245.00 6192.18  6200.00 6909.00 6497.10 

11 ch150 6528.00  6556.00 6719.00 6644.63  6717.00 7342.00 7019.57 

12 kroA150 26524.00  26690.00 27161.00 26981.45  27155.00 29305.00 28369.89 

13 kroA200 29368.00  29622.00 30144.00 29896.52  29856.00 32406.00 31204.24 

14 lin318 42029.00  43153.00 44281.00 43764.46  43814.00 46295.00 44991.41 

 
According to Table 10, it can be seen from the 

BKS results of the proposed 2-Opt-cHS algorithm, 

ADevj and BDevj average deviations are -1.10 

and -0.44, respectively. On the other hand, for the 

classical 2-Opt algorithm, ADevj and BDevj 

average deviations are -6.38 and -1.72, 

respectively. Therefore, it is seen that by using 2-

Opt together with HS, the performance is 

improved with respect to classical 2-Opt 

algorithm. Also, the proposed 2-Opt_cHS 

algorithm can reach BKS values of seven test 

instances. However, for the classical 2-Opt 

algorithm, BKS value of one test instance 

(berlin52) is obtained. Thus, less deviation values 

and higher #Opt/Run values of 2-Opt_CHS show 

the advantage obtained using the proposed 

method. Thus, it is seen that using only classical 

2-Opt at each step, optimal solutions cannot be 

obtained in general. This is an indicator that the 

proposed method has an improvement by applying 

the faster HS at each step and slower 2-Opt at 

some steps. 

Table 11 is designed to compare our solutions 

with the results obtained from literature. It can be 

observed that all the average solution 

performances of meta-heuristics including the 

basic Discrete Cuckoo Search (DCS) have worse 

results than proposed 2-Opt_cHS. On the other 

hand, improved DCS of their study and proposed 

2-Opt_cHS in our study, have similar 

performances and both are better than the other 

meta-heuristics mentioned in their study. 

4. Conclusions and further research 

The travelling salesman problems are mostly 

studied in the class of NP-Hard problems. In order 

to solve these problems many techniques and 

solution approaches are designed in the literature. 

In this paper, a harmony search algorithm is 

directly used as a solution method. The 

transformation of real numbers of continuous 

harmony search algorithm to integer numbers of 

discrete form is obtained by using index values 

and the 2-Opt local search algorithm. As 

computational test instances the problem sets of 

eil51, berlin52, st70, pr76, eil76, kroA100, 

kroB100, eil101, bier127, ch130, ch150, kroA150, 

kroB200 and lin318 from TSPLIB are selected 

and two different cases are designed for 

experimental study. The results have shown that 

acceptable solutions can be obtained with the 

given algorithm.  

The results of the proposed method are 

compared with conventional 2-Opt algorithm and 

also with other meta-heuristics. Consequently, it is 

shown that by using the proposed 2-Opt_cHS 

algorithm useful results could be obtained.  The 

proposed method can be used for all TSP variants 

such as production planning, electronic 

manufacturing, and logistics. 
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Table 10. Relatively comparison for the solutions of 2opt_cHS and classical 2opt 

 

   2opt_cHS  2-opt 

# Name  ADev BDev #Opt/Run  ADev BDev #Opt/Run 

1 eil51  -0.02 0.00 94/100  -5.52 -1.17 0/100 

2 berlin52  0.00 0.00 100/100  -8.67 0.00 1/100 

3 st70  0.00 0.00 100/100  -5.50 -0.44 0/100 

4 pr76  -0.15 0.00 5/100  -3.94 -0.72 0/100 

5 eil76  -0.83 0.00 1/100  -6.54 -1.86 0/100 

6 kroA100  -0.05 0.00 34/100  -4.84 -0.40 0/100 

7 kroB100  -0.54 0.00 1/100  -5.72 -1.12 0/100 

8 eil101  -2.03 -0.79 0/100  -7.62 -4.77 0/100 

9 bier127  -1.05 -0.37 0/100  -6.82 -0.95 0/100 

10 ch130  -1.35 -0.38 0/100  -6.34 -1.47 0/100 

11 ch150  -1.79 -0.43 0/100  -7.53 -2.90 0/100 

12 kroA150  -1.72 -0.63 0/100  -6.96 -2.38 0/100 

13 kroA200  -1.80 -0.86 0/100  -6.25 -1.66 0/100 

14 lin318  -4.13 -2.67 0/100  -7.05 -4.25 0/100 

 Avg  -1.10 -0.44   -6.38 -1.72  

 

 
Table 11. Comparison of ASol results of the proposed method with different meta-heuristics from the 

literature 

Solution Methods   

Compared Test Instances 

Eil51 Berlin52 St70 Eil76 KroA100 

BKS 426.00 7542.00 675.00 538.00 21282.00 

Proposed 2-Opt_cHS 426.07 7542.00 675.00 542.50 21293.10 

Basic DCS [20]  439.00 7836.40 696.90 565.70 22419.90 

Improved DCS [21]  426.00 7542.00 675.00 538.00 21282.00 
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