
An International Journal of Optimization

and Control: Theories & Applications

Vol.6, No.1, pp.53-61 (2016) c© IJOCTA

ISSN:2146-0957 eISSN:2146-5703

DOI:10.11121/ijocta.01.2016.00254

http://www.ijocta.com

Optimization of cereal output in presence of locusts

Nacima Moussounia and Mohamed Aideneb

University Mouloud Mammeri of Tizi-Ouzou, Faculty of Science,
Department of Mathematics, L2CSP Laboratory

Email: anmoussouni@yahoo.fr, baidene@mail.ummto.dz

(Received March 22 , 2015 ; in final form January 27 , 2016)

Abstract. In this paper, we study a modelization of the evolution of cereal output production,

controlled by adding fertilizers and in presence of locusts, then by adding insecticides. The aim is

to maximize the cereal output and meanwhile minimize pollution caused by adding fertilizers and

insecticides. The optimal control problem obtained is solved theoretically by using the Pontryagin

Maximum Principle, and then numerically with shooting method.
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1. Statement of the problem

Consider x(t), t ∈ [0, T ] the rate of pollution at
time t. In cereal field, If the farmer does not put
fertilizers and insecticides then the evolution of
pollution satisfies

ẋ(t) = −αx(t), t ∈ [0, T ];

where α is the natural decreasing rate. Note that
the rate x(t), t ∈ [0, T ] is decreasing.
In order to increase the cereal output, we add fer-
tilizers and insecticides to protect the crop harm
locusts. Denoting by u(t) and v(t) , t ∈ [0, T ]
the quantities of fertilizers and insecticides re-
spectively, in this case x(t) is evolving as

ẋ(t) = −αx(t) + u(t) + v(t), (1)

x(0) = x0 > 0, t ∈ [0, T ]

Our goal is to minimize the pollution generated
by fertilizers and insecticides, and optimize the
cereal output from the seed to the harvest.

In practice, we choose typically T =
10months, which corresponds to a cycle of cereal
production from September to July.
Let be y(t), t ∈ [0, T ] the quantity of the cereal

production. Adding fertilizers, the production in-
creases, this production decreases with the pres-
ence of locusts and by adding large quantities of
fertilizers.

Denoting by z(t), t ∈ [0, T ], the quantity of
locusts presents in cereal field. In this case the
evolution of cereal output is given for t ∈ [0, T ]
by:

ẏ(t) = −by(t)z(t) +
√

(M − u(t))(m+ u(t)) (2)

y(0) = 0.

and z(t) verify the following equation

ż(t) = z(t)(c(t)y(t)− d(t))− v(t), (3)

z(0) = z0 > 0, t ∈ [0, T ]

where m > 0,M > 0 are real numbers, b is the
rate of reproduction of cereal, c(t), t ∈ [0, T ] is the
rate of reproduction of locusts and d(t), t ∈ [0, T ],
is the rate of extinction of locusts. All those pa-
rameters will be identified subsequently.

Note that if we add a too large quantity of fer-
tilizers and insecticides, this causes the death of
locusts but also the death of cereals.
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The functions u(.) and v(.) are considered as
controls. Those controls u(.) and v(.) considered
are submitted to constraints. They are such that

0 ≤ v(.) ≤ V, (∗)
and

0 ≤ u(.) ≤ M. (∗∗)

Note that V > 0 will be by identified in the
following section.

In a cereal field, the aim is to maximize the
production of cereals and to minimize the bad
effects of pollution given by insecticides and fer-
tilizers. For this our criterion is:

J(u) = βx(T )− y(T ) → min
u, v

,

where β > 0 is a real number to be chosen, x(.)
is solution of (1) and y(.) is solution of (2).
Minimizing J corresponds to realizing a compro-
mise between maximizing the cereal output and
minimizing the bad effects of pollution given by
insecticides and fertilizers.

Finally, our problem is as follows























































































ẋ(t) = −αx(t) + u(t) + v(t),
x(0) = x0 > 0

ẏ(t) = −by(t)z(t)

+
√

(M − u(t))(m+ u(t)),
y(0) = 0

ż(t) = z(t)(c(t)y(t)− d(t))− v(t),
z(0) = z0 > 0

0 ≤ v(t) ≤ V

0 ≤ u(t) ≤ M. t ∈ [0, T ].

Here we consider that the final time T is fixed.

This problem is inspired by a model used in [9],
where the authors formulated a model without
presence of locusts. They calculated the quan-
tities of fertilizers to put in cereal field to get a
better production. The reader can refer also to
[11].

This article is structured as follows. In Section
2, we provide an identification of the parameters
considered in the model with real life measures

used in Algeria see [4,7]. In this section, we cal-
culated the rate of reproduction of cereals using a
simple dechotomy method. we calculated also the
durations of maturity of locusts, then the repro-
duction rate and the rate of extinction of locusts,
in hot and cold seasons.

Section 3 is devoted to the study of necessary
condition of optimality based on the Pontryagin
Maximum Principle see[10,12]. We make a rigor-
ous mathematical analysis of the extremal equa-
tions leading to a precise expression of the opti-
mal control. In Section 4, we provide numerical
simulations based on the rigorous mathematical
analysis, using the shooting method and we com-
ment these results. Note that these numerical re-
sults describe the best possible way for a farmer
to realize a good compromise between maximiz-
ing the cereal output and minimizing pollution
effects consequences of fertilizers and insecticides.

2. Identification of the parameters of

the model

In what follows, the time t is given in months,
and T corresponds to a cycle of cereal produc-
tion, T = 10 months.

The quantities of fertilizers used in Algeria are
given by [7]:

u(t) =











































































100kg/ha if

t ∈ [0, 1] = [September,October]

100
3 kg/ha if

t ∈ [2, 3] = [November,December]

200
3 kg/ha if

t ∈ [6, 7] = [March,April]

0
otherwise([1, 2] ∪ [3, 6] ∪ [7, 10])

(4)

According to [7], the quantity of cereal output
without fertilizers is equal to 500 kilograms per
hectare.

From this in our model corresponds to u(t) =
0, and hence, using equation (2);

ẏ(t) =
√
Mm, then we obtain

10
√
Mm = 500. (5)

From [7], the cereal output with the addition of
fertilizers and in absence of locusts as described
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by (2) is equal to 4500 kilograms per hectare.
In our model, this leads to

y(T ) = 4500 =

∫ 1

0

√

(M − 100)(m+ 100)dt+

∫ 3

2

√

(M − 100/3)(m+ 100/3)dt+

∫ 7

6

√

(M − 200/3)(m+ 200/3)dt+ 7
√
Mm.

solving the system































10
√
Mm = 500

√

(M − 100)(m+ 100)

+
√

(M − 100/3)(m+ 100/3)

+
√

(M − 200/3)(m+ 200/3)

+7
√
Mm = 4500 .

and leads to

M = 300, 83, m = 0.00083.

Let us now compute the value of the decreas-
ing rate α of pollution, according to real-life
data. In the absence of fertilizers and insecti-
cides, u(t) = 0, we have x(0) = x0 = 119mg/l at
t = 0, and x(T ) = 28mg/l at T = 10 months.
From this by using formula (1), we obtain:

x(T ) = x0e
−αT

⇔ 28 = 119e−10α,

then
α = 0.12.

Note that the locust attack held in May. From
equation (2), and in absence of fertilizers (u(t) =
0),

ẏ(t) = −b y(t) z(t) +
√
mM, t ∈ [0, T ].

the larval density causing damage is 5000 locusts
per hectare [4], they consume 80 % of cereal a
day.

For t1 =
1
30 month = 1 day, we will have:

y(
1

30
) = 0.2y0.

Note that y0 = y(8) is cereal production at
the time of the attack of locusts. the value of b
is determined by solving the following differential
equation:

ẏ(t) = −5000 b y(t) +
√
Mm

under the initial conditions:

y(8) = y0, y(
1

30
) = 0.2y0.

Using these data, we will have

d

dt
(y(t)−

√
Mm

bz(t)
) = −bz(t)(y(t)−

√
Mm

bz(t)
)

⇒ y(t)−
√
Mm

bz(t)
= cste× e−bz(t)t;

then

y(t) =

√
Mm

bz(t)
+ (y0 −

√
Mm

bz(t)
)e−bz(t)t, t ∈ [0, T ].

For t = t1, we will have:

√
Mm

bz(t)
+ (y0 −

√
Mm

bz(t)
)e−bz(t)t1 = 0.2y0.

To determine the value of y0, we set the fol-
lowing assumptions:

- The locust come in May .
- Insects attack a fraught field of cereal.
- The field has not been attacked before May.

To calculate y0, we solve the following equa-
tion:

y(8) =

∫ 1

0

√

(M − 100)(m+ 100)dt+

∫ 3

2

√

(M − 100/3)(m+ 100/3)dt+

∫ 7

6

√

(M − 200/3)(m+ 200/3)dt+ 5
√
Mm.

Such that M = 300 and m = 0.00083, then
y(8) = 4379kg/ha. To determine the value of b,
plot the graph of the following function:

b 7→
√
Mm

bz
+ (y0 −

√
Mm

bz
)e−bzt1 − 0.2y0

where t1 = 1
30 month, y0 = 4379kg/ha and z =

5000locusts/ha.
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Figure 1. t 7→ b(t).

By Dichotomy, we obtain b = 2.85 (see Figure
1).

Population of locusts on which is based our
work is 55000 larvae and 375 adults. A female
lays 140 eggs in two generations [4]. Average
losses of eggs are about 33% [4]. The Table 1
shows the duration of maturity of locusts. For
method for calculating incubation periods see [4].

Table 1. Durations of maturity of
locusts [4].

Locusts
temperatures high bass
Eggs IT: 11 days IT: 41 days

Larvae DT: 80 days DT: 21 days

Adults AM : 20 days AM: 6 months

Indications: IT: Incubation time, DT: Develop-
ment time and AM: Adults maturity.

After hatching of eggs, the larvae pass from
five larval stages L1, L2, L3,L4, L5. The per-
centages of mortality in different stages of larvae
are given in Table 2. For more informations see[4]

Table 2. Larval mortality [4].

Stages L1 L2 L3 L4 L5

percentages 70% 20% 10% 10% 10%

There, and using these data, we calculate the
number of locusts that can produce a viable fe-
male in hot and cold seasons.

Hot seasons:

N1 = 140× 0.66× 0.3× 0.8× (0.9)3 = 16.16

≃ 17locusts

Cold seasons:

N2 = 140× 0.35× 0.3× 0.8× (0.9)3 = 8.57

≃ 9 locusts

In other words: On 55375 Locust (larvae, im-
mature adults , mature adults) we assume that
100 females lay their eggs in two generations.
They will generate 17 locusts viable in the hot
season and 9 locusts viable in the cold season.
The rate of reproduction of locusts c(t), t ∈ [0, T ]
is represented in Figure 2 and calculated as fol-
lows:

c(t) =







200
55375 ∗ 17, in hot season

200
55375 ∗ 9, in cold season .

Then

c(t) =







0.0613, in hot season

0.0288, in cold season .

Analytic expression of c(t), t ∈ [0, T ] is

c(t) = 0.0288 + (0.0613− 0.0288)
(t− 5)2

25
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Figure 2. t 7→ c(t).

The average lifespan of a locust is 3 months
in hot periods, it is 8 months in cold periods (see
[4]). we assume that we are at 0 when 90 % of the
population locusts disappeared (this assumption
is possible because after elimination of locusts,
the solitary locusts do not disappear).

From Constraint (3), in the absence of insecti-
cides and food,

ż(t) = −d z(t).

This differential equation has the solution:

z(t) = z0e
−dt, t ∈ [0, T ],

where z0 = z(0).
In hot season, t = 3 months,



Optimization of cereal output in presence of locusts 57

z0 e−3d = 0.1 z0

⇒ e−3d = 0.1

d = −1

3
ln(0.1) = 0.767

In cold season t = 8 months:

z0 e−8d = 0.1 z0

⇒ e−8d = 0.1

d = −1

8
ln(0.1) = 0.287.

In other words:

d(t) =

{

0.767 in hot season
0.287 in cold season .

The analytical expression for the rate of ex-
tinction of locusts d(t) represented in Figure 3
and it is given by:

d(t) = 0.287+(0.767−0.287)
(t− 5)2

25
, t ∈ [0, T ].
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Figure 3. t 7→ d(t).

For the value of V = 5l/ha see [4].

3. Theoretical solving of the optimal

control problem

In this section, we solve the problem (4) theo-
retically by employing the Pontryagin Maximum
Principle.

Let us first recall a version of the Pontryagin
Maximum Principle (see [10,12]).

Theorem 1. We consider the control system on
R
n

ẋ(t) = f(t, x(t), u(t)), (6)

where f : R × R
n × R

m → R
n in C1. Where

the controls are the measurable and bounded func-
tions in [0, te(u)] of R

+ in values in Ω ⊂ R
m. Let

M0 and M1 two subsets of Rm. Note by U the
set of an admissible controls u whose correspond-
ing trajectories connect one point of M0 to a final
point in M1 in time t(u) < te(u). Note the qual-
ity criterion by

C(t, u) =

∫ t

0
f0(s, x(s), u(s))ds+ g(t, x(t)),

where f0 : R×R
n×R

m → R
n and g : R×R

n → R

in C1, and x(.) is solution of (7) associated to the
control u.

We consider the following optimal control
problem: determine one trajectory connecting M0

to M1 and minimize the cost.
If a control u is optimal in [0, T ], then there

exist an application p(.) absolutely continuous
on [0,T], with values in R

n, called adjoint vec-
tor, and a real nonpositive number p0 such that
(p(.), p0) is nontrivial, and for almost all t ∈
[0, T ]

ẋ(t) =
∂H

∂p
(t, x(t), p(t), p0, u(t)), (7)

ṗ(t) =
−∂H

∂x
(t, x(t), p(t), p0, u(t)). (8)

where
H(t, x, p, p0, u) = p′(t)f(t, x, u) + p0f0(t, x, u)

is the Hamiltonian of the system (7).
Moreover, we have a condition of maximiza-

tion

H(t, x(t), p(t), p0, u(t))
= maxv∈U H(t, x(t), p(t), p0, v),

(9)

for all t ∈ [0, T ].
Moreover, if M0 and M1 are two submanifolds

of R
n having tangent spaces in x(0) ∈ M0 and

x(T ) ∈ M1, then the adjoint vector satisfies the
transversality conditions

p(0)⊥Tx(0)M0, (10)

and

p(T )− p0
∂g

∂x
(T, x(T ))⊥Tx(T )M1. (11)
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We apply the Pontryagin Maximum Principle
to our specific optimal control problem.
The Hamiltonian of System (4) is

H(x, p, p0, u, v) = px(−α x+u+v)+py(−b y z+
√

(M −m)(m+ u)) + pz(z(cy − d)− v)

where p(t) =













px(t)

py(t)

pz(t)













, t ∈ [0, T ] is adjoint

vector solution of the following system:























ṗx = −∂H
∂x

= αpx,

ṗy = −∂H
∂y

= bpyz − cpzz =

bzpy − czpz = z(bpy − cpz),

ṗz = −∂H
∂z

= bypy − pz(cy − d) =
y(bpy − cpz) + pzd.

(12)

The final transversality condition

We know that x(T ) is free, the final transversality
condition leads to

p(T ) = p0∇g(x(T )).

In other words:

px(T ) = p0
∂

∂x
(βx(T )− y(T )),

py(T ) = p0
∂

∂y
(βx(T )− y(T )),

pz(T ) = p0
∂

∂z
(βx(T )− y(T )).

Then px(T ) = −β, py(T ) = 1, pz(T ) = 0.
It is easy to see that

px(t) = −βeα(t−T ), t ∈ [0, T ]

Remark 1. Since β > 0, it follows that, for ev-
ery t ∈ [0, T ], px(t) < 0.

Lemma 1. p0 6= 0.

Proof. We argue by contradiction. If p0 = 0
then p(T ) = 0 so (p(T ), p0) = (0, 0); this is
in contradiction with the Pontryagin Maximum
Principle. �

Remark 2. If p0 = 0 then the extremal
(x(.), p(.), u(.)) is said normal and in this case
it is usual to normalize the adjoint vector so
that p0 = −1. If p0 = 0, then the extremal
(x(.), p(.), u(.)) is said abnormal. Note that sev-
eral works have been devoted to the investigation

of abnormal extremals in a generic context (see
[1],[2],[3]). In our example, the abnormal case
does not occur.

Lemma 2. py(.) is not canceled identically on a
sub interval.

Proof. Assume that py ≡ 0 is canceled identi-
cally on a sub interval of [0, T ],

py ≡ 0 ⇒ ṗy ≡ 0

⇒ z(t)(bpy(t)− c(t)pz(t)) = 0

⇒ pz ≡ 0

So by unicity of Cauchy,

py ≡ pz ≡ 0 sur [0, T ],

this is in contradiction with py(T ) = 1. �

For the proof of the following lemma see [11].

Lemma 3. px(.) − pz(.) does not vanish identi-
cally on a subset interval.

To study the maximization condition, we
search the maximum on v and u of the follow-
ing function

pxu(t) + py(t)
√

(M − u(t))(m+ u(t))+

(px(t)− pz(t))v(t)

It is clear that

v(t) =

{

0 if px(t)− pz(t) < 0 ,
V if px(t)− pz(t) > 0 .

(13)

To determine the optimal control u(.), we
search in [−m,M ], the maximum of the following
function

φ(u) = pxu+ py
√

(M − u)(m+ u).

Function φ is defined on [−m,M ]. To found
its absolute maximum proceed as follows

φ′(u) = px + py
−u+ M−m

2
√

(M − u)(m+ u)

φ′(u) = 0 ⇔ py
−u+ M−m

2
√

(M − u)(m+ u)
= −px

Note that px(t) < 0, then

py(−u+
M −m

2
) > 0

(p2x + p2y)u
2 − (M −m)(p2x + p2y)u+

(M −m)2

2
p2y

−p2xMm = 0.



Optimization of cereal output in presence of locusts 59

The absolute maximum of φ on [−m,M ] is

uφ =
M −m

2
+

M +m

2
√

p2x(t) + p2y(t)
pxsign(py(t))

We deduce two cases:
py(t) > 0, in this case the maximum of φ on

[0,M ] is

0 if uφ < 0,

uφ if uφ ≥ 0,

py(t) < 0

φ(0) = py(t)
√
Mm < 0

and

φ(M) = px(t)M < 0.

The maximum of φ on [0,M ] is

0 if py(t)
√
Mm > px(t)M

M if px(t)M > py(t)
√
Mm, t ∈ [0, T ]

Conclusion

The optimal control of system (4) is

u(t) =



















































































0 if py(t) > 0

and M−m
2 + M+m

2
√

p2
x
(t)+p2

y
(t)
px(t) ≤ 0,

M−m
2 + (M+m)px(t)

2
√

p2
x
(t)+p2

y
(t)

if py(t) > 0

and M−m
2 + M+m

2
√

p2
x
(t)+p2

y
(t)
px(t) > 0,

0 if py(t) < 0

and py(t)
√
m > px(t)

√
M

M if py(t) < 0

and py(t)
√
m < px(t)

√
M.

(14)
We proved the following theorem.

Theorem 2. If py(t) > 0 and
M−m

2 + M+m

2
√

p2
x
(t)+p2

y
(t)
px(t) < 0, then

u(t) = 0, t ∈ [0, T ].

If py(t) > 0 et M−m
2 + M+m

2
√

p2
x
(t)+p2

y
(t)
px(t) > 0,

then

u(t) =
M −m

2
+

(M +m)px(t)

2
√

p2x(t) + p2y(t)
, t ∈ [0, T ].

If py(t) < 0 and py(t)
√
m > px(t)

√
M ,

then

u(t) = 0, t ∈ [0, T ].

If py(t) < 0 and py(t)
√
m < px(t)

√
M ,

then

u(t) = M, t ∈ [0, T ].

4. Numerical simulations

We give here a brief overview of the indirect
method, this method is based on the Pontryagin
Maximum Principle, which gives necessary con-
dition for optimality, and states that every opti-
mal trajectory is the projection of an extremal.
If one is able from the condition of maximiza-
tion to express the extremal control in function of
(x(t), p(t)), then the extremal system is a differ-
ential system of the form ż(t) = F (t, z(t)), where
z(t) = (x(t), p(t)), and the values of initial, final
and transversality conditions are put in the form
R(z(0), z(T )) = 0.

Finally we obtain a problem of the form

{

ż(t) = F (t, z(t)),
R(z(0), z(T )) = 0 .

(15)

Let z(t, z0) the solution of Cauchy’s problem

ż(t) = F (t, z(t)), z(0) = z0.

Put G(z0) = R(z0, z(T, z0)). The problem (16)
it equivalent to

G(z0) = 0

which is solved using the Newton’s method. For
more details on the shooting method, the reader
can refer to [12].

Let us consider now that the ground is fertil-
ized from September to July, and the insecticides
is put in a continuous way, from May to July. To
solve the problem, the indirect method based on
the Pontryagin Maximum Principle is used. We
provide in Table 3 numerical results of x(T ), y(T )
and z(T ) for several values of the weight param-
eter β. The numerical simulations were led using
Matlab on a desktop computer.
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Table 3. Pollution, cereal output
and locusts final as time function of
β.

0 909 5.94 248
10 36.40 16.90 13.39
50 35.97 20.76 2.50
70 35.91 18.47 1.92
100 35.90 15.65 1.39
150 35.87 12.18 1
200 35.84 9.85 1

We note that pollution decreases slowly, yield
is decreased significantly, this is due to the fact
that the wheat been ravaged by locusts.

Variations of controls u(.) and v(.) depending
on t for β = 0 and β = 50 respectively are shown
in the Figure 4 and Figure 5 :
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Figure 4. Optimal controls for β = 0.
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Figure 5. Optimal controls for β = 50.

It is visible from Figure 4 that when the farmer
is only interested to increase the output, with-
out taking into account the pollution, the opti-
mal weight to be considered is of course ”β = 0”.
Then u(t) = 150qx/ha, for all t ∈ [0, 10] and
quantities of insecticides are zero before the ar-
rival of locusts i.e before May, v(t) = 0, but from
May v(t) = 5l/ha.

Whereas, if he does not want to pollute the
ground, he should use smaller quantities of fer-
tilizers, for example, β = 50, the optimal control
u(.) decrease from u = 0.34 qx/ha at time t = 0
to u = 0.05 qx/ha at time t = 10. The quantities
of insecticides in this case are zero (Figure 5).

Figure 6 shows the variations of pollution, ce-
real output and the number of locusts function
of time t, for β = 0.
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Figure 6. Optimal trajectories ver-
sus to t for β = 0.

We note that when β = 0, pollution increases,
cereal output also increases until time t = 8 i.e
until the coming of the locusts. At the same
time, the number of locusts is maximum, then the
curve decreases because of the maximum amount
of insecticides v(t) = 5l/ha which is applied.

If β = 50, in other words, taking into account
the pollution, this last decreases according to t,
cereal output increases until time t = 8 months,
in May, then curve y decreases. But the curve
representing the number of locusts does not de-
crease because no amount of insecticides is ap-
plied (see Figure 7).
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Figure 7. Optimal trajectories ver-
sus to t for β = 50.

5. Conclusion

In this work, we have modeled a practical prob-
lem in agriculture which is the optimization prob-
lem of a cereal production by introducing the con-
straint of the presence of locusts that are a real
nuisance in Algeria. Controls resulting from the
model are nonlinear. Different parameters of the
model are identified using real-life data from the
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National Institute of Plant Protection (INPV) lo-
cated in the capital of Algeria Algiers. The the-
oretical resolution is done using the Pontryagin
maximum principle. For the numerical resolu-
tion, we used the shooting method based on the
Pontryagin maximum principle.

Our simulations show that the strategy of
spreading fertilizers and insecticides can be im-
proved in Algeria compared to what is done at
present, so as to increase the rate of production
and however minimizing the pollution effect.
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