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Abstract. We study the exact controllability of finite dimensional Galerkin approximation of a Navier-
Stokes type system describing doubly diffusive convection with Soret effect in a bounded smooth domain
in R

d (d = 2, 3) with controls on the boundary. The doubly diffusive convection system with Soret effect
involves a difficult coupling through second order terms. The Galerkin approximations are introduced
under certain assumptions on the Galerkin basis related to the linear independence of suitable traces
of its elements over the boundary. By Using Hilbert uniqueness method in combination with a fixed
point argument, we prove that the finite dimensional Galerkin approximations are exactly controllable.
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1. Introduction

Control of fluid flows modeled by Navier-Stokes
equations has received considerable attention due
to its importance in practice and to the theoreti-
cal and computational challenges it poses. There
is now an extensive body of literature devoted
to this subject, see [13, 27, 11] for surveys in
this area. In this paper, we consider controlla-
bility of a doubly diffusive convection with Soret
effect modeled by a coupled Navier-Stokes type
partial differential equations. The doubly diffu-
sive system with Soret effect involves a difficult
coupling through second order terms. Significant
work has been devoted to studying the stability
and physics of doubly diffusive convection with
and without Soret effect (thermal diffusion), see
for e.g. [3, 20, 26, 22, 24, 14]. These studies have

reported convective flows lead to undesirable ef-
fects in certain applications. For example, ther-
mosolutal convection is responsible for macroseg-
ragation and can affect the uniformity and speed
of growth rate in crystal growth. It is also respon-
sible for erosion of gradient zone in solar ponds
and roll-over instability (sudden over pressure)
in storage and transport of gases. In spite of
this, work concerning control of doubly diffusive
flows is quite limited although there exists sub-
stantial work on control of thermal convection in
fluid flows [15, 2], for example. In [28], control of
temperature in doubly diffusive flows is studied
computationally using boundary heat flux ignor-
ing Soret effect. Optimal boundary control of
doubly diffusive flows with Soret effect is studied
in [21]. Mathematical aspects of doubly diffusive
convection system such as existence and unique-
ness can also be found in [21].
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The doubly diffusive system under study here
includes as a particular case the classical incom-
pressible Navier-Stokes equations. Therefore it
is clear that one can not expect exact controlla-
bility of this system with arbitrary target func-
tions due to its dissipative and non-reversibility
properties. The approximate controllability, de-
spite its questionable practical utility, has been
addressed in [4] for the two dimensional Navier-
Stokes equations in the iso-thermal and iso-
concentration cases. However, the boundary con-
ditions in that work are assumed to be non stan-
dard (slip boundary condition or the so called
Navier slip boundary condition) and the prob-
lem of approximate controllability with classical
Dirichlet boundary condition is still open. In
[8, 12, 7] local exact controllability to uncon-
trolled trajectories of Navier-Stokes equations is
proved. In [5], global exact controllability for
the two-dimensional Navier-Stokes equations in
a manifold without boundary is proved.

In [17, 18], exact controllability of finite dimen-
sional Galerkin approximations of Navier-Stokes
equations are proved. In the present work, we
investigate the exact controllability for the dou-
bly diffusive convection with Soret effect mod-
eled by the Navier-Stokes system approached by
Galerkin approximations.

The remainder of the paper is organized as fol-
lows. In Section 2, we present some preliminaries
and study the wellposedness of the Navier-Stokes
system for Soret Convection. In Section 3, we
introduce Galerkin approximation of the doubly
diffusive system and prove the exact boundary
controllability result for this system. The proof
uses the Hilbert uniqueness method to study the
exact boundary controllability of linear system
and a fixed point method.

2. Preliminaries

2.1. Notations

This section provides, for use in later sections, a
summary of notations and function spaces. Let
Ω ⊂ R

d(d = 2, 3) be a bounded domain with
Lipschitzian boundary Γ = ΓD ∪ ΓN . As usual,
Lp(Ω), or simply Lp denotes the linear space
of all real Lebesgue measurable functions φ and
bounded in the usual norm denoted by ‖φ‖Lp(Ω).

The inner product and norm in L2(Ω) are de-
noted by (·, ·) and ‖·‖, respectively. LetHs(Ω) be
the usual Hilbertian Sobolev space with s deriva-
tives in L2(Ω). We denote with ‖ · ‖s the norm
in Hs(Ω). The closed subspace of functions in
H1(Ω) with zero trace on ΓD will be denoted

by H1
D(Ω). The closed subspace of functions in

L2(Ω) with zero mean on Ω will be denoted by
L2
0(Ω). The trace space Hr(Γ) consists of func-

tions that are the restriction to the boundary of
functions in Hr+1/2(Ω), r > 0. We denote the
norm and inner product for functions in Hr(Γ)
by ‖ · ‖r,Γ and (·, ·)r,Γ, respectively. In the se-

quel, we denote by boldface letters R
d-valued

function spaces such as Lp(Ω) := [Lp(Ω)]d and
Hr(Ω) := [Hr(Ω)]d. For details, see [1, 10]. We
introduce the solenoidal spaces

V :=
{
v ∈ H1

D(Ω) : ∇ · v = 0 in Ω
}
,

and

H :=
{
v ∈ L2(Ω) : ∇ · v = 0 in Ω , (u · n)|ΓD

= 0
}
.

We denote the dual of V by V∗. If we identify H

with its dual H∗, then we get the following continuous
and dense embedding:

V ⊂ H = H∗ ⊂ V∗ .

For a Banach space X, we denote by Lp(0, T ;X)
the time-space function space endowed with the norm

‖w‖Lp(0,T ;X) :=
(∫ T

0
‖w‖pX dt

)1/p

if 1 ≤ p < ∞ and

esssupt∈[0,T ]‖w‖X if p = ∞ . We will often use the

abbreviated notation Lp(X) := Lp(0, T ;X) for con-
venience. We also introduce the space W(0, T ) :=
W1 ×W2 ×W2, where

W1 := L∞(0, T ;H) ∩ L2(0, T ;V)

and

W2 := L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
D(Ω)) .

We end this section by recalling some inequalities
that we will use in later sections.
Poincaré-Friedrichs’ inequality: For u ∈ H1

D(Ω) ,

λ‖u‖2 ≤ ‖∇u‖2 ,

where λ > 0 is a constant.
Young’s inequality: For any a, b ≥ 0 and ǫ > 0, and
q, r > 1

ab ≤
ǫ

q
aq +

ǫ−
r
q

r
br , with

1

q
+

1

r
= 1 .

2.2. Governing equations and weak

formulation

In this section, we present the governing equations
and study their well-posedness. The equations for the
doubly diffusive convection with Soret effect in a bi-
nary mixture may be written, employing a Boussinesq
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approximation in the body force term in the momen-
tum equation, as

∂tu − Pr∆u+ u · ∇u+∇p

= Pr2Grθ(θ +NrS)i3 ,

∇ · u = 0 ,

∂tθ + u · ∇θ −∆θ = 0 ,

∂tS + u · ∇S − 1
Le∆S = α∗

Le∆θ .





(1)

with the boundary conditions

u |ΓD
= 0 , θ |ΓD

= 0 , S |ΓD
= 0 , (2)

[u + ǫ(−pn+ Pr ∂u∂n − 1
2 (u · n)u)] |ΓN

= g ,

(3)

[θ + ǫ( ∂θ∂n − 1
2 (u · n)θ)] |ΓN

= h ,

[S + ǫ( 1
Le

∂S
∂n − 1

2 (u · n)S)] |ΓN
= f ,

and initial conditions

u(x, 0) = u0(x) , θ(x, 0) = θ0(x) , S(x, 0) = S0(x)
(4)

in Ω where u is the velocity, θ the temperature,
S the concentration and p the pressure. The non-
dimensional parameters Pr, Le, Grθ and GrS denote
the Prandtl number, the Lewis number, the thermal
Grashof number and the species Grashof number, re-
spectively. The ratio of species buoyancy to thermal
buoyancy Nr is defined by Nr = GrS

Grθ
. In (1)4 the first

term on the right side corresponds to Soret effect.
The cases α∗ > 0 and α∗ < 0 corresponds to posi-
tive and negative Soret effect, respectively. The Soret
effects can have significant implications on convec-
tion in liquid mixtures, for example semi-conductor
crystal growth [14]. Therefore the Dufour effect has
been neglected here in comparison to Soret effect as
is common for flows in liquid mixture. In addition,
the constant ǫ in the boundary condition on ΓN is
non-negative. Note that by setting ǫ = 0 the Robin
boundary conditions become the Dirichlet boundary
conditions. In fact, in actual computational imple-
mentation one can develop approximations of Dirich-
let control problem by allowing ǫ → 0+, see [21] for
studies related to this in the context of optimal con-
trol.

Before proceeding, we present a little motivating
discussion regarding the nonlinear Robin type bound-
ary conditions. We observe that by integration by
parts and H1/2(ΓN ) →֒ L3(ΓN ) [1], the following
identity holds for u,v,w ∈ H1

D(Ω) with ∇ · u = 0:

((u · ∇)v,w) = −(u · ∇w,v) + (v,w(u · n))ΓN
.

Similarly, we can show that

((u · ∇)θ, φ) = −(u · ∇φ, θ) + (θ, φ(u · n))ΓN
,

for θ, φ ∈ H1
D(Ω),u ∈ H1

D(Ω) with ∇ · u = 0. If we
define a tri-linear form c(·, ·, ·) as

c(u,w,v) := 1
2 [((u · ∇)w,v)− ((u · ∇)v,w)]

= (u · ∇w,v)− 1
2 (v,w(u · n))ΓN

for all u,v,w ∈ H1
D(Ω), it is clear that c(u,v,v) = 0.

Similarly, if we define tri-linear forms ci(u, χ, φ), i =
1, 2 as

ci(u, χ, φ) := 1
2 [((u · ∇)χ, φ)− ((u · ∇)φ, χ)]

= (u · ∇χ, φ)− 1
2 ((u · n)χ, φ)ΓN

,

for χ, φ ∈ H1
D(Ω),u ∈ H1

D(Ω), we can easily show
that ci(u, χ, φ) = −ci(u, φ, χ), i = 1, 2 .

We now define the weak solution to the initial
boundary value problem (1)–(4) as follows:

Definition 1. Given g ∈ L2(0, T ;L2(ΓN )), h, f ∈
L2(0, T ;L2(ΓN )), a triple (u, θ, S) ∈ W(0, T ) is said
to be a weak solution of (1)–(4) if

(∂tu,v) + Pr(∇u,∇v) + c(u,u,v) + 1
ǫ (u,v)ΓN

= (Pr2Grθ(θ +NrS)i3,v) +
1
ǫ (g,v)ΓN

,

(∂tθ, φ) + (∇θ,∇φ) + c1(u, θ, φ) +
1
ǫ (θ, φ)ΓN

= 1
ǫ (h, φ)ΓN

,

(∂tS, ψ) + 1
Le (∇S,∇ψ) + c2(u, S, ψ) +

1
ǫ (S, ψ)ΓN

= α∗

Le (∇θ,∇ψ) +
1
ǫ (f, ψ)ΓN

,





(5)
and

u(x, 0) = u0(x) , θ(x, 0) = θ0(x) , S(x, 0) = S0(x) ,

for all (v, φ, ψ) ∈ V × (H1
D(Ω))2 .

Proposition 1. Assume g ∈ L2(0, T ;L2(ΓN )), h ∈
L2(0, T ;L2(ΓN )), f ∈ L2(0, T ;L2(ΓN )) . Then, there
exists a solution (u, θ, S) ∈ W(0, T ) satisfying (5) and

sup
t∈[0,T ]

‖θ‖2 + ‖∇θ‖2L2(0,T ;L2(Ω))

+ 1
ǫ ‖θ‖L2(0,T ;L2(ΓN )) ≤M1 ,

sup
t∈[0,T ]

‖S‖2 + 1
Le‖∇S‖

2
L2(0,T ;L2(Ω))

+ 1
ǫ ‖S‖L2(0,T ;L2(ΓN )) ≤M2 ,

and

sup
t∈[0,T ]

‖u‖2 + Pr‖∇u‖2L2(0,T ;H)

+ 1
ǫ ‖u‖

2
L2(0,T ;L2(ΓN )) ≤M3

+ 1
ǫ ‖g‖

2
L2(0,T ;L2(ΓN ))

where M1 := ‖θ0‖
2 + 1

ǫ ‖h‖
2
L2(0,T ;L2(ΓN )) , M2 :=

‖S0‖
2 + 1

ǫ ‖f‖
2
L2(0,T ;L2(ΓN ) +

α2

∗

LeM1 and M3 :=
Pr3Gr2

λ [M1 +N2
rM2] + ‖u0‖

2 .

Proof. We employ Galerkin approximation, a pri-
ori estimates and compactness methods to prove
the existence of solutions. Let {(ek(x), ak(x))}

∞
k=1

be an orthogonal basis of V × H1
D(Ω) such

that {(ek(x), ak(x))}
∞
k=1 is linearly independent in

L2(ΓN ) × L2(ΓN ) , see [19] for a proof of exis-
tence of such a basis. For each m = 1, 2, . . ., we
set Vm := span{ei}

m
i=1 × (span{ai}

m
i=1)

2 and let
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um =
∑m

k=1 c
(m)
k ek, θm =

∑m
k=1 d

(m)
k ak and Sm =∑m

k=1 r
(m)
k ak be a solution of

(∂tum, ek) + Pr(∇um,∇ek) + c(um,um, ek)

+ 1
ǫ (um, ek)ΓN

= (Pr2Grθ(θm +NrSm)i3, ek)

+ 1
ǫ (g, ek)ΓN

,

(∂tθm, ak) + (∇θm,∇ak) + c1(um, θm, ak)

+ 1
ǫ (θm, ak)ΓN

= 1
ǫ (h, ak)ΓN

,

(∂tSm, ak) + 1
Le (∇Sm,∇ak) + c2(um, Sm, ak)

+ 1
ǫ (Sm, ak)ΓN

= α∗

Le (∇θm,∇ak) +
1
ǫ (f, ak)ΓN

,





(6)
um(0) = u0m , θm(0) = θ0m and Sm(0) = S0m ,
k = 1, . . . ,m , where (u0m, θ0m, S0m) is the L2− or-
thogonal projection of (u0, θ0, S0) onto the space Vm.
Since (6) is an initial value problem for nonlinear
ODEs, existence of unique local solutions in some
neighborhood [0, tm), for some tm > 0, follows by
Picard-Lindelöf theorem. The a-priori estimates we
will prove later in L∞(0, T ;L2(Ω))-norm show that
continuation of solutions beyond tm follows. We will
employ energy methods to derive those a-priori es-

timates. First we multiply (6)1 by c
(m)
k , (6)2 by

d
(m)
k and (6)3 by r

(m)
k , and add these equations for

k = 1, . . . ,m. Using the skew-symmetry of the trilin-
ear forms, we get

1
2

d
dt‖um‖2 + Pr‖∇um‖2 + 1

ǫ ‖um‖20,ΓN

= (Pr2Grθ(θm +NrSm)i3,um)

+ 1
ǫ (g,um)ΓN

,

1
2

d
dt‖θm‖2 + ‖∇θm‖2 + 1

ǫ ‖θm‖20,ΓN

= 1
ǫ (h, θm)ΓN

,

1
2

d
dt‖Sm‖2 + 1

Le‖∇Sm‖2 + 1
ǫ ‖Sm‖20,ΓN

= α∗

Le (∇θm,∇Sm)

+ 1
ǫ (f, Sm)ΓN

.




(7)

From the equation (7)2, by integration we obtain the
a priori estimate

supt∈[0,T ] ‖θm(t)‖2 + ‖θm‖2
L2(0,T ;H1

D(Ω))

+ 1
ǫ ‖θm‖L2(0,T ;L2(ΓN ))

≤ ‖θ0‖
2

+ 1
ǫ ‖h‖

2
L2(0,T ;L2(ΓN ))

= :M1 .

(8)

By applying Cauchy-Schwarz inequality and Young’s
inequality in (7)3, we obtain

d
dt‖Sm‖2 + 1

Le‖∇Sm‖2 + 1
ǫ ‖Sm‖20,ΓN

≤
α2

∗

Le‖∇θm‖2

+ 1
ǫ ‖f‖

2
0,ΓN

.

Integrating this with respect time and using the
fact that θm remains bounded in a bounded set of

L2(0, T ;H1
D(Ω)), we obtain

supt∈[0,T ] ‖Sm(t)‖2 + 1
Le‖∇Sm‖2L2(L2(Ω))

≤ ‖S0‖
2

+ 1
ǫ ‖f‖L2(L2(ΓN ))

+
α2

∗

LeM1 =:M2 .

(9)

Let us now turn to the a-priori estimate for um. First
we note that the right hand side of (7)1 can be ma-
jorized using Young’s inequality as follows

(Pr2Grθ(θm + NrSm)i3,um) + 1
ǫ (g,um)ΓN

≤ Pr3Gr2

2λ (‖θm‖2 +N2
r ‖Sm‖2)

+ λPr
2 ‖um‖2

+ 1
2ǫ‖g‖

2
0,ΓN

+ 1
2ǫ‖um‖20,ΓN

.

Applying the Poincare-Friedrichs inequality and em-
ploying the result in (7)1 we obtain

d
dt‖um‖2 + Pr‖∇um‖2 + 1

ǫ ‖um‖20,ΓN

≤ Pr3Gr2

λ (‖θm‖2 +N2
r ‖Sm‖2) + 1

ǫ ‖g‖
2
0,ΓN

.

Integrating this with respect to time and using (8)–
(9), we obtain

sup
t∈[0,T ]

‖um‖2 + Pr‖∇um‖2L2(H) +
1
ǫ ‖um‖2L2(L2(ΓN ))

≤ M3 +
1
ǫ ‖g‖

2
L2(L2(ΓN )) .

(10)
In order to obtain bounds for ∂tum, we first no-
tice that by Holder’s inequality and the embedding
H1

D(Ω) →֒ Lp(Ω) , p ≤ 6, we have

|c(u,u,v)| ≤ 1
2‖u‖L3(Ω)‖∇u‖‖v‖L6(Ω)

+ 1
2‖u‖L3(Ω)‖∇v‖‖u‖L6(Ω)

≤ C‖u‖21‖v‖1 .

From (6)1, we obtain as usual

supv∈V
|(∂tum,v)|

‖v‖1

≤ Pr‖∇um‖+ C‖um‖21

+ Pr2Grθ(‖θm‖+Nr‖Sm‖)

+ 1
ǫ ‖g‖L2(ΓN )

+ 1
ǫ ‖um‖L2(ΓN )

and thus ‖∂tum‖L1(V∗) is bounded due to the bounds
in (8)–(10). Similarly, we can show ‖∂tθm‖L1(H1

D(Ω)∗)

and ‖∂tSm‖L1(H1

D(Ω)∗) are bounded as well.

The a-priori estimates we obtained so far al-
low us to extract subsequences again denoted by
{(um, θm, Sm)}∞n=1 such that

um → u

weakly in L2(0, T ;V)
weak star in L∞(0, T ;H)
strongly in L2(0, T ;H)





and

(θm, Sm) → (θ, S)
weakly in L2(0, T ;H1

D(Ω))
weak star in L∞(0, T ;L2(Ω))
strongly in L2(0, T ;L2(Ω)) .





Here the strong convergence follows by the Aubin-
Simon compactness lemma [25, Corollary 4, p.85] as
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we have the embeddings V →֒→֒ H →֒ V∗ and
H1

D(Ω) →֒→֒ L2(Ω) →֒ H1
D(Ω)∗ .

Moreover, we have the following convergence re-
sults: um|ΓN

→ u|ΓN
weakly in L2(0, T ;L2(ΓN )),

θm|ΓN
→ θ|ΓN

weakly in L2(0, T ;L2(ΓN )) and
Sm|ΓN

→ S|ΓN
weakly in L2(0, T ;L2(ΓN )). When

taking limit in (6), it is convenient for us to use the
trilinear forms c(·, ·, ·) and ci(·, ·, ·) involving bound-
ary terms, i.e.,

c(u,u,v) = −(u · ∇v,u) +
1

2
(v,u(u · n))ΓN

,

c1(u, θ, φ) = −(u · ∇φ, θ) +
1

2
(θ, φ(u · n))ΓN

,

c2(u, S, φ) = −(u · ∇S, φ) +
1

2
(S, φ(u · n))ΓN

.

However, the presence of nonlinear boundary terms
require that we prove um ·n → u ·n in L2(0, T ;L2(Γ))
strongly. In order to prove such a convergence, we first
recall the integration by parts formula [10, Equation
(I.2.17), p. 28]

< um · n− u · n,v >ΓN
=

∫
Ω

v∇ · (um − u) dΩ

+
∫
Ω

(um − u) · ∇v dΩ

(11)
for all v ∈ H1(Ω) . By solving the variational problem

(∂tv, φ) + (∇v,∇φ) = 0 ∀φ ∈ H1
0 (Ω)

v|ΓD
= 0 , v|ΓN

= u · n− um · n

v(x, 0) = 0 in Ω





(12)

we obtain a unique solution v ∈ L2(0, T ;H1(Ω)) such
that

‖∇v‖L2(L2(Ω)) ≤ C‖u · n− um · n‖L2(H1/2(ΓN )) .

Therefore by taking v in (11) to be the unique so-
lution of this variational problem (12) and using the
fact that ∇ · um = ∇ · u = 0 yields

‖um · n − u · n‖L2(L2(ΓN )) ≤ ‖um − u‖L2(L2(Ω))

‖um · n− u · n‖L2(H1/2(ΓN ) .

(13)
The weak convergence um → u in L2(0, T ;V)
and trace theorem imply that um · n → u · n
weakly in L2(0, T ;H

1

2 (ΓN )) and thus ‖um · n − u ·
n‖L2(0,T ;H1/2(ΓN )) is bounded. Therefore the required

strong convergence follows from (11).
Let ψi(t), i = 1, 2, 3, be a continuously differen-

tiable function on [0, T ] with ψi(T ) = 0. We multiply
(6)i by ψi, i = 1, 2, 3 and integrate with respect to
time. Further, we integrate by parts in the time de-
rivative term to move the derivative onto ψi. Now
we can take limit in (6) by using standard techniques
and show (u, θ, S) is indeed a solution of (5). The
a-priori estimates in the lemma follow by taking the
limit on the a-priori estimates (8)-(10) and using the
weak lower semi-continuity of the norms . �

The uniqueness of the weak solutions discussed
in Proposition 1 is an open problem. We denote
by (u(x, t; (g, h, f)), θ(x, t; (g, h, f)), S(x, t; (g, h, f)))
the set of all possible solutions.

3. Exact controllability of Galerkin

approximations

In this section, we introduce a Galerkin approxi-
mation of (1) and, for this finite dimensional system,
we establish the exact controllability.

We consider finite dimensional spaces E1 :=
span{e1, . . . , em}, E2 := span{a1, . . . , am} and E3 :=
span{a1, . . . , am} so that E1 ⊂ V and Ei ⊂ H1

D(Ω),
i = 2, 3. Recall the Galerkin approximation of the
weak formulation (5) is

(∂tu, ek) + Pr(∇u,∇ek) + c(u,u, ek)

+ 1
ǫ (u, ek)ΓN

= (Pr2Grθ(θ +NrS)i3, ek)

+ 1
ǫ (g, ek)ΓN

,

(∂tθ, ak) + (∇θ,∇ak) + c1(u, θ, ak) +
1
ǫ (θ, ak)ΓN

= 1
ǫ (h, ak)ΓN

,

(∂tS, ak) + 1
Le (∇S,∇ak) + c2(u, S, ak) +

1
ǫ (S, ak)ΓN

= α∗

Le (∇θ,∇ak)

+ 1
ǫ (f, ak)ΓN





(14)
and u(x, 0) = u0 ∈ E1 , θ(x, 0) = θ0 ∈ E2 and
S(x, 0) = S0 ∈ E3 , for k = 1, 2, . . . ,m . The system
(14) has a unique solution (u, θ, S) ∈ C(0, T ;E1) ×
C(0, T ;E2)× C(0, T ;E3) for any T > 0.

Definition 2. The Galerkin approximation (14) is
said to be exactly controllable at time T > 0 if, for any
given (u0, θ0, S0), (uT , θT , ST ) ∈ E1 ×E2 ×E3 , there
exists controls (g, h, f) ∈ L2((0, T )×ΓN )×L2((0, T )×
ΓN )×L2((0, T )×ΓN ) such that the solution (u, θ, S)
of (14) satisfies

(u(·, T ; ĝ), θ(·, T ; ĝ), S(·, T ; ĝ)) = (uT , θT , ST ) ,
(15)

where ĝ := (g, h, f).

Let

J (g, h, f) =
1

2

∫

ΓN×(0,T )

|g|2 + |h|2 + |f |2 dx dt

be the cost to achieve (15). The main result of this
section is as follows.

Theorem 1. The Galerkin approximation (14) is ex-
actly controllable in the sense of (15). Moreover, the
cost of control J (g, h, f) is bounded independently of
the nonlinearity.

Proof. The proof of this theorem uses a fixed point
argument. In order to show and make explicit that
the cost of control can be bounded independent of
nonlinearity, we introduce a family of state equations

∂tu− Pr∆u + α(u · ∇)u+∇p

= Pr2Grθ(θ +NrS)i3 ,

∇ · u = 0 ,

∂tθ −∆θ + β(u · ∇)θ = 0 ,

∂tS − 1
Le∆S + γ(u · ∇)S = α∗

Le∆θ .





(16)
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with the boundary conditions

u |ΓD
= 0 , θ |ΓD

= 0 , S |ΓD
= 0 ,

[ǫ(−pn+ Pr
∂u

∂n
−
α

2
(u · n)u) + u] |ΓN

= g ,

[θ + ǫ(
∂θ

∂n
−
β

2
(u · n)θ] |ΓN

= h ,

[S + ǫ(
1

Le

∂S

∂n
−
γ

2
(u · n)S] |ΓN

= f ,

and initial conditions u(x, 0) = u0(x) , θ(x, 0) =
θ0(x) , and S(x, 0) = S0(x) in Ω, where α, β, γ ∈ R.
A Galerkin approximation of (16) is

(∂tu, ek) + Pr(∇u,∇ek) + αc(u,u, ek)

+ 1
ǫ (u, ek)ΓN

= (Pr2Grθ(θ +NrS)i3, ek)

+ 1
ǫ (g, ek)ΓN

,

(∂tθ, ak) + (∇θ,∇ak) + βc1(u, θ, ak)

+ 1
ǫ (θ, ak)ΓN

= 1
ǫ (h, ak)ΓN

,

(∂tS, ak) + 1
Le (∇S,∇ak) + γc2(u, S, ak)

+ 1
ǫ (S, ak)ΓN

= α∗

Le (∇θ,∇ak) +
1
ǫ (f, ak)ΓN

,





(17)
and u(x, 0) = u0 ∈ E1 , θ(x, 0) = θ0 ∈ E2 and
S(x, 0) = S0 ∈ E3 , for k = 1, 2, . . . ,m . Given
U ∈ L2(0, T ;E1), we analyze the exact controllability
of the linearized system

(∂tu, ek) + Pr(∇u,∇ek) + αc(U,u, ek)

+ 1
ǫ (u, ek)ΓN

= (Pr2Grθ(θ +NrS)i3, ek)

+ 1
ǫ (g, ek)ΓN

,

(∂tθ, ak) + (∇θ,∇ak) + βc1(U, θ, ak)

+ 1
ǫ (θ, ak)ΓN

= 1
ǫ (h, ak)ΓN

,

(∂tS, ak) + 1
Le (∇S,∇ak) + γc2(U, S, ak)

+ 1
ǫ (S, ak)ΓN

= α∗

Le (∇θ,∇ak) +
1
ǫ (f, ak)ΓN

,





(18)
and

u(x, 0) = 0 , θ(x, 0) = 0 , and S(x, 0) = 0 ,

for k = 1, 2, . . . ,m .We prove the exact controllability
of system (18) using the Hilbert Uniqueness Method
[16]. Notice that we have set the initial conditions
to zero. However, due to the linearity, all results are
valid as well if the initial data is not zero, i.e., u(0) =
u0 ∈ E1 , θ(0) = θ0 ∈ E2 and S(0) = S0 ∈ E3 .

We will show that the system (18) is exactly control-
lable in time T > 0. For this, it is enough to show
that if (g1, g2, g3) ∈ E1 × E2 × E3 satisfies

((g1, g2, g3), (u(·, T ; ĝ), θ(·, T ; ĝ), S(·, T ; ĝ)) = 0

∀(ĝ, h, f) ∈ L2((0, T )× ΓN )3

then ĝ ≡ 0 ,

(19)

where ĝ := (g, h, f) . Let (µ, ζ, ξ) be the solution to
the adjoint system

−(∂tµ, ek) + Pr(∇µ,∇ek)− αc(U,µ, ek)

+ 1
ǫ (µ, ek)ΓN

= 0

−(∂tζ, ak) + (∇ζ,∇ak)− βc1(U, ζ, ak)

+ 1
ǫ (ζ, ak)ΓN

= (Pr2Grθµi3, ak) +
α∗

Le (∇ξ,∇ak) ,

−(∂tξ, ak) + 1
Le (∇ξ,∇ak)− γc2(U, ξ, ak)

+ 1
ǫ (ξ, ak)ΓN

= (Pr2GrθNrµi3, ak) ,





(20)
and

µ(T ) = g1 , ζ(T ) = g2 , and ξ(T ) = g3 ,

for k = 1, 2, . . . ,m . This system clearly has a
unique solution (µ, ζ, ξ) ∈ C(0, T ;E1)×C(0, T ;E2)×
C(0, T ;E3) . It follows from (20) by integration with
respect to time and integration by parts that

−(u(T ),µ(T )) +
∫ T

0
(∂tu,µ) dt

+
∫ T

0
Pr(∇µ,∇u) dt

+ α
∫ T

0
c(U,u,µ) dt

+ 1
ǫ

∫ T

0
(µ,u)ΓN

dt = 0

−(ζ(T ), θ(T )) +
∫ T

0
(∂tθ, ζ) dt

+
∫ T

0
(∇ζ,∇θ) dt

+
∫ T

0
βc1(U, θ, ζ) dt

+ 1
ǫ

∫ T

0
(ζ, ak)ΓN

dt

=
∫ T

0
(Pr2Grθµi3, θ) dt

+ α∗

Le (∇ξ,∇θ) dt

−(ξ(T ), S(T )) +
∫ T

0
(∂tS, ξ) dt

+ 1
Le

∫ T

0
(∇ξ,∇S) dt

+ γ
∫ T

0
c2(U, S, ξ) dt

+ 1
ǫ

∫ T

0
(ξ, S)ΓN

dt

=
∫ T

0
(Pr2GrθNrµi3, S) dt .





(21)
Adding (21)1 − (21)3 and using (18) yields

(u(T ),g1) + (θ(T ), g2) + (S(T ), g3)

= 1
ǫ

∫ T

0
(µ,g)ΓN

dt+ 1
ǫ

∫ T

0
(h, ζ)ΓN

dt

+ 1
ǫ

∫ T

0
(f, ξ)ΓN

dt .

(22)
If (19) holds, then by (22) we have that

1
ǫ

∫ T

0
(µ,g)ΓN

dt + 1
ǫ

∫ T

0
(h, ζ)ΓN

dt

+ 1
ǫ

∫ T

0
(f, ξ)ΓN

dt

= 0

for all (g, h, f) ∈ L2((0, T ) × ΓN )3 . This yields
(µ, ζ, ξ) = 0 on ΓN × (0, T ) . But (µ, ζ, ξ) =
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∑n
i=1(µi(t)ei, ζi(t)ai, ξi(t)ai) and by the assump-

tion on the basis {(ei, ai)}
n
i=1, it follows that

(µi(t), ζi(t), ξi(t)) = (0, 0, 0) for i = 1, 2, . . . , n . Hence
(µ, ζ, ξ) ≡ (0, 0, 0) and, thus (g1, g2, g3) ≡ 0 . There-
fore the linear system (18) is exactly controllable.

The result we just obtained allows us to define a
functional G : L2(0, T ;E) → R by

G(U) = inf
(g,h,f)∈Uad

1

2

∫

ΓN×(0,T )

|g|2 + |h|2 + |f |2 dx dt ,

where

Uad := {(g, h, f) ∈ L2(ΓN × (0, T ))3 : (u, θ, S)

is the solution to (18) that satisfies

(15)}

is the set of admissible controls. We will use a du-
ality argument to prove that G(U) is bounded by a
constant independent of U,α, β and γ. That is,

G(U) ≤ C ,

where C is a constant independent

of U,αβ and γ .
(23)

Let L : L2(ΓN × (0, T ))3 → E1 × E2 × E3 be a
linear continuous operator defined by

L(ĝ) = (u(·, T ; ĝ), θ(·, T ; ĝ), S(·, T ; ĝ)) ,

where ĝ := (g, h, f).
Let us also define two functionals F1(g, h, f) and

F2(g1, g2, g3) by

F1(g, h, f) =
1

2

∫

ΓN×(0,T )

|g|2 + |h|2 + |f |2 dx dt

and

F2(g1, g2, g3) =

{
0 , if (g1, g2, g3) = (uT , θT , ST )
∞ , otherwise .

Then the functional G(U) can be written as

G(U) = inf
(g,h,f)∈L2(ΓN×(0,T ))3

[F1(g, h, f)+F2(L(g, h, f))]

and by the duality theorem of Fenchel and Rockafel-
lar, see for example [23], we have that

−G(U) = inf
ǧ∈L2(ΓN×(0,T ))3

[F ∗
1 (L

∗(ǧ)) + F2(−ǧ)] ,

(24)
where ǧ := (g1, g2, g3) and L∗ : E1 × E2 × E3 →
L2(ΓN × (0, T ))3 is the adjoint of L, and F ∗

1 and F ∗
2

are the Fenchel conjugate of F1 and F2, respectively.
It follows easily from (22) that the adjoint L∗ is given
by

L∗(g1, g2, g3) = (µ, ζ, ξ) in ΓN × (0, T ) .

Moreover, the Fenchel conjugate F ∗
1 and F ∗

2 can be
shown to be given by

F ∗
1 (µ, ζ, ξ) =

1

2

∫

ΓN×(0,T )

|µ|2 + |ζ|2 + |ξ|2 dx dt

and

F ∗
2 (−(g1, g2, g3)) = −((g1, g2, g3), (uT , θT , ST )) .

Therefore (24) becomes

−G(U) = inf ǧ∈Π3

i=1
Ei
[

∫
ΓN×(0,T )

1
2 (|µ|

2 + |ζ|2 + |ξ|2)dxdt

− (ǧ, (uT , θT , ST ))] ,
(25)

where ǧ := (g1, g2, g3) . But, in view of the assump-
tions on the bases for E1, E2 and E3,

∫
ΓN

|e1|
2+|e2|

2+

|e3|
2 ds is a norm on E1 × E2 × E3 so that

c1‖(e1, e2, e3)‖
2 ≤

∫
ΓN

|e1|
2 + |e2|

2 + |e3|
2 ds

≤ c2‖(e1, e2, e3)‖
2

∀ (e1, e2, e3) ∈ E1 × E2 × E3

for some constants c1 and c2 depending only on E1,
E2 and E3 . Therefore (25) can be written as

−G(U) = inf ǧ∈Π3

i=1
Ei

[
c1
2

∫
Ω×(0,T )

|µ|2 + |ζ|2

+ |ξ|2 dx dt− (ǧ, (uT , θT , ST ))
]

(26)
where ǧ := (g1, g2, g3) . From (20), we obtain by the
skew symmetry properties of the trilinear forms that

−
1

2

d

dt
‖µ‖2 + Pr‖∇µ‖2 +

1

ǫ
‖µ‖20,ΓN

= 0 ,

− 1
2

d
dt‖ζ‖

2 + ‖∇ζ‖2 + 1
ǫ ‖ζ‖

2
0,ΓN

= (Pr2Grθµi3, ζ)

+ α∗

Le (∇ξ,∇ζ)

− 1
2

d
dt‖ξ‖

2 + 1
Le‖∇ξ‖

2 + 1
ǫ ‖ξ‖

2
0,ΓN

= (Pr2NrGrθµi3, ξ) ,

µ(T ) = g1 , ζ(T ) = g2 , ξ(T ) = g3 .

Integrating the preceding differential equations
with respect to time from t to T yields

1
2‖µ‖

2 + Pr
∫ T

t
‖∇µ‖2 dt+ 1

ǫ

∫ T

t
‖µ‖20,ΓN

dt

= 1
2‖g1‖

2 ,

1
2‖ζ‖

2 +
∫ T

t
‖∇ζ‖2 dt+ 1

ǫ

∫ T

t
‖ζ‖20,ΓN

dt

=
∫ T

t
(Pr2Grθµi3, ζ) dt

+ α∗

Le

∫ T

t
(∇ξ,∇ζ) dt

+ 1
2‖g2‖

2

and

1
2‖ξ‖

2 + 1
Le

∫ T

t
‖∇ξ‖2 dt+ 1

ǫ

∫ T

t
‖ξ‖20,ΓN

dt

=
∫ T

t
(Pr2NrGrθµi3, ξ) ds+

1
2‖g3‖

2 .
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Adding the last three equations and integrating with
respect to t from 0 to T yields

1
2

∫ T

0
‖µ‖2 + ‖ζ‖2 + ‖ξ‖2 dt+

∫ T

0
t
[
Pr‖∇µ‖2

+ ‖∇ζ‖2 + 1
Le‖∇ξ‖

2
]
ds

+ 1
ǫ

∫ T

0
t
[
‖µ‖20,ΓN

+ ‖ζ‖20,ΓN

+ ‖ξ‖20,ΓN

]
ds

= T
2 (‖g1‖

2 + ‖g2‖
2 + ‖g3‖

2)

+
∫ T

0
t
[
(Pr2Grθµi3, ζ) +

α∗

Le (∇ξ,∇ζ)

+ (Pr2GrθNrµi3, ξ)
]
ds .

(27)
Notice by the finite dimensionality of the spaces
E1, E2 and E3, we have

Pr‖∇µ‖2 + ‖∇ζ‖2 + 1
Le‖∇ξ‖

2 ≤ C‖(µ, ζ, ξ)‖2

∫
Ω

∇ξ · ∇ζ dx ≤ C‖(ξ, ζ)‖2 ,

(28)
for some constant C > 0 that depends only on E1,
E2 and E3 are finite dimensional. Also by the finite
dimensionality of E1, E2 and E3, we have

‖µ‖20,ΓN
+ ‖ζ‖20,ΓN

+ ‖ξ‖20,ΓN
≤ C‖µ‖2+ ‖ζ‖2 + ‖ξ‖2 .

(29)
for some constant C > 0 depending only on E1, E2

and E3. Using (28) and (29) in (27) yields

T
2

(
‖g1‖

2 + ‖g2‖
2 + ‖g3‖

2
)
≤ ( 12 + CT (1 + 1

ǫ ))
∫ T

0
‖µ‖2 + ‖ζ‖2 + ‖ξ‖2 ds ,

(30)
for some constant depending only on E1, E2 and E3,
Pr, Le, α∗, Grθ and Nr. Employing (30) in (26), we
have

−G(U) ≥ inf
ǧ∈Π3

i=1
Ei

[
c1T

2(1 + 2CT (1 + 1
ǫ ))

(‖g1‖
2 + ‖g2‖

2 + ‖g3‖
2)

− (ǧ1, (uT , θT , ST ))] ,

where ǧ := (g1, g2, g3) . Therefore, we have

G(U) ≤
(1 + 2CT (1 + 1

ǫ ))

c1T
(‖uT ‖

2 + ‖θT ‖
2 + ‖ST ‖

2)

from which it follows that G(U) ≤ C, where C is a
constant independent of U , α and β. Let us finally
consider the nonlinear system (16). For a given U in
L2(0, T ;E1), let (g, h, f) be the unique element such
that

1

2

∫

ΓN×(0,T )

|g|2 + |h|2 + |f |2 dx dt = G(U) . (31)

This defines a continuous mapping U 7→ (g, h, f) from
L2(0, T ;E1) into L

2(ΓN × (0, T ))3 . Let us denote by
(u(U), θ(U), S(U)) the solution of (18) with control
(g, h, f) = (g(U), h(U), f(U)) . It follows from (18)
by the skew symmetry properties of the trilinear forms

that

1
2

d
dt‖u‖

2 + Pr‖∇u‖2 + 1
ǫ ‖u‖

2
0,ΓN

= (Pr2Grθ(θ +NrS)i3,u)

+ 1
ǫ (g,u)ΓN

,

1
2

d
dt‖θ‖

2 + ‖∇θ‖2 + 1
ǫ ‖θ‖

2
0,ΓN

= 1
ǫ (h, θ)ΓN

,

1
2

d
dt‖S‖

2 + 1
Le‖∇S‖

2 + 1
ǫ ‖S‖

2
0,ΓN

= α∗

Le (∇θm,∇S) +
1
ǫ (f, S)ΓN

.




(32)

Estimating the terms on the right hand side of the
equations in (32) and arguing as in the proof of Propo-
sition 1 we obtain

supt∈[0,T ](‖u‖
2 + ‖θ‖2 + ‖S‖2)

≤ C
ǫ (‖g‖

2
L2(0,T ;L2(ΓN ))

+ ‖h‖2L2(0,T ;L2(ΓN ))

+ ‖f‖2L2(0,T ;L2(ΓN ))) ,

(33)

for some constant C. In view of the uniform esti-
mate (23), we have from (33) that, when U varies
in L2(0, T ;E1), (u, θ, S) remains in a bounded sub-
set S1 × S2 × S3 ⊆ L2(0, T ;E1) × L2(0, T ;E2) ×
L2(0, T ;E3). Let us next prove that ∂tu remains
bounded in a bounded set of L1(0, T ;E1) when U

varies in S1. To this end, notice that from (18)1, we
have

|(∂tu, e)| ≤ Pr‖∇u‖‖∇e‖

+ α‖U‖L3(Ω)‖∇u‖‖e‖L6(Ω)

+ α‖U‖L3(Ω)‖∇e‖‖u‖L6(Ω)

+ 1
ǫ ‖u‖0,ΓN

‖e‖0,ΓN
+ Pr2Grθ‖θ‖‖e‖

+ Pr2GrθNr‖S‖‖e‖

+ 1
ǫ ‖g‖0,ΓN

‖e‖0,ΓN
.

Since E1 is finite dimensional and all norms are equiv-
alent on finite dimensional spaces, we obtain

|(∂tu, e)| ≤ C [Pr‖∇u‖+ ‖∇u‖‖U‖

+ 1
ǫ (‖u‖0,ΓN

+ ‖g‖0,ΓN
)

+ Pr2Grθ(‖θ‖+Nr‖S‖)
]
‖e‖

and thus

‖∂tu‖ ≤ C (‖u‖+ ‖u‖‖U‖

+ 1
ǫ (‖u‖0,ΓN

+ ‖g‖0,ΓN
)

+ (‖θ‖+Nr‖S‖)) .

This proves that ∂tu remains bounded in a bounded
set of L1(0, T ;E1) when U varies in S1. Let us now
define a mapping Q from S1 to S1 by U 7→ u(U).
Then the range of Q is relatively compact in S1 by
Aubin-Simon’s lemma. Schauder fixed point theorem
now implies that Q has a fixed point in S1. Therefore
since (18) is exactly controllable in T > 0, we have
that (17) is exactly controllable. �
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