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Abstract. In this paper the job shop scheduling problem (JSP) with minimizing two criteria simul-
taneously is considered. JSP is frequently used model in real world applications of combinatorial
optimization. Multi-objective job shop problems (MOJSP) were rarely studied. We implement and
compare two multi-agent nature-based methods, namely ant colony optimization (ACO) and genetic
algorithm (GA) for MOJSP. Both of those methods employ certain technique, taken from the multi-
criteria decision analysis in order to establish ranking of solutions. ACO and GA differ in a method
of keeping information about previously found solutions and their quality, which affects the course of
the search. In result, new features of Pareto approximations provided by said algorithms are observed:
aside from the slight superiority of the ACO method the Pareto frontier approximations provided by
both methods are disjoint sets. Thus, both methods can be used to search mutually exclusive areas of
the Pareto frontier.
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1. Introduction

Companies are always interested in maintain-
ing competitive position in fast-changing mar-
ket, this is usually done by optimizing the busi-
ness and production processes. Due to that com-
petitiveness, access to effective and fast opti-
mization methods is extremely important. This
phenomenon results in constant development of
new approaches to optimization of various prac-
tical problems. The so-called job shop scheduling
problem (JSP) represents a class of widely stud-
ied cases based on ideas derived from production
engineering and has been classified as a NP-hard
problem [5]. Most of the currently used single ob-
jective models are easily adaptable to real world
applications, but modern production scheduling
problems need further advancements.

Since its first formulation, JSP has received
considerable theoretical, computational, and em-
pirical research work. Thus, JSP is often studied
case in the scheduling theory. Due to its com-
plexity, branch and bound techniques and classi-
cal mathematical programming providing exact
solutions, are applicable only to small-scale in-
stances. Hence, a lot of various approximate solu-
tion methods were proposed, including construc-
tive heuristics, improvement meta-heuristics, and
hybrid algorithms. Multi-objective scheduling is
the result of natural evolution of models and so-
lution methods, oriented on practice, since sched-
uling decisions usually have to take into account
several economic indexes simultaneously. In the
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last few decades, a number of multi-objective evo-
lutionary algorithms have been suggested, pri-
marily due to their ability to find approxima-
tion of the Pareto front in single run. Other
population-based approaches share similar ben-
efits of evolutionary techniques. In most practi-
cal cases, it is not possible to have a single so-
lution simultaneously optimizing all objectives,
therefore algorithms that provide solutions lying
on or near the Pareto efficient front are of great
practical value.

The aim of this paper is to provide new in-
sight into the possible solutions to the MOJSP
and the quality of those solution. Thus, we
use metaheuristic algorithms created specifically
for applying the to the MOJSP and analyze the
obtained approximations of Pareto fronts in or-
der to establish new properties. Moreover, ac-
cording to our research, the literature on MO-
JSP lacks multi-criteria benchmarks usable in re-
search, thus we also aim to provide such bench-
marks obtained from our own studies.

The remainder of the paper is organized as
follows. In Section 2 we present an overview
of the literature on the JSP problem, includ-
ing the multi-objective approach. Section 3 con-
tains problem description and Section 4 briefly
presents approaches to evaluation in multi-
criteria optimization. Sections 5 and 6 con-
tain the description of our approach, including
solution representation and metaheuristic algo-
rithms. Section 7 contains the computer exper-
iment results. Finally, Sections 8 and 9 contain
the conclusions and acknowledgements.

2. Literature on the JSP

JSP is a NP-hard discrete optimization problem.
Exact algorithms, like branch and bound meth-
ods, have been proposed for instances of small
sizes and allowed to find optimal solutions. How-
ever, larger instances found in real-world appli-
cations were a contribution to the creation of ap-
proximate methods. Those methods allowed to
find near optimal solutions in reasonable com-
putation time, and many heuristics and meta-
heuristics were proposed and developed for differ-
ent objective functions. Designing any algorithm
for JSP requires to designate solution represen-
tation to be used and, in most cases, decoding
scheme. Many research approaches concerning
the JSP exist. Most of them are aimed at the
single criterion version of the problem, while our
interest lies in the multi- objective JSP. There-
fore, we will focus on the literature for the multi-
object version of the problem, while limiting the

literature on single criterion case to the required
minimum.

There has been a number of papers propos-
ing metaheuristic techniques for solving JSP.
Despite being NP-hard optimization problem,
many researchers made efforts to develop effi-
cient algorithms for solving it. Some of the
best known proposed approaches include tabu
search by Nowicki and Smutnicki [13]. More-
over, methods like simulated annealing (SA),
evolutionary algorithms (EA), ant colony opti-
mization (ACO) and particle swarm optimization
(PSO) were proposed for JSP. In recent years,
researchers applied parallel methods for solv-
ing JSP. Such parallel-oriented works included
greedy randomized adaptive search procedures,
SA, EA methods and various local search (LS)
methods. Bożejko et al. [1] introduced parallel
SA, which employed properties of the problem
associated with the block theory. Additionally,
the vector calculation method was applied to in-
crease effectiveness of the algorithm.

2.1. Multi-objective case

In their work [9], Kachitvichyanukul and Sit-
thitham proposed two-stage GA, which mini-
mized objective function derived from weighted
values of the following criteria: a) maximum pro-
cessing time of all tasks – makespan, b) total
weighted earliness and c) total weighted tardi-
ness. The algorithm is composed of two stages:
a) parallel GA searching for the best solution of
each individual objective function with migration
among populations and b) combining those pop-
ulations. Authors compared their algorithm with
other implementations for each of the used crite-
ria, and for multi-objective case with Multi-Stage
parallel GA proposed in [10].

Udomsakdigool and Khachitvichyanukul pro-
posed [22] an ACO algorithm, solving multi-
objective JSP (MOJSP) with the sum of
weighted normalized values of makespan, mean
flow time and mean tardiness as an objective
function. Ants use different heuristic information
based on priority dispatching rule to diversify the
search. Also, local search is applied to intensify
the search. Tests were conducted on instances of
small sizes, and results were compared with the
optimal solutions. Proposed algorithm provided
competitive results.

Ripon et al. in [16] studied different so-
lution representations for JSP and proposed
new crossover operator, called improved prece-
dence preservation crossover (IPPX). Different
crossover methods were implemented for non-
dominated sorting GA (NSGA-II) [2]. Objective
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function was composed from mean flow-time and
makespan criteria. Proposed approach proved to
be able to find the near-optimal solutions with
better results and reduce the execution time sig-
nificantly.

Lei [11] presented a Particle Swarm Optimiza-
tion (PSO) for the MOJSP in. Objective was to
minimize makespan and total job tardiness crite-
ria simultaneously. The global best position se-
lection is combined with crowding-measure-based
archive maintenance to design a Pareto archive.
Proposed algorithm was capable of producing a
high-quality Pareto front.

Multi-objective PSO (MOPSO) was proposed
by Sha and Lin [18]. The paper considered fol-
lowing objectives: a) makespan, b) total tardi-
ness and c) total idle time. Giffler and Thomp-
son [6] heuristic was employed to decode schedule
into active solution. Test performed on bench-
mark instances of small sizes showed, that pro-
posed MOPSO provides superior results.

Vázquez-Rodŕıguez and Petrovic [23] proposed
hybrid Dispatching Rule-based GA (DRGA) and
compared their new representation with oth-
ers. Obtained solution sets were evaluated using
hyper-volume indicator from paper [25]. Algo-
rithms using their model based hybrid represen-
tation (MHR) obtained higher quality solutions
and are more robust to the representation size.

Ripon [15] proposed the Jumping Genes GA
(JGGA), a hybrid approach capable of search-
ing for near-optimal and non-dominated solu-
tions with better convergence by simultaneously
optimizing criteria of makespan and total tardi-
ness. Compared to other existing heuristic evolu-
tionary scheduling approaches, the proposed hy-
brid approach obtained superior results.

Suresh and Mohanasndaram [20] developed
Pareto archived SA (PASA) method for the MO-
JSP minimizing makespan and mean flow time
criteria. PASA made use of both Pareto dom-
inance and a simple aggregating function to ac-
cept the candidate solution among the neighbour-
hood set of solutions generated by the segment
random insertion (SRI) neighbourhood struc-
ture. Performance of PASA is better compared
to other algorithms considered in Suresh and Mo-
hanasndaram’s paper.

Lei and Wu designed [12] a crowding-measure-
based multi-objective evolutionary algorithm
(CMOEA), which made use of the crowding-
measure to adjust the external population and
assign different fitness for individuals. Proposed
algorithm performed well in JSP with two objec-
tives (makespan and total tardiness) minimiza-
tion.

Other SA approach was proposed by Fattahi
et al. [4]. They tackled MOJSP with makespan
and total weighted tardiness criteria. A scalar
approach was used to convert the multi-objective
problem to a single objective problem. Unfor-
tunately, results were not compared with other
(meta)heuristics.

Flexible JSP was considered by Xiong et al.
in [24]. Authors study robust scheduling for a
flexible JSP with random machine breakdowns.
Xiong et al. addressed this problem using multi-
objective EA.

Our previous works include solving multi-
criteria problems using following algorithms: SA
for flow shop scheduling [14], modified NSGA-
II [2] for network scheduling and load balanc-
ing [17] and an implementation of parallel TS
for vehicle routing problem [8]. In this pa-
per we combined multi-criteria decision analysis
(MCDA) with population-based algorithms in or-
der to achieve an improved methods for solving
multi-objective scheduling problems. This ap-
proach to MOJSP has not been widely studied
in the literature so far.

3. Problem Description

We consider a manufacturing system consisting
of m machines given by the set M = {1, . . . ,m}.
The system is to process n jobs given by the
set J = {1, 2, . . . , n}. The j-th job requires the
sequence of nj operations indexed consecutively

(lj−1 + 1, ..., lj−1 + nj), where lj =
∑j

i=1 ni, is
the total number of operations of the first j jobs,
j = 1, 2, ..., n, (l0 = 0). The set of all operations
is denoted by O and the set of all operations for
job j is denoted Oj (Oj ⊂ O).

Operation x ∈ O is to be processed on machine
µx ∈ M during an uninterrupted processing time
px > 0, x ∈ O. Our aim is to find the sched-
ule under the following constraints: (1) each ma-
chine can process at most one product at a time,
(2) each product can be processed by at most
one machine at a time, (3) operations cannot be
preempted. The benchmarks existing in the lit-
erature usually assume that nj = m (i.e. each
job consists of exactly m operations) and that
each operation in a given job requires different
machine.

The set of operations O can be decomposed
into subsets Ok = {x ∈ O|µx = k}, where
Ok contains the operations to be processed on
machine k ∈ M . Let permutation πk define
the processing order of operations from the set
Ok on machine k, and let Πk be the set of all
permutations on Ok. Let Π denote the prod-
uct of all permutations sets of all machines i.e.
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Π = Π1 ×Π2 × ...×Πm. The processing order of
all operations on machines is determined by m-
tuple π = (π1, π2, ..., πm), where π ∈ Π. Our aim
is to find a schedule π∗ that is both feasible and
optimal with regard to the given goal function
f(π). i.e.:

π∗ = min
π

f(π), π∗, π ∈ Πfeas, (1)

where Πfeas ⊂ Π is the set of feasible schedules.
In order to determine whether a given schedule

is feasible we define predecessors and successor
for every operation. For any operation j ∈ O and
processing order given by π we define the machine
predecessor (successor) sj (sj) and technological

predecessor (successor) tj (tj).

We can describe a schedule of processing jobs
for fixed processing order π by vectors S =
(S1, . . . , So) and C = (C1, . . . , Co), where values
Sj and Cj denote starting time of operation j and
its completion time. The schedule has to satisfy
the following constraints:

Ctj
≤ Sj tj 6= 0, j ∈ O, (2)

Csj
≤ Sj sj 6= 0, j ∈ O, (3)

Cj = Sj + pj j ∈ O, (4)

The schedule is feasible if there exists a solution
to the inequalities at(2–4). Constraint (2) follows
from technological processing order of operations
inside job, whereas (3) from the unit capacity of
machines. Equation (4) is obvious.

Table 1. Sample instance of JSP

job operation machine execution time
1 2 2

1 2 3 1
3 1 3
4 3 3

2 5 1 2
6 2 1
7 1 3

3 8 2 2
9 3 5
10 3 1

4 11 1 3
12 2 2

For example, let us consider JSP instance
shown in Tab 1. Here we have 4 jobs to schedule
on 3 machines and 12 operations in total. An
example of a feasible solution is shown in Fig. 1
with numbers in the figure corresponding with

the numbers of operations. Take job 3 for exam-
ple, which is composed of operations 7, 8 and
9. Operation 7 is placed on machine 1 right
away. Operation 8 cannot start its processing
until both its machine and technological prede-
cessors ( operations 1 and 7 respectively) have
completed their execution. In result it waits for
operation 7 to complete. Similarly, operation 9
has to wait for its machine (4) and technologi-
cal (8) predecessors, so it cannot start execution
sooner than operation 4 have been completed.

For our research with the multi-criteria vari-
ant of JSP problem we chose to consider two op-
timization criteria: the sum of completion times
for all jobs Csum and the maximum completion
time of all jobs Cmax:

Csum =

n
∑

j=1

Clj−1+nj
, (5)

Cmax = max
j∈J

Clj−1+nj
, (6)

where Clj−1+nj
is the completion time of the last

operation of job j. Using the example instance
from below Csum = C3 +C6 +C9 +C12 = 42 and
Cmax = max{C3, C6, C9, C12} = 14.

Because of the multi-criteria nature of the
problem our aim is to obtain the set of all Pareto-
optimal solutions (instead of a single solution as
in Eq. 1), according to the concept of Pareto-
efficiency described later on.

Figure 1. Example of a feasible
schedule for the instance from Tab. 1.

4. Evaluation of Multi-Criteria

Solutions

Evaluation of multi-criteria solutions is not as
straight-forward as single criterion evaluation
and comparing two solutions requires different
approach. Aggregation of (weighted) objectives
is one of the most commonly used techniques, un-
fortunately this method requires either fine tun-
ing of the weights or running the algorithm with
multi-start. Thus, we employed technique from
MCDA to evaluate solutions in proposed multi-
agent algorithms.
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4.1. Technique for order of preference by

similarity to ideal solution

Hwang and Yoon proposed TOPSIS, a MCDA
method in [7]. The concept for this method is
choosing solution that should the shortest geo-
metric distance from the best (ideal) solution and
the longest distance from the worst (negative-
ideal) solution.

Figure 2. Visualization of the
TOPSIS method.

See Fig. 2 for a sample of such distances and
selection of worst and best values when minimiz-
ing two objective functions. This method uses
weights for each criterion and normalizes all so-
lutions before calculating the geometric distance
between each of them. The higher the value of
relative closeness the better the solution. This
method allows to choose one solution from the
Pareto front, without involving decision-maker in
the process.

4.2. Pareto efficiency

The solution to a multi-objective problem is the
set of non-dominated solutions called the Pareto
front, where dominance is defined as follows. A
solution y = (y1, y2, ..., yn) dominates (denoted
≺) a solution z = (z1, z2, ..., zn) if and only if
∀i ∈ {1...n}, yi ≤ zi and ∃i ∈ {1...n}, yi < zi.

5. Representation and Decoding

In every algorithm development, first thing to do
is to decide on solution representation. When
solving JSP, it is also important to decide on
method for decoding said representation. We em-
ploy a job representation in the form of a permu-
tation of jobs, therefore it is a n-element permu-
tation. In this form the obtained solutions are
always represented by n numbers regardless of
the number of machines m or the number of op-
erations in job j (nj).

In order to calculate the values of our objective
functions, we need a deterministic transforma-
tion from a representation into its corresponding
solution. Let us assume that we are using the
instance from Tab. 1 and that our representation
is R = (2, 1, 4, 3). Our decoding procedure works
as follows. We create a sequence S1 by taking
the first operations of all jobs (in the example
from Tab. 1 those would be operations 1, 4, 7
and 10). The order of operations in S1 must con-
form with the order in the representation R, so
S1 = (4, 1, 10, 7). Let us create empty sequence
S and add S1 at its end. Next we create sequence
S2 from the second operations of each job (2, 5,
8 and 11) in order determined by our represen-
tation, so S2 = (5, 2, 11, 8) and we add S2 at the
end of S. We continue this until all operations
from O are in S. In result:

S = S1|S2|S3 = 4, 1, 10, 7, 5, 2, 11, 8, 6, 3, 12, 9.

Now we construct our schedule by inserting ele-
ments of S into the best possible place at the mo-
ment of insertion (greedy algorithm). Therefore,
operation 4 is placed first (in empty schedule)
and operation 9 is placed last. Each operation
can be placed either at one of the gaps in its tar-
get machine (provided that such gaps exist and
are large enough for the operation to fit) or af-
ter the current last operation of that machine.
Moreover, each operation must be placed as to
start executing only after its technological pre-
decessor has completed (placement of operation
9 depends on the placement of operation 8, op-
eration 10 can be placed in first suitable gap, as
it has no technological predecessors).

The proposed decoding scheme always creates
a left-compact schedule, i.e. a schedule where
no operation can have its starting time decreased
without making the schedule infeasible. More-
over, all schedules created using this decoding
method are feasible. However, there is no guaran-
tee that the obtained schedule is active and there-
fore the optimal solution might be unobtainable
by this decoding.

For the above method the number of different
representations for JSP with n jobs is equal to
n! (the number of possible permutations of n ele-
ments). Let us consider, for example, the Fisher-
Thompson instance ft10 (10 jobs, 10 machines,
100 operations), which has (10!)10 ≈ 1065 pos-
sible schedules using the operational representa-
tion. Moreover, only approximately 1 in 1017 of
those schedules is feasible, meaning roughly 1048
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feasible solutions [13]. For comparison the num-
ber of solutions with our representation equals
n! = 10! = 3628800, so well below 107. This
greatly reduces the search space (by 1041 in the
case of ft10), though only a fraction of the origi-
nal space is obtainable.

Finally, the chosen representation method
should have low redundancy, i.e. the number
of representations mapping to the same schedule
should be as low as possible. The best possible
situation is zero redundancy, where each sched-
ule is mapped only by one representation. In
order to measure the reduncancy of our repre-
sentation, we performed a simple computer sim-
ulation. 1 000 000 different representation were
generated for the TA01 instance (15 jobs, 15 ma-
chines). Each representation was decoded and
the resulting schedule was stored in a hash map
with representations serving as keys and sched-
ules as values. Thus, the number of the unique
schedules is equal to the number of elements of
the hash map. This test was performed many
time over at random and each time the size of the
hash map was equal to 1 000 000, therefore we ob-
tained million different schedules from million of
different representations. This strongly suggests
that our representation and decoding scheme ex-
hibits redundancy equal to or near 0.

6. Proposed Methods

For the purpose of this article two approaches,
namely ACO and GA, were proposed and im-
plemented. Both are multi-agent metaheuristics
inspired by nature and allow fast Pareto front ap-
proximation. Below we present their background,
as well as modifications done in order to adapt
those algorithms to the MOJSP.

6.1. Ant colony optimization

ACO is a probabilistic metaheuristic technique
used to create approximate algorithms for op-
timization problems. The technique itself was
first proposed by Dorigo [3] in order to find good
(short) paths in a given graph. Is is currently
used for a wide range of discrete optimization
problems and can be applied to any problem that
can be reduced to short path search in a graph.

ACO is a multi-agent metaheuristic as it is
based on the foraging behaviour of ant colonies.
Every ant follows a simple procedure: by wan-
dering in half-random directions, it searches for
food sources and then lays a chemical agent
called pheromone that attracts other ants. The
strength of the pheromone indicates the quality
of the path marked by it. In result the pheromone

serves as a means of communication between
ants. The pheromone affects the probability of
choosing a given path, therefore attracting ants
to converge on the most promising paths. The
existing pheromone evaporates with time, allow-
ing the ants to search different possible paths.
Even though each ant is a simple agent, their
colony shows signs of swarm intelligence, which
serves to produce the final solution. Additional
advantages of ACO are high potential for par-
allelization and adaptive abilities, finding new
paths when current ones become unusable, due
to the pheromone evaporation mechanism.

The implementation of this technique models
pheromone in the form of a pheromone ma-
trix. Following an example of a travelling sales-
man problem (TSP), each ant in a given iter-
ation of the algorithm constructs a feasible so-
lution (a path in the graph). This is done by
choosing the next vertex and adding it to the
current partial solution. The decision is made
with probability based on the pheromone τ lying
on a given edge and the visibility η of a given ver-
tex. The visibility of each vertex depends on the
problem. In case of the TSP, it is usually a recip-
rocal of distance (edge weight) between vertices:
η = 1

d
. The weight of each factor (pheromone and

visibility) is adjusted with parameters α and β.
The final probability of choosing to go to vertex
j from vertex i is given as:

pi,j =

{

ταi,j ·η
β
i,j

Pi
if partial solution is feasible,

0 otherwise,
(7)

where Pi =
∑

n∈Ni
ταi,n · ηβi,n and Ni are vertices

that vertex i connects to.

After each iteration the generated solutions are
evaluated and the results are used to perform
a pheromone laying procedure. The amount of
pheromone used, how many ants are allowed to
lay pheromone and several other factors are dif-
ferent depending on the specific version of ACO
used. The existing pheromone in the matrix is
decreased (evaporated) before the next iteration
starts. The quantity of pheromone deposited and
evaporated is affected by parameters Q and ρ re-
spectively:

τi,j = ρ · τi,j (8)

∆τbesti,j =

{

Q/Lk if (i, j) belongs to a tour,
0 otherwise,

(9)
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where Lk is the length of the tour found by the
kth ant. Equation 9 is applied for every ant.

Many different version of ACO exist. The
one used in this paper is based on the Max-Min
Ant System (or MMAS) proposed by Stützle and
Hoos [19], which proved to be one of the most
efficient of developed ACO systems. The most
important characteristics of MMAS are: 1) the
values of pheromone matrix are bounded from
below and above by τmin and τmax respectively,
2) only one ant in an iteration is allowed to lay
pheromone, 3) the pheromone matrix is initial-
ized to τmax in the beginning. This characteris-
tics result in better search of solution space in
early iterations, reduction of the algorithm stag-
nation effect and improvement of the search pro-
cess by elitist pheromone laying strategy. In their
original work Stü tzle and Hoos assume that τmax

and τmin can change between iterations and are
connected by equation:

pdec = n
√
pbest =

τmax

τmax + (avg − 1)τmin
. (10)

Therefore τmin can be derived given the values
of τmax and probability pdec. More information
on the desired value of pdec can be found in the
original paper by Stützle and Hoos.

In order to adapt the original MMAS algo-
rithm for MOJSP, a few modifications were per-
formed. First, we needed a connection between
JSP and a graph search problem. Fortunately,
the chosen solution representation is, in fact,
a permutation of jobs and corresponds well to
the permutation of cities, which is a solution to
the traveling salesman problem. The only diffi-
culty lies in the visibility ηi,j for each pair of jobs.
We have chosen a heuristic in which the weight
of each edge connecting to the vertex (job) j is
the sum of processing times of all operations of
j:

ηi,j = ηj =
∑

k∈Oj

pk,j , (11)

where Oj is set of operations for job j. In re-
sult, the visibility depends only on the “target”
job and not on the “source” job. This heuristic
is based on the job inserting techniques from the
classic scheduling algorithms.

The original MMAX is a single-criterion al-
gorithm. In order to deal with multiple-criteria
we employ the TOPSIS method described above
for evaluation of solutions, coupled with the de-
coding of constructed solutions. The pheromone

update can be performed based on distance ob-
tained by TOPSIS, as well as the Csum and Cmax

criteria directly. For the use of TOPSIS method
the weights for criteria were defined. Since our
goal is to obtain the set of Pareto-efficient so-
lutions we add each constructed solution to the
Pareto set and remove all dominated solutions af-
ter each iteration. Moreover, we use certain con-
structive algorithm in the first iteration in order
to obtain good starting solutions. Since the al-
gorithm is a single criterion method, half of the
ants construct the solution based on Csum, while
the other half uses Cmax. On the second and sub-
sequent iterations ants construct their tours as in
regular Max-Min Ant System.

6.2. Genetic algorithm

GA is a multi-agent metaheuristic, which uses
evolution to find better solutions [2]. Evolution-
ary algorithms use techniques inspired by natural
evolution, such as inheritance, mutation, selec-
tion, and crossover to generate solutions to opti-
mization problems. Usually the evolution starts
from random initial population, which is a set
of specimens. In each iteration, called a genera-
tion, the specimens are modified with the use of
genetic operators (namely crossover and muta-
tion) and their fitness is evaluated in order to se-
lect best solutions for the next generation. Many
different approaches to GA were proposed and
tested for a variety of optimization problems.

Figure 3. Partially matched
crossover example.

GA implemented for the purpose of this pa-
pers uses Pareto archive, in order to retain non-
dominated solutions through successive itera-
tions. The individuals in population are rep-
resented by jobs permutation, values of criteria
functions and relative closeness indicator is sup-
plied by the TOPSIS method. Initial popula-
tion includes solutions obtained from construc-
tive single-criterion algorithms (applied for each
criterion). Such initialization allows faster desig-
nate approximation of the Pareto front. Muta-
tion is performed by multiple interchanging two
random jobs in schedule, while crossover used is
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partially matched crossover (PMX) (see Fig. 3)
scheme. It randomly cuts chromosomes (permu-
tations of jobs) at two points and interchanges
middle parts between individuals. In order to
retain feasibility of solutions, repeated jobs are
mapped and permutations are repaired. Fitness
of each solution is evaluated using TOPSIS tech-
nique. Tournament selection allows us to choose
individuals for next iteration of the algorithm
from both parent and child populations. Com-
paring two populations of the same size as out-
put population leads to discarding half of pre-
vious solutions. Moreover, when relative close-
ness values converge to zero, an anti-stagnation
is employed. It takes non-dominated solutions
from Pareto archive and copies them (multiple
times if their number doesn’t exceed the num-
ber of individuals in population) to parent pop-
ulation before employing mutation and crossover
operations on said population. Such action al-
lows the algorithm to restart genetic search from
good solutions.

7. Computer Experiment

All algorithms were implemented in C++ pro-
gramming language and compiled with Visual
Studio 2010. The programs were tested on In-
tel Core i7-3770 3400MHz, 8GB RAM and run-
ning Windows 7 64b. We use a set of benchmarks
from literature [21] that consist of 8 groups ( com-
bined by instance size), 10 instances per group.
The ACO method was run using following pa-
rameters: α = 1.0, β = 2.0, ρ = 0.8, pbest = 0.8,
number of ants a = 200 and number of iterations
i = 10 000.

7.1. Multi-criteria quality indicators

Comparing multi-objective algorithms is not
as apparent as comparing the ones with sin-
gle criterion, where lower/higher (minimiza-
tion/maximization) value of solution translates
directly to a better solution. Considering differ-
ent methods (scalar, Pareto and others) of solu-
tion evaluation, there is no single way to evaluate
which set of non-dominated solutions is clearly
better than the other. Our approach is based
on a dominance relation and the concept of the
Pareto front. The solutions in the front do not
dominate each other, but the solutions outside of
the front are always dominated by at least one
solution in the front. However, we use approxi-
mate algorithms, meaning that the obtained non-
dominated solution sets may be different from the
optimal Pareto front and different for each algo-
rithm. We need an indicator for quality-based
comparison of the obtained fronts. A number of

such methods exists, out of which we have chosen
following.

Aggregated Pareto solutions. Certain
method of comparison of Pareto front approxi-
mations was devised in paper [14]. This approach
creates a set of all non-dominated solutions found
by all algorithms and calculates the percentage
of the non-dominated solutions found by the spe-
cific algorithm in question which then serves as
an indicator. Solutions from all algorithms were
flagged and combined into a single set, which was
then purged of dominated solutions. A number
of solutions in this global Pareto-efficient set was
computed for each algorithm and those numbers
were compared to evaluate solution sets.

Hyper-volume indicator. Zitzler et al. [25]
provided a few necessary tools for a better eval-
uation and comparison of multi-objective algo-
rithms. They proposed, among others, a hyper-
volume indicator IH to measure quality of the
Pareto front approximations. Hyper-volume in-
dicator measures the area covered by the approxi-
mated Pareto fronts for each of algorithms. In or-
der to bound this area, a reference point is used.
A greater value of IH indicates both a better con-
vergence to as well as a good coverage of the op-
timal Pareto front.

Figure 4. Visualization of hyper-
volume indicator.

In our case, reference points were calculated as
follows. For each of the criteria used we took the
worst value from both non-dominated sets, mul-
tiplied it by 1.2 and assigned as reference points
value for that criterion. Visualization of such in-
dicator is presented in Fig. 4.

7.2. Results

There are 80 instances divided into 8 instance
sizes, thus computation results were combined
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into groups. Said groups are of following sizes:
15×15, 20×15, 20×20, 30×15, 30×20, 50×15,
50 × 20 and 100 × 20. Computation times were
similar for both algorithms, in order to maintain
close test conditions.

For each test instance and for each run of al-
gorithms, we collected the following values:

• |P | – number of non-dominated solutions
in aggregated approximations of Pareto
fronts from all algorithms,

• |Px| – number of non-dominated solutions
found using algorithm x,

• |Dx| – number of unique Pareto solutions
found using algorithm x,

• Q – quotient of IH computed for GA to
IH computed for ACO,

where x ∈ {ACO,GA}. Due to characteristics of
evolutionary algorithm and ant colony, numbers
of unique Pareto and non- dominated solutions
are the same. Solutions found by both algorithms
are disjoint.

We evaluated number of non-dominated so-
lutions and hyper-volume indicator for each in-
stance. Summed up numbers of Pareto solu-
tions for each instance size can be seen in Tab.
2. Number of Pareto solutions found by ACO
exceeds the number of solutions found by GA,
which only found around 55% of the number
of non-dominated solutions provided by ACO.
Moreover, in Tab. 2 we placed average values of
hyper-volume indicator evaluated for each group.
ACO proved to provide superior results to GA in
both the number of non- dominated (and unique)
solutions, as well as the value of IH .

Table 2. No. of Pareto solutions
and Hyper-volume indicator values.

Group |P | |Px| |Dx| Q
GA ACO GA ACO

15 × 15 104 37 67 37 67 0,77
20 × 15 118 39 79 39 79 0,74
20 × 20 97 35 62 35 62 0,83
30 × 15 119 38 81 38 81 0,79
30 × 20 131 50 81 50 81 0,85
50 × 15 172 71 101 71 101 0,55
50 × 20 150 49 101 49 101 0,67
100 × 20 169 65 104 65 104 0,54

In the process of results analysis we found out
that none of the solutions provided by one of al-
gorithms were dominated by the other. More-
over, all solutions were unique, meaning each so-
lution was found only by one of the proposed al-
gorithms. Although both algorithms employed
the same evaluation method, namely TOPSIS,

and used the same criteria weights, the evolution-
ary approach tended to minimize makespan while
swarm intelligence provided better values of total
flow time objective. This feature might be a con-
sequence of using pheromone update matrix and
visibility used in ACO algorithm, which led the
agents (ants) to follow trails that provide lower
values of total flowtime objective, while individ-
uals in GA inherit properties from their parents
and, during evolution, attempt to improve values
of both objectives. Fig. 5 presents an example
of such behaviour. Moreover, difference in the
number of non-dominated and unique Pareto so-
lutions might be caused by properties of tested
algorithms.

Figure 5. Pareto front aggre-
gated from GA and ACO algo-
rithms for TA04.

8. Conclusions and Further Research

JSP is considered a complex and important
discrete combinatorial optimization problem.
Multi-criteria scheduling, and especially JSP, is
still growing field of optimization problems. Rel-
atively small number of papers concerning MO-
JSP and only a few of algorithms were pro-
posed. This paper proposes new look at sched-
uling model widely used in real production prob-
lems. We proposed and tested two nature-based
algorithms, which provided some unusual results.
Even though the same representation and de-
coding scheme were used, evolutionary methods
and swarm intelligence explore other areas of
the approximation of Pareto front in solutions
space. We concluded, that those differences are
result from other methods of storing information
about solutions. It impacts the results our al-
gorithms provided in a way, that collections of
non-dominated solutions supplement each other.

Our further research will use more complex so-
lution representation, i.e. operation based repre-
sentation, and new encoding/decoding schemes.
Different representation will allow us to explore
bigger or different solution space, while other de-
coding schemes can be more effective for other
objective functions.
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