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2 Department of Statistics and Operational Research,
Faculty of SSCC and Communication, University of Cádiz

Av. de la Universidad, 11406-Jerez, Spain

Email: 1antczak@math.uni.lodz.pl, 2manuel.arana@uca.es

(Received April 28 , 2014 ; in final form January 16 , 2015)

Abstract. In this paper, we introduce the concepts of KT -G-invexity and WD-G-invexity for the
considered differentiable optimization problem with inequality constraints. Using KT -G-invexity no-
tion, we prove new necessary and sufficient optimality conditions for a new class of such nonconvex
differentiable optimization problems. Further, the so-called G-Wolfe dual problem is defined for the
considered extremum problem with inequality constraints. Under WD-G-invexity assumption, the
necessary and sufficient conditions for weak duality between the primal optimization problem and its
G-Wolfe dual problem are also established.
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1. Introduction

In the paper, we consider the following con-
strained optimization problem:

minimize f(x)

subject to gj(x) ≦ 0, j ∈ J = {1, ...m} ,

x ∈ X,

(P)

where f : X → R and gj : X → R, j ∈ J , are dif-
ferentiable functions defined on a nonempty open
set X ⊂ Rn.

For the purpose of simplifying our presenta-
tion, we will next introduce some notation which
will be used frequently throughout this paper.

Let

D := {x ∈ X : gj(x) ≦ 0, j ∈ J}

be the set of all feasible solutions in problem (P).

Further, we denote an index set of active in-
equality constraints at point x ∈ X as follows:

J (x) = {j ∈ J : gj (x) = 0} .

In recent years, attempts are made by several
authors to define various classes of nonconvex
functions and to study their optimality criteria
and duality results in solving such types of opti-
mization problems. One of a such generalization
of a convex function is invexity notion introduced
by Hanson [11] for differentiable mathematical
programming problems. The term invex (which
means invariant convex) was suggested later by
Craven [10]. Over the years, many generaliza-
tions of this concept have been given in the lit-
erature (see, for instance, [1], [2], [3], [5], [6], [7],
[8], [9], [12], [13], [14], [15], [16], and others).

In [14], Martin showed that elementary relax-
ations of the conditions defining invexity lead to
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modified invexity notions which are both neces-
sary and sufficient for weak duality and Kuhn-
Tucker sufficiency. Hence, Martin introduced
the definition of Kuhn-Tucker invex (KT -invex)
optimization problem and he proved that ev-
ery Kuhn-Tucker point of the optimization prob-
lem with inequality constraints is a global min-
imizer if and only if this extremum problem is
Kuhn-Tucker invex. Also Martin gave the nec-
essary and sufficient conditions for weak dual-
ity to hold. Namely, he introduced the concept
of WD-invexity and he showed that weak dual-
ity between the considered optimization problem
with inequality constraints and its Wolfe dual
problem holds if the primal extremum problem
is WD-invex.

In [4], Antczak generalized Hanson’s defini-
tion of a (differentiable) invex function and he
introduced the concept of G-invexity for differ-
entiable constrained optimization problems. He
formulated and proved new necessary optimality
conditions of G-F. John and G-Karush–Kuhn–
Tucker type for differentiable constrained math-
ematical programming problems and, under G-
invexity assumptions, he established the suffi-
ciency of these necessary optimality conditions.
Further, for the considered extremum problem
with inequality constraints, Antczak [4] formu-
lated the so-called G-Mond–Weir-type dual and
he proved various duality results by assuming the
functions involved to be G-invex with respect to
the same function η and with respect to, not nec-
essarily, the same function G.

In this paper, following Martin [14] and
Antczak [4], we introduce the definitions of
KT -G-invexity and WD-G-invexity notions for
the considered differentiable optimization prob-
lem (P) with inequality constraints. For such
an extremum problem (P), we define the so-
called G-Karush-Kuhn-Tucker point (G-KKT -
point) and we prove that every G-Karush-Kuhn-
Tucker point of problem (P) is its global mini-
mizer if and only if problem (P) is KT -G-invex.
Thus, we extend the result established by Ben-
Israel and Mond [6] to the case of a new class of
nonconvex optimization problems. Further, for
the considered constrained optimization problem
(P), we define a modified dual problem in the
sense of Wolfe - we call it the G-Wolfe dual prob-
lem (G-WD). Under assumption that the pri-
mal problem (P) is WD-G-invex, we prove the
necessary and sufficient conditions for weak dual-
ity to hold between problems (P) and (G-WD).
Thus, the main purpose of this paper is to use
the introduced concepts of KT -G-invexity and

WD-G-invexity in proving the necessary and suf-
ficient optimality conditions and the necessary
and sufficient conditions for weak duality for a
new class of nonconvex differentiable optimiza-
tion problems.

2. Optimality

The following convention for equalities and in-
equalities will be used in the paper.

For any x = (x1, x2, ..., xn)T , y =

(y1, y2, ..., yn)T , we define:

(i) x = y if and only if xi = yi for all
i = 1, 2, ..., n;

(ii) x > y if and only if xi > yi for all
i = 1, 2, ..., n;

(iii) x ≧ y if and only if xi ≧ yi for all
i = 1, 2, ..., n;

(iv) x ≥ y if and only if x ≧ y and x 6= y.

Definition 1. A function f : R → R is said to
be increasing if and only if

∀x, y ∈ R x < y =⇒ f(x) < f(y).

Now, for the considered constrained optimiza-
tion problem (P), we define the concept of KT -
G-invexity. Let f : X → R and g : X → R be
defined as in the formulation of problem (P) and,
moreover, If (D) and Ig (D) be the range of f and
g, that is, the image of D under f and the image
of D under g, respectively.

Definition 2. The constrained optimization
problem (P) is said to be Kuhn-Tucker-G-invex
(shortly, KT -G-invex) at u ∈ D on D if there ex-
ist real-valued differentiable increasing functions
Gf : If (D) → R, Ggj : Igj (D) → R, j ∈ J , and
a vector-valued function η : D × D → Rn such
that, the following relations

x ∈ D
u ∈ D

}
=⇒

{
Gf (f(x))−Gf (f(u)) ≧ G′

f (f(u))∇f(u)η (x, u)
if j ∈ JMax(u), then −G′

gj
(f(u))∇gj(u)η (x, u) ≧ 0

(1)

hold, where JMax(u) = {j ∈ J : Ggj (gj(u)) =
Max{Ggj (gj(x)) : x ∈ D}}.

If the relations (1) are satisfied at any point
u ∈ D, then problem (P) is said to be KT -G-
invex on D.

Remark 3. In the case when Gf (a) ≡ a for
any a ∈ If (X), Ggj (a) ≡ a, j ∈ J , for any
a ∈ Igj (X), it follows that JMax(u) = J(u) and
we obtain the definition of KT -invexity intro-
duced by Martin [14] for differentiable optimiza-
tion problems.
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Now, we give the definition of a modified
Kuhn-Tucker point in the considered optimiza-
tion problem (P) and we call it a G-Karush-
Kuhn-Tucker point.

Definition 4. [4] A point x ∈ D (if it exists)
is said to be a G-Karush-Kuhn-Tucker point in
the considered optimization problem (P) if there
exists ξ ∈ Rm such that the following relations

G′
f (f(x))∇f (x) +

m∑

j=1

ξjG
′
gj

(gj(x))∇gj (x) = 0,

(2)

ξj
[
Ggj (gj (x)) −Ggj (gj (x))

]
≦ 0,

∀j ∈ J , ∀x ∈ D, (3)

ξ ≧ 0 (4)

are satisfied, where Gf is a real-valued differ-
entiable increasing function defined on If (D),
and Ggj , j ∈ J , is a real-valued differentiable
increasing function defined on Igj (D) such that
∑m

j=1

[
G′

gj
(gj(x))

]2
6= 0.

Remark 5. We call the relations (2)-(4) the G-
Karush-Kuhn-Tucker necessary optimality con-
ditions (see [4]) for the considered optimization
problem (P).

We now prove the necessary and sufficient op-
timality conditions for the considered optimiza-
tion problem (P) under the assumption that it is
KT -G-invex.

Theorem 6. Every G-Karush-Kuhn-Tucker
point is a global minimizer in problem (P) if and
only if problem (P) is KT -G-invex.

Proof. (Sufficiency). Assume that problem (P)
is KT -G-invex. Let x be a G-Karush-Kuhn-
Tucker point in problem (P). Then, there exists
a Lagrange multiplier ξ ∈ Rm such that the G-
Karush-Kuhn-Tucker necessary optimality condi-
tions (2)-(4) are satisfied. By (2), it follows

G′
f (f(x))∇f (x) η (x, x)

+
m∑

j=1

ξjG
′
gj

(gj (x))∇gj (x) η (x, x) = 0, (5)

∀x ∈ D.

Using the first relation in (1) together with (5),
we get

Gf (f(x)) −Gf (f(x))

≧ −
m∑

j=1

ξjG
′
gj

(f(x))∇gj (x) η (x, x) . (6)

Since x is a G-Karush-Kuhn-Tucker point in
problem (P), it is feasible in problem (P). As
it follows from (3), if ξj 6= 0 for some j ∈ J ,
then Ggj (gj(x)) = Max{Ggj (gj(x)) : x ∈ D},

that is, j ∈ JMax(x). Since ξ ≧ 0, therefore, for
j ∈ JMax(x), the second relation in (1) implies
that the following relation

−ξjG
′
gj

(f(x))∇gj(x)η (x, x) ≧ 0 (7)

holds for all x ∈ D. Combining (6) and (7), we
obtain that the inequality

Gf (f(x)) ≧ Gf (f(x))

is satisfied for all x ∈ D. Since Gf is an increas-
ing function on its domain, the following inequal-
ity

f(x) ≧ f(x)

holds for all x ∈ D. This means that x is a global
minimizer in problem (P).

(Necessity). Assume that every G-Karush-
Kuhn-Tucker point of problem (P) is a global
minimizer. For any pair of points x, x ∈ D, we
consider the following cases:

(i) Assume that x and x are feasible points
in problem (P) satisfying the inequality f (x) <
f (x). Then, by definition, x is not a global min-
imizer in problem (P). By assumption, therefore,
it is not a G-Karush-Kuhn-Tucker point for prob-
lem (P). This means that there exists no a set of
multipliers such that (2)-(4) are fulfilled, that is,
there exist no

λ > 0, ξj ≧ 0, j ∈ JMax (x)

such that

λG′
f (f(x))∇f (x)

+
∑

j∈JMax(x)

ξjG
′
gj

(gj (x))∇gj (x) = 0, (8)

where Gf is a real-valued differentiable increas-
ing function defined on If (D), and Ggj , j ∈ J ,
is a real-valued differentiable increasing function

defined on Igi(D) with
∑m

j=1

[
G′

gj
(gj(x))

]2
6= 0.
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Note that, if the equality (8) was satisfied, then
the multipliers λ, ξ = (ξ1, . . . , ξm) with ξj = 0 for
all j /∈ JMax(x), would verify (2)-(4). According
to Tucker’s theorem of the alternative, it follows
that there exists a vector w ∈ Rn, depending
upon x, such that

G′
f (f(x))∇f (x)w (x) > 0 (9)

and

G′
gj

(gj (x))∇gj (x)w (x) ≧ 0, j ∈ JMax(x).

(10)
Then, we set

η (x, x) =
Gf (f(x)) −Gf (f(x))

G′
f (f(x))∇f(x)w (x)

w (x) . (11)

Hence, by (11), we have

Gf (f(x))−Gf (f(x)) = G′
f (f(x))∇f(x)η (x, x) .

(12)
By assumption, f (x) < f (x) and Gf is an

increasing on its domain. Thus, we have

Gf (f(x)) < Gf (f(x)) . (13)

As it follows from (9) and (13), the scalar fac-
tor in (11) is negative. Then, multiplying (10) by
this factor, we get

G′
gj

(gj (x))∇gj (x) η (x, x) ≦ 0, j ∈ JMax (x) .

(14)
(ii) Now, assume that x, x ∈ D are feasible

points in problem (P) satisfying the inequality
f (x) ≧ f (x). Since Gf is an increasing on its
domain, the above inequality implies

Gf (f(x)) ≧ Gf (f(x)) .

In this case, therefore, it is sufficient to set that

η (x, x) = 0 (15)

to ensure that the inequality

Gf (f(x)) −Gf (f(x)) ≧ G′
f (f(x))∇f(x)η (x, x)

(16)

is satisfied. Moreover, by (15), for all j ∈
JMax (x), we have

G′
gj

(gj (x))∇gj (x) η (x, x) = 0. (17)

Thus, assuming only that every G-Karush-
Kuhn-Tucker point is a global minimum in prob-
lem (P), we have shown the existence of a func-
tion η : D×D → Rn that meets requirements of
Definition 2. This is a conclusion of the necessity
and completes the proof of theorem. �

Remark 7. Note that to prove that every G-
Karush-Kuhn-Tucker point is a global minimizer
in problem (P) it is sufficient to assume that
problem (P) is KT -G-invex at x on D.

In order to illustrate this result, we present an
example of KT -G-invex optimization problem.

Example 8. Consider the following nonconvex
optimization problem

f (x) = ln
(
x2 + x + 1

)
→ min

g (x) = 1 − exp (x) ≦ 0.
(P1)

Note that D = {x ∈ R : x ≧ 0} and x = 0 is a
feasible solution in the considered optimization
problem (P1). We now show that x = 0 is a
G-Karush-Kuhn-Tucker point in problem (P1).
In order to do it, we set Gf (t) = exp (t) and
Gg (t) = − ln (1 − t). Then, it is not difficult to

show that there exist ξ = 1 such that the condi-
tions (2)-(4) are satisfied with the functions Gf

and Gg defined above. Then, by Definition 4,
x = 0 is a G-Kuhn-Tucker point in problem (P1).
Now, we show that the considered optimization
problem (P1) is KT -G-invex at x on D (with re-
spect to functions Gf and Gg defined above). We
set η (x, x) = x − x. Then, by Definition 2, it
follows that the considered optimization problem
(P1) is KT -G-invex at x on D (with respect to η,
Gf and Gg given above). Thus, x = 0 is a global
minimizer in the considered optimization problem
(P1). Further, note that it is not possible to use
the concept of invexity introduced by Hanson [11]
to prove that x = 0 is a global minimizer in the
considered optimization problem (P1). It is not
difficult to show that the functions constituting
problem (P1) are not invex at x on D with respect
to the same function η defined by η : D×D → R.

In some cases of nonconvex optimization prob-
lems, it is easier to show that the considered
optimization problem is KT -G-invex than KT -
invex in the sense of definition introduced by
Martin [14]. In some of such cases, the func-
tion η has more complex form in the definition
of KT -invexity than in the formulation of KT -
G-invexity and, therefore, it is more difficult to
find such a function η satisfying the definition of
KT -invexity. Now, we give an example of such a
nonconvex optimization problem.
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Example 9. Consider the following nonconvex
optimization problem:

f (x) = arctan (exp (x) + x− 1) → min
g (x) = exp (−x) − 1 ≦ 0.

(P2)

Note that D = {x ∈ R : x ≧ 0} and x = 0 is a
feasible solution in the considered optimization
problem (P2). Now, we show that x = 0 is a
G-Kuhn-Tucker point in problem (P2). In order
to do it, we set Gf (t) = tan (t) and Gg (t) =
ln (t + 1). Then, it is not difficult to show that
there exists ξ = 2 such that the conditions (2)-
(4) are satisfied for such defined functions Gf

and Gg. Then, by Definition 4, x = 0 is a
G-Karush-Kuhn-Tucker point in problem (P1).
Now, we show that the considered optimization
problem (P2) is KT -G-invex at x on D (with re-
spect to functions Gf and Gg defined above). We
set η (x, x) = x − x. Then, by Definition 2, it
follows that the considered optimization problem
(P1) is KT -G-invex at x on D (with respect to
η, Gf and Gg given above). It is not difficult to
show by the definition of KT -invexity given by
Martin [14] that problem (P2) is not KT -invex
x on D with respect to η given above. In or-
der to prove that it is KT -invex at x on D, we
set η̃ (x, x) = 1

2 (arctan (x) − arctan (x)). Then,
by definition, it is possible to show that problem
(P2) is KT -invex x on D with respect to η̃ given
above. However, it is not difficult to see that the
form of the function η̃ with respect to which prob-
lem (P2) is KT -invex is more complex than the
function η with respect to which problem (P2) is
KT -G-invex. The fact that the function η with
respect to which the given optimization problem is
KT -G-invex is less complex than in the case of
KT -invexity is an useful property from the prac-
tical point of view.

3. Duality

In this section, for the considered optimization
problem (P), we consider the modified Wolfe dual
problem (G-WD), the so-called G-Wolfe dual
problem. We give the necessary and sufficient
conditions for weak duality between problems (P)
and (G-WD). To do this, we use the concept of
WD-G-invexity introduced in this section.

For the considered optimization problem (P),
consider the G-Wolfe dual problem in the follow-
ing form:

Gf (f (y)) +
∑m

j=1 ξjGgj (gj (y)) → max

G′
f (f(y))∇f (y)

+
∑m

j=1 ξjG
′
gj

(gj (y))∇gj (y) = 0,

y ∈ X, ξj ≧ 0, j ∈ J ,

(G-WD)

where Gf is a real-valued differentiable increas-
ing function defined on If (X), and Ggj , j ∈ J ,
is a real-valued differentiable increasing function
defined on Igj (X). We denote by W the set of
all feasible solutions in the G-Wolfe dual problem
(G-WD), that is, the set

W =
{

(y, ξ) ∈ X ×Rm : G′
f (f(y))∇f (y) +

∑m
j=1 ξjG

′
gj

(gj (y))∇gj (y) = 0, ξj ≧ 0, j ∈ J
}
.

Now, we introduce the definition of WD-G-
invexity for the considered optimization problem
(P).

Definition 10. Problem (P) is said to be weak
duality G-invex (shortly, WD-G-invex) on X if
there exists a vector valued function η : X×X →
Rn such that

x ∈ D
u ∈ X

}
=⇒





either Gf (f(x)) −Gf (f(u))
−G′

f (f(u))∇f(u)η (x, u) ≧ 0,

−Ggj (gj (u)) −G′
gj

(gj (u))∇gj (u) η (x, u) ≧ 0,

or −G′
f (f(u))∇f(u)η (x, u) > 0,

−G′
gj

(gj (u))∇gj (u) η (x, u) ≧ 0.

Remark 11. In the case when Gf (a) ≡ a and
Ggj (b) ≡ b, j = 1, ...,m, we obtain the definition
of of WD-invexity introduced by Martin [14] for
differentiable optimization problems.

Definition 12. Weak duality is said to hold be-
tween problems (P) and (G-WD) if, for every
feasible point x for the primal optimization prob-
lem (P) and every feasible pair (y, ξ) ∈ W for its
G-Wolfe dual problem (G-WD), we have

Gf (f(x)) ≧ Gf (f (y)) +
m∑

j=1

ξjGgj (gj (y)) .

Now, under assumption of WD-G-invexity,
we prove the necessary and sufficient conditions
for weak duality between problems (P) and (G-
WD).

Theorem 13. Weak duality holds between the
primal optimization problem (P) and its G-Wolfe
dual problem (G-WD) if and only if problem (P)
is WD-G-invex on X.

Proof. (Necessity). Assume that the G-weak
duality between problems (P) and (G-WD)
holds. This means that for any feasible solutions
x and (y, ξ) in problems (P) and (G-WD), the
system
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G′
f (f(y))∇f (y) +

∑m
j=1 ξjG

′
gj

(gj (y))∇gj (y) = 0

Gf (f(x)) −Gf (f(y)) −
∑m

j=1 ξjGgj (gj (y)) < 0

ξ = (ξ1, ..., ξm) ∈ Rm, ξ ≧ 0

is inconsistent in ξ. Equivalently, the homoge-
neous system

[
α

... β

]

×


 0

... 1

G′
f (f(y))∇f (y)

... Gf (f(x)) −Gf (f(y))




+ξ
[
G′

g (g (y))∇g (y)
... −Gg (g (y))

]
= 0,

[
α , β

]
> 0, ξ ≧ 0

is inconsistent in (α, β, ξ). By Tucker’s theorem
of the alternative, this, in turn, is equivalent to
the consistency of the system

 0

... 1

G′
f (f(y))∇f (y)

... Gf (f(x)) −Gf (f(y))




×

[
η
ϑ

]
≤ 0

[
G′

g (g (y))∇g (y)
... −Gg (g (y))

] [
η
ϑ

]
< 0.

If the first component in the above system is
strictly negative, that is, ϑ < 0, then we may
take ϑ = −1 to conclude that

Gf (f(x)) −Gf (f(y)) −G′
f (f(y))∇f (y) η ≧ 0,

−Gg (g (y)) −G′
g (g (y))∇g (y) η ≧ 0.

(18)

If the first argument the above system is equal
to zero, that is, ϑ = 0, then the second must be
strictly negative. Therefore, we have

G′
f (f(y))∇f (y) η ≧ 0,

−G′
g (g (y))∇g (y) η ≧ 0.

(19)

This means that there exists a vector valued func-
tion η : X ×X → Rn such that the inequalities
(18) or (19) are satisfied. This means that (P) is
WD-G-invex on X.

(Sufficiency). Let x and (y, ξ) be any feasi-
ble points in problems (P) and (G-WD), respec-
tively. Assume that the considered optimization
problem (P) is WD-G-invex on X. We consider
the case when the following inequalities

Gf (f(x)) −Gf (f(y))
−G′

f (f(y))∇f(y)η (x, y) ≧ 0,

−Ggj (gj (y))
−G′

gj
(gj (y))∇gj (y) η (x, y) ≧ 0, j ∈ J .

(20)
Multiplying the second inequality above by

ξj ≧ 0 and then adding both sides of the ob-
tained inequalities, we get

−
m∑

j=1

ξjGgj (gj (y))

−
m∑

j=1

ξjG
′
gj

(gj (y))∇gj (y) η (x, y) ≧ 0. (21)

Adding both sides of the first inequality in (20)
and (21), we obtain

Gf (f(x)) −Gf (f(y)) −
∑m

j=1 ξjGgj (gj (y)) ≧[
G′

f (f(y))∇f(y) +
∑m

j=1 ξjG
′
gj

(gj (y))∇gj (y)
]
η (x, y) .

From the feasibility of (y, ξ) in G-Wolfe dual
problem (G-WD), it follows that

Gf (f(x)) ≧ Gf (f(y)) +
m∑

j=1

ξjGgj (gj (y)) .

Now, assume that the following inequalities in
Definition 10

−G′
f (f(y))∇f(y)η (x, y) > 0,

−G′
gj

(gj (y))∇gj (y) η (x, y) ≧ 0

are satisfied for all x ∈ D and all y ∈ X. Multi-
plying the second inequality above by ξj ≧ 0 and
then adding both sides of the obtained inequali-
ties, we get


G′

f (f(y))∇f(y) +
m∑

j=1

ξjG
′
gj

(gj (y))∇gj (y)




×η (x, y) < 0.

By the above inequality, we conclude that
(y, ξ) is not feasible in G-Wolfe dual problem (G-
WD) for any multiplier vector ξ = (ξ1, ..., ξm) ∈
Rm, ξ ≧ 0. This means that such a point plays
no role in determining whether or not G-weak
duality holds.

This completes the proof of theorem. �
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4. Conclusions

In the paper, new concepts of generalized invex-
ity have been defined for differentiable optimiza-
tion problems. The so-called KT -G-invexity and
WD-G-invexity notions defined for the consid-
ered differentiable optimization problem (P) with
inequality constraints are generalizations the G-
invexity notions introduced by Antczak [4] and
the concepts of KT -invexity and WD-invexity
introduced by Martin [14], respectively. It has
turned out that the introduced KT -G-invexity
notion is a necessary and sufficient condition for
optimality in a new class of nonconvex differ-
entiable optimization problems. Namely, it was
proved that every so-called G-Kuhn-Tucker point
in problem (P) is its global minimizer if and
only if problem (P) is KT -G-invex. Moreover,
as it follows from the proof of this result, some
characterization of a function η (with respect to
which the given constrained optimization prob-
lem is KT -G-invex) is given. The property that
the function η could be less complex in the case of
KT -G-invexity than in the case of KT -invexity
for some nonconvex optimization problems is im-
portant from the practical point of view. Note
that, for some nonconvex optimization problems,
we are not in a position to establish the opti-
mality of a feasible point satisfying necessary op-
timality conditions under invexity, but the con-
cept of KT -G-invexity turned out to be useful in
proving this result.

Further, for the considered differentiable opti-
mization problem (P), the so-called G-Wolfe dual
problem (WD-G) has been defined. The concept
WD-G-invexity defined in the paper has turned
out to be a necessary and sufficient condition to
weak duality holds between problems (P) and
(WD-G) In this way, this result was proved for
a new class of nonconvex differentiable optimiza-
tion problems.

Some interesting topics for further research
remain. It would be of interest to investigate
whether the results established in the paper are
true also for a larger class of nonconvex con-
strained optimization problems, for instance, for
a class of nonconvex nondifferentiable extremum
problems. Thus, further research can focus on
the usefulness of these concepts of generalized in-
vexity in proving optimality conditions and du-
ality results for other classes of nonconvex opti-
mization problems. It seems that the techniques
employed in this paper can be used in proving
similarly results for the constrained vector op-
timization problems. We shall investigate these
questions in subsequent papers.
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[5] Arana Jiménez, M., Ruiz, G. and Rufian,
A. eds., Optimality conditions in vector op-
timization. Bussum: Bentham Science Pub-
lishers, Ltd., (2010).

[6] Ben-Israel, A and Mond, B , What is in-
vexity?, Journal of Australian Mathematical
Society Ser.B, 28, 1-9 (1986).

[7] Bector, C.R. , Chandra, S., Gupta, S., and
Suneja, S.K., Univex sets, functions and uni-
vex nonlinear programming, In: Komlosi, S.,
Rapcsak, T. and Schaible, S., eds. Proceed-
ings of Conference of Generalized Convexity,
Pecs, Hungary: Springer Verlag, 1-11 (1993).

[8] Bector, C.R. and Singh, C., B-vex functions,
Journal of Optimization Theory and Applica-
tions, 71, 237-253 (1991).

[9] Caprari, E., ρ-invex functions and (F, ρ)-
convex functions: properties and equiva-
lences, Optimization, 52, 65-74 (2003).

[10] Craven, B.D., Invex functions and con-
strained local minima, Bulletin of the Aus-
tralian Mathematical Society, 24, 357-366
(1981).

[11] Hanson, M.A., On sufficiency of the Kuhn-
Tucker conditions, Journal of Mathemati-
cal Analysis and Applications, 80, 545-550
(1981).

[12] Hanson, M.A. and Mond, B., Further gener-
alizations of convexity in mathematical pro-
gramming, Journal of Information and Opti-
mization Sciences, 3, 25-32 (1982).

[13] Jeyakumar, V., Equivalence of saddle-points
and optima, and duality for a class of
nonsmooth non-convex problems, Journal
of Mathematical Analysis and Applications,
130, 334-343 (1988).
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