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Abstract. In this paper, fuzzy nth-order derivative for n ∈ N is introduced. To do this, nth-order
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nth-order differential equations is solved, for n ∈ N .
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1. Introduction

The H-derivative of fuzzy number valued func-

tion was introduced by Siekalla in [22]. This

derivation amplifies the fuzziness when time goes

by [8], thus strongly general differentiability was

introduced in this paper and have been studied

by many researchers, this concept allows us to

solve the problems of H-derivative. The fuzzy

derivations are very important for solving fuzzy

equations for instance, fuzzy differential equa-

tions and fuzzy integro-differential equations.

The first order equations under H-derivation

studied by Bede initially at [3, 8]. He explained

four cases of derivatives for fuzzy first order de-

rivative. Two cases of them are always very im-

portant and the two others are important to ac-

quire switching point. He used these four cases

of derivatives for solving fuzzy differential equa-

tions. Chalco, used first two cases of derivations,

because the two others cases are constant, [11].

General H-derivative has been used to study

the second order derivation by Allahviranloo, [5]

and Zhang, [26]. Their studies were used to get

the existence of the fuzzy second order equations

under general H-derivative. Allahviranloo et.al

obtained the solutions of nth-order fuzzy linear

differential equations by approximating method

in [1, 2]. Allahviranloo and hooshangian intro-

duced fuzzy generalized H-differential and used

it to solve fuzzy differential equations of second-

order, [4].

In this paper we use general H-derivative to

find high order derivation. We acquire cases of

derivations and we use them to invent relations
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between derivatives and their cases, then we ap-

ply them to investigate summation and minus

of fuzzy derivatives and relationships between

them. Indeed, with general differentiability, we

can find more relationships for a larger classes of

them rather than using H-derivative.

In section 2, we review briefly some needed

concepts. In section 3 we introduce nth-order

derivation for all n ∈ N , the minus and summa-

tion of two the fuzzy functions under H-derivative

which are approved for nth-order derivation. In-

deed, an algorithm is introduced to find fuzzy

nth-order derivation and its cases for all, in gen-

eral. In section 4, the fuzzy H-difference be-

tween two nth-order derivative of fuzzy functions

is demonstrated and the examples to illustrate

more are presented. In the final section, fuzzy

differential equations in general form are solved.

Our solution have been based on the generalized

H-derivation. Finally, conclusion will be drawn

in Section 5.

2. Basic Concepts

The basic definitions of a fuzzy number are given

as follows:

Definition 1. [14] A fuzzy number is a fuzzy set

like u : R→ [0, 1] which satisfies:

1. u is an upper semi-continuous function,

2. u(x) = 0 outside some interval [a,d],

3. There are real numbers b, c such as a ≤

b ≤ c ≤ d and

3.1 u(x) is a monotonic increasing func-

tion on [a, b],

3.2 u(x) is a monotonic decreasing func-

tion on [c, d],

3.3 u(x) = 1 for all x ∈ [b, c].

Definition 2. [14] The metric structure is given

by Hausdorff distance satisfying the following

properties, that RF is denoted the class of fuzzy

subsets of real axis:

D : RF ×RF −→ R+ ∪ 0

D(u(r), v(r)) = Max{sup|u− v|, sup|u− v|}

(RF , D) is a complete metric space and following

properties are well known:

D(u+ w, v + w) = D(u, v), ∀u, v, w ∈ RF

D(ku, kv) = |k|D(u, v), ∀u, v ∈ RF , ∀k ∈ R

D(u+v, w+e) ≤ D(u,w)+D(v, e), ∀u, v, w, e ∈

RF

Definition 3. [16] Let x, y ∈ RF . If there exists

z ∈ RF such that x = y + z then z is called the

H-differential of x, y and it is denoted x⊖ y.

Definition 4. [7] Let F : I → RF and t0 ∈ I.

We say that F is differentiable at t0 if there is

F ′(t0) ∈ RF such that either

(I) For h > 0 sufficiently close to 0, the H-

differences F (t0+h)⊖F (t0) and F (t0)⊖F (t0−h)

exist and the following limits

limhց0
F (t0+h)⊖F (t0)

h

= limhց0
F (t0)⊖F (t0−h)

h
= F ′(t0) or

(II) For h > 0 sufficiently close to 0, the H-

differences F (t0)⊖F (t0+h) and F (t0−h)⊖F (t0)

exist and the following limits

limhց0
F (t0)⊖F (t0+h)

−h

= limhց0
F (t0−h)⊖F (t0)

−h
= F ′(t0) or

(III) For h > 0 sufficiently close to 0, the H-

differences F (t0+h)⊖F (t0) and F (t0−h)⊖F (t0)

exist and the following limits

limhց0
F (t0+h)⊖F (t0)

h

= limhց0
F (t0−h)⊖F (t0)

−h
= F ′(t0) or

(IV) For h > 0 sufficiently close to 0, the H-

differences F (t0)⊖F (t0+h) and F (t0)⊖F (t0−h)

exist and the following limits

limhց0
F (t0)⊖F (t0+h)

−h

= limhց0
F (t0)⊖F (t0−h)

h
= F ′(t0)

Theorem 1. [7] Let F : [a, b] → I be a func-

tion and denote [F (t)]α = [fα(t), gα(t)] for each

α ∈ [0, 1]. Then:

(i) If F is differentiable in the first form (I), then

fα and gα are differentiable functions and

[F ′(t)]α = [f ′
α(t), g

′
α(t)].

(ii) If F is differentiable in the second form (II),

then fα and gα are differentiable functions and

[F ′(t)]α = [g′α(t), f
′
α(t)].
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Definition 5. [24] Let F : I → RF be a set-

valued function. A point t0 ∈ I is said to be

a switching point for the differentiability of F ,

if in any neighborhood T of t0 there exist points

t1 < t0 < t2 such that:

Type 1: F is differentiable at t1 in the sense (I)

of Definition 4 while it is not differentiable in the

sense (II) of Definition 4 and F is differentiable

at t2 in the sense (II) of Definition 4 while it is

not differentiable in the sense (I) of Definition 4.

or

Type 2: F is differentiable at t1 in the sense (II)

of Definition 4 while it is not differentiable in the

sense (I) of Definition 4 and F is differentiable

at t2 in the sense (I) of Definition 4 while it is

not differentiable in the sense (II) of Definition

4.

Theorem 2. [20] Let F : I → RF be differen-

tiable on each t ∈ I in the sense (III) or (IV) in

Definition 4. Then F ′(t) ∈ R for all t ∈ I.

Theorem 3. [20] If f : [a, b] → RF be integrable

and c ∈ [a, b], λ ∈ R. Then:

(i)
∫ t0+a

t0
F (t)dt =

∫ c

t0
F (t)dt+

∫ t0+a

c
F (t)dt,

(ii)
∫

I
(F (t) +G(t))dt =

∫

I
F (t)dt+

∫

I
G(t)dt,

(iii)
∫

I
λF (t)dt = λ

∫

I
F (t)dt,

(iv) D(F,G) is integrable,

(V) D(
∫

I
F (t)dt,

∫

I
G(t)dt) ≤

∫

I
D(F,G)

Definition 6. [20] Let f(x) be a fuzzy val-

ued function on [a, b]. Suppose that f(x, r) and

f(x, r) are improper Riemman-integrable on [a, b]

then we say that f(x) is improper on [a, b], fur-

thermore,

(

∫ b

a

f(t, r)dt) = (

∫ b

a

f(t, r)dt)

(

∫ b

a

f(t, r)dt) = (

∫ b

a

f(t, r)dt)

3. Generalized Fuzzy Nth-order

Derivative

In this article is necessary to introduce the E

and Ej items in the following terms:

E(F (t)) =

{

F (t) F (t) is (I)− differentiable,

⊖F (t) F (t) is (II)− differentiable

and

Ej(F (t)) =
{

Ej−1(F (t)) F (j−1)(t) is (I)− differentiable,

Ej−1(⊖F (t)) F (j−1)(t) is (II)− differentiable

which Ej(F (t)) = E(Ej−1(F (t)), for all j that

j = 2, 3, ..., n.

Theorem 4. For all F,G ∈ RF and c ∈ R, for

all j = 1, 2, ..., n, is approved the following items:

a) Ej(c⊙ F (t)) = c⊙ Ej(F (t)).

b) Ej(F +G)(t) = Ej(F (t)) + Ej(G(t)).

c) Ej(F ⊖ G)(t) = Ej(F (t)) ⊖ Ej(G(t)) =

Ej(F (t)) + Ej+1(G(t)).

d) Let j = 2k, then Ej(F (t)) = F (t) and let

j = 2k − 1, then Ej(F (t)) = E(F (t)), for all

k = 1, 2, ....

Proof. The proof is clear. �

At first we approve a theorem on the Hakuhara

difference that are needed here under:

Theorem 5. For all x, y, z ∈ RF and a ∈ R

a) 0⊖ x = ⊖x

b) ⊖x = ⊖y ⇒ x = y

c) ⊖(⊖x) = x

d) x⊖ y = z ⇒ x⊖ z = y

e) x⊖ (y + z) = x⊖ y ⊖ z

f) x⊖ (y ⊖ z) = x⊖ y + z

g) ⊖ax = a(⊖x)

h) ⊖(x⊖ y) = ⊖x+ y

Proof. a) The proof is trivial.

b) ⊖x = ⊖y ⇒ 0⊖ x = 0⊖ y, thus by Definition

3, there exists u ∈ RF that 0⊖x = 0⊖y = u, thus

0 = x+ u and also 0 = y+ u, thus x+ u = y+ u

and it is mean x = y

c) If ⊖(⊖x) exists, then there is u ∈ RF that

0⊖ (⊖x) = u. In following we prove that u = x:

0⊖(⊖x) = u, thus 0 = u+(⊖x), then 0⊖u = ⊖x

and by using (a) we have 0⊖u = ⊖u = ⊖x, using

(b) we can result x = u.

d) If x⊖ y = z, thus we have x = z + y, then we

can write x = y + z ⇒ x⊖ z = y

e) If x⊖ (y + z) exists, then there exists u ∈ RF

that x ⊖ (y + z) = u now by Definition 3 x =

u + y + z, thus x ⊖ y = u + z, now we can gain

x⊖ y ⊖ z = u

f) If there exists x⊖ (y ⊖ z), then u ∈ RF which

x⊖(y⊖z) = u, by using Definition 3 we can write
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x = u + (y ⊖ z) and x = u + y ⊖ z, now we can

write x+ z = u+ y and therefore x+ z ⊖ y = u.

g) By using (a) we have ⊖ax = 0 ⊖ ax, thus

there exists u ∈ RF which ⊖ax = 0 ⊖ ax = u

now by Definition 3 we have 0 = u + ax, thus

0 = u
a
+ x and by using (a) we write 0 ⊖ x = u

a
,

thus 0 + (⊖x) = u
a
and 0 + a(⊖x) = u therefore

a(⊖x) = u.

h) If there exists ⊖(x⊖y) then there is a u ∈ RF

which ⊖(x ⊖ y) = u, thus 0 ⊖ (x ⊖ y) = u and

by Definition 3 we have 0 = u + x ⊖ y and

0 + y = u + x, thus 0 + y ⊖ x = u therefore

y ⊖ x = u. �

Using H-derivative definition, Definition 4 and

Theorem 4, we will have the following definition:

Definition 7. Let F : I → RF and t0 ∈ I. We

can say that F is differentiable of n−ordered at

t0 if there is F (n−1)(t0) ∈ RF such that either:

(I) For h > 0 sufficiently close to 0, for all n ∈

N , the H-differences F (n−1)(t0 + h)⊖ F (n−1)(t0)

and F (n−1)(t0) ⊖ F (n−1)(t0 − h) exist , and the

following limits:

limhց0
F (n−1)(t0+h)⊖F (n−1)(t0)

h

= limhց0
F (n−1)(t0)⊖F (n−1)(t0−h)

h
= F (n)(t0)

or

(II) For h > 0 sufficiently close to 0, for all

n ∈ N , the H-differences F (n−1)(t0)⊖F (n−1)(t0+

h) and F (n−1)(t0 − h)⊖ F (n−1)(t0) exist and the

following limits:

limhց0
F (n−1)(t0)⊖F (n−1)(t0+h)

−h

= limhց0
F (n−1)(t0−h)⊖F (n−1)(t0)

−h
= F (n)(t0)

or

(III) For h > 0 sufficiently close to 0, for

all n ∈ N , the H-differences F (n−1)(t0 + h) ⊖

F (n−1)(t0) and F (n−1)(t0 − h) ⊖ F (n−1)(t0) exist

and the following limits:

limhց0
F (n−1)(t0+h)⊖F (n−1)(t0)

h

= limhց0
F (n−1)(t0−h)⊖F (n−1)(t0)

−h
= F (n)(t0)

or

(IV) For h > 0 sufficiently close to 0, for all

n ∈ N , the H-differences F (n−1)(t0)⊖F (n−1)(t0+

h) and F (n−1)(t0)⊖ F (n−1)(t0 − h) exist and the

following limits:

limhց0
F (n−1)(t0)⊖F (n−1)(t0+h)

−h

= limhց0
F (n−1)(t0)⊖F (n−1)(t0−h)

h
= F (n)(t0)

Remark 1. In Definition 7, by placing n = 1,

the Definition 4 can be obtained.

In Definition 7, it is clear that the nth-ordered

derivative is depend on the (n− 1)th-ordered de-

rivative, (n − 1)th-ordered derivative depend on

the (n − 2)th-ordered derivative and so on. Us-

ing this dependance and by using Theorem 5, for

F : I −→ RF , we have four cases of derivatives

that can be proved as follows:

Remark 2. In following theorem for all n ∈ N

and k ∈ {N ∪ {0}}, n ≥ k we have (
n

k
) =

n!
k!(n−k)!

Theorem 6. For all integer n -even and odd-

we have four cases for H-derivative:

(A): If n = 2k, k = 1, 2, ... we have four cases:

(1): If even quantity of F (i)(t0), i = 1, 2, ..., n

are differentiable in case (I) and the rest in case

(II) of Definition 7:

F (n)(t0) = lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 + (n− j)h)))

hn

= lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 + (n− j − 1)h)))

hn

= lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 + (n− j − 2)h)))

hn

= ... = lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 − jh)))

hn
(1)

(2): If odd quantity of F (i)(t0), i = 1, 2, ..., n−1

are in case (I) and the rest in case (II) of Defi-

nition 7:

F (n)(t0) = lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 + jh))

−hn
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= lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 + (j − 1)h)))

−hn

= lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 + (j − 2)h)))

−hn

= ...

= lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 + (j − n+ 1)h)))

−hn

(2)

(3): If even quantity of F (i)(t0), i = 1, 2, ..., n

are differentiable in case (III) and the rest in case

(IV) of Definition 7:

F (n)(t0)

= lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 + (n− j)h)))

hn

= lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 + (j − 1)h)))

−hn

= lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 + (n− j − 2)h)))

hn

= ...

= lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 + (j − n+ 1)h)))

−hn

(3)

(4): If odd quantity of F (i)(t0), i = 1, 2, ..., n−1

be in case (III) and the rest in case (IV) of Def-

inition 7:

F (n)(t0) = lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 + jh)))

−hn

= lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 + (n− j − 1)h)))

hn

= lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 + (j − 2)h)))

−hn

= ... = lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 − jh)))

hn
(4)

B): If n = 2k − 1, k = 1, 2, ..., we have four

cases.

(1): If odd quantity of F (i)(t), i = 1, 2, ..., n

are differentiable in case (I) and the rest in case

(II) of Definition 7:

F (n)(t0)

= lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 + (n− j)h)))

hn

= lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 + (n− j − 1)h)))

hn

= lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 + (n− j − 2)h)))

hn

= ... = lim
hց0

∑n
j=0(

n

j
)(Ej(F (t0 − jh)))

hn
(5)

(2): If even quantity of F (i)(t0), i = 1, 2, ..., n−

1 are in case (I) and the rest be in case (II) of

Definition 7:

F (n)(t0) = lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 + jh))

−hn

= lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 + (j − 1)h)))

−hn

= lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 + (j − 2)h)))

−hn

= ...

= lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 + (j − n+ 1)h)))

−hn

(6)
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(3): If odd quantity of F (i)(t0), i = 1, 2, ..., n

are differentiable in case (III) and the rest in case

(IV) of Definition 7:

F (n)(t0)

= lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 + (n− j)h)))

−hn

= lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 + (j − 1)h)))

hn

= lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 + (n− j − 2)h)))

−hn

= ...

= lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 + (j − n+ 1)h)))

hn

(7)

(4): If even quantity of F (i)(t0), i = 1, 2, ..., n−

1 are in case (III) and the rest be in case (IV) of

Definition 7:

F (n)(t0) = lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 + jh)))

−hn

= lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 + (n− j − 1)h)))

hn

= lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 + (j − 2)h)))

−hn

= ... = lim
hց0

∑n

j=0(
n

j
)(Ej(F (t0 − jh)))

hn
(8)

Proof. By induction, we consider the method

for nth-order fuzzy derivative as accurate, the

method should be approved for (n + 1)th-order

fuzzy derivation.

The theorem is proved for case (1) of (A), in

the other cases are proved similarly. In the case

(I) of Definition 7, the nth-order derivative is in

following:

F (n)(t) = limhց0
F (n−1)(t0 + h)⊖ F (n−1)(t0)

h

= limhց0
F (n−1)(t0)⊖ F (n−1)(t0 − h)

h
(9)

and (n+ 1)th-order derivation in case (I) is:

F (n+1)(t)

= limhց0
F (n)(t0 + h)⊖ F (n)(t0)

h

= limhց0
F (n)(t0)⊖ F (n)(t0 − h)

h
(10)

in the other hand by Theorem 6 for even n, we

have:

F (n)(t0)

= lim
hց0

∑n
j=0(

n

j
)(Ej(F (t0 + (n− j)h)))

hn

= ...

= lim
hց0

∑n
j=0(

n

j
)(Ej(F (t0 − jh)))

hn
. (11)

By replacing elements of Eq. (11) by (10) we

have

F (n+1)(t0)

= lim
hց0

∑n
j=0(

n

j
)(Ej(F (t0+(n−j+1)h)))⊖(

n

j
)(Ej(F (t0+(n−j)h)))

hn+1

= ...

= lim
hց0

∑n
j=0(

n

j
)(Ej(F (t0+(n+(j+2))h))+(Ej((

n

j
)(Ej(F (t0+(n+(j+1))h)))

hn+1 .

(12)

By expanding limits and by the following for-

mulate:

(
n

j
) + (

n

j + 1
) = (

n+ 1

j + 1
)

we can reach the followings:

(
n

j
)(Ej(F (t0 + (n− j + 1)h))

⊖ ((
n

j + 1
)(Ej(F (t0 + (n− j + 1)h)))
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= (
n+ 1

j
)(Ej(F (t0 + (n− j + 1)h))

...

(
n

j
)(Ej(F (t0 + (n + (j + 2))h)) ⊖

((
n

j + 1
)(Ej(F (t0 + (n + (j + 2))h))) =

(
n+ 1

j
)(Ej(F (t0 + (n+ (j + 2))h))

thus

F (n+1)(t0)

= lim
hց0

∑n
j=0(

n+ 1

j
)(Ej(F (t0+(n−j+1)h))

hn+1

= ...

= lim
hց0

∑n
j=0(

n+ 1

j
)(Ej(F (t0+(n+(j+2))h))

hn+1 �

Remark 3. Now by replacing n = 1 in Eqs. (5),

(6), (7) and (8), the Definition 4 and the other

definitions in Ref [3] can be got.

Theorem 7. Let F : I → Rf is nth-ordered dif-

ferentiable on each t ∈ I in the case (III) or (IV)

in Definition 7. Then F (n) ∈ R for all t ∈ I.

Proof. Suppose that, (I) and (III) are coincided

simultaneously. Then there are A,B,C ∈ RF ,

which for only two first limits in cases (1) and

(3) in Theorem 6 we have here:

A =

n
2∑

i=0

Ei(F (t0 + (n− 2i)h))

⊖

n
2∑

i=0

Ei(F (t0 + (n− (2i+ 1))h))

and

B =

n
2∑

i=0

Ei(F (t0 + (n− (2i+ 1))h))

⊖

n
2
−1

∑

i=0

Ei(F (t0 + (n− (2i+ 2))h))

and

C =

n
2
−1

∑

i=0

Ei(F (t0 + (n− (2i+ 2))h))

⊖

n
2∑

i=0

Ei(F (t0 + (n− (2i+ 1))h)).

Thus we get

n
2
−1

∑

i=0

Ei(F (t0 + (n− (2i+ 2))h))

=

n
2
−1

∑

i=0

Ei(F (t0 + (n− (2i+ 2))h)) + (B + C)

i.e. B +C = 0̃ which implies B = C = 0̃, in case

where F (n)(t0) = 0̃ or B,C ∈ R, B = −C, then

F (n)(t0) ∈ R is resulted. �

4. Arithmetics on the Fuzzy

Nth-ordered Derivations

In this section calculations of the fuzzy nth-

ordered derivation and their relationships are re-

searched. These calculations are concluded sum-

mation and minus of two fuzzy functions and

scalar multipliers of one fuzzy function.

Theorem 8. If g : I −→ RF , c ∈ RF and

f : I −→ RF by f(t) = c⊙g(t), for all t ∈ I. If g

is differentiable on I of nth-order in t0 ∈ I, then

f is differentiable on I of nth-order in t0 ∈ I with

f (n)(t0) = c⊙ g(n)(t0).

Proof. Without loosing generality for even n, if

even quantity of f (i), i = 1, 2, ..., n are differen-

tiable in case (I) and f(t) = c⊙ g(t), for all t ∈ I

are considered. Using Theorem 6 we will have:

f (n)(t) = lim
hց0

∑n
j=0(

n

j
)(Ej(f(t+ (n− j)h))

hn

= ... = lim
hց0

∑n
j=0(

n

j
)(Ej(f(t+ (j + 1)h))

hn

by putting f(t) = c ⊙ g(t), the above equations

will be written as below:
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(c⊙ g(t))(n)

= lim
hց0

∑n
j=0(

n

j
)c⊙ (Ej(g(t+ (n− j)h))

hn

= ... = lim
hց0

∑n
j=0(

n

j
)c⊙ (Ej(g(t+ (j + 1)h))

hn

By Theorem 6 the equations can be written in

the following case:

f (n)(t) = lim
hց0

c⊙

∑n
j=0(

n

j
)(Ej(g(t+ (n− j)h))

hn

= ... = lim
hց0

c⊙

∑n
j=0(

n

j
)(Ej(g(t+ (j + 1)h))

hn

then we have

f (n)(t) = c⊙lim
hց0

∑n
j=0(

n

j
)(Ej(g(t+ (n− j)h))

hn

= ... = c⊙lim
hց0

∑n
j=0(

n

j
)(Ej(g(t+ (j + 1)h))

hn

= c⊙g(n)(t)

proof for the other cases is similar and omit-

ted. �

Theorem 9. For odd n, we have:

(a) If j quantity of f (k)(t), k = 1, 2, ..., n, for

all odd j, are (I)-differentiable and the rest

(II)-differentiable on (a, b), and element i of

g(l)(t), l = 1, 2, ..., n − 1, for all odd i, are (I)-

differentiable on (a, b). Thus f(t) + g(t) is nth-

order differentiable and for all t ∈ (a, b),

(f + g)(n)(t) = f (n)(t)⊖ (−1)g(n)(t).

(b) If j quantity of f (j)(t), j = 1, 2, ..., n − 1, for

all even j, are (I)-differentiable on (a, b) and for

i quantity of g(l)(t), l = 1, 2, ..., n, for all odd i,

are (I)-differentiable on (a, b). Then f+g is nth-

order differentiable and for all t ∈ (a, b),

(f + g)(n)(t) = (−1)g(n)(t) + (−1)f (n)(t).

(c) If j quantity of f (k)(t), k = 1, 2, ..., n, for

all even j, are (I)-differentiable and the rest

(II)-differentiable on (a, b), and element i of

g(l)(t), l = 1, 2, ..., n − 1, for all even i, are (I)-

differentiable on (a, b). Then f + g is nth-order

differentiable and for all t ∈ (a, b),

(f + g)(n)(t) = g(n)(t)⊖ (−1)f (n)(t).

(d) If j quantity of f (k)(t), k = 1, 2, ..., n, for

all odd j, are (I)-differentiable and the rest

(II)-differentiable on (a, b), and element i of

g(l)(t), l = 1, 2, ..., n − 1, for all odd i, are (I)-

differentiable on (a, b). Then f + g is nth-order

differentiable and for all t ∈ (a, b),

(f + g)(n)(t) = f (n)(t) + g(n)(t).

Proof. (a) Without loosing generality, it is con-

sidered that j quantity of f (k)(t), k = 1, 2, ..., n,

for all odd j, are (I)-differentiable and i quantity

of g(l)(t), l = 1, 2, ..., n, for all even j, are (II)-

differentiable on (a, b). By applying Theorem 6

we have:

f (n)(t) = lim
hց0

∑n
j=0(

n

j
)(Ej(f(t+ (n− j)h)))

hn

= ... = lim
hց0

∑n
j=0(

n

j
)(Ej(f(t+ (j + 1)h)))

hn

and

g(n)(t) = lim
hց0

∑n
j=0(

n

j
)(Ej(g(t+ jh)))

−hn

= ...

= lim
hց0

∑n
j=0(

n

j
)(Ej(g(t− (n− (j + 1)h))))

−hn

then

(f + g)(n)(t)

= lim
hց0

∑n
j=0(

n

j
)(Ej(f + g)(t+ (n− j)h))

hn

= ... = lim
hց0

∑n
j=0(

n

j
)(Ej(f + g)(t+ (j + 1)h)))

hn

⇒ (f+g)(n)(t)

= lim
hց0

∑n
j=0(

n

j
)(Ej(f(t+ (n− j)h)))

hn
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+

∑n
j=0(

n

j
)(Ej(g(t+ (n− j)h)))

hn

= ... = lim
hց0

∑n
j=0(

n

j
)(Ej(f(t+ (j + 1)h)))

hn

+

∑n
j=0(

n

j
)(Ej(g(t+ (j + 1)h)))

hn

⇒ (f+g)(n)(t)

= lim
hց0

∑n
j=0(

n

j
)(Ej(f(t+ (n− j)h)))

hn

+

∑n
j=0(

n

j
)(Ej(g(t+ (n− j)h)))

hn

= ... = lim
hց0

∑n
j=0(

n

j
)(Ej(f(t+ (j + 1)h)))

hn

⊖

∑n
j=0(

n

j
)(Ej(g(t+ (j + 1)h)))

hn

= f (n) + (⊖(−1)g(n)) = f (n)(t)⊖ (−1)g(n)(t) �

Theorem 10. Let n, be an odd number:

(a) If j quantity of f (k)(t), k = 1, 2, ..., n, for

all odd j, are (I)-differentiable and the rest

(II)-differentiable on (a, b), and element i of

g(l)(t), l = 1, 2, ..., n − 1, for all odd i, are (I)-

differentiable on (a, b). If H-differences f (k)(t)⊖

g(k)(t), k = 1, 2, ..., n− 1, exist for t ∈ (a, b) then

f(t) ⊖ g(t) is n-order differentiable and for all

t ∈ (a, b), (f ⊖ g)(n)(t) = f (n)(t) + (−1)g(n)(t).

(b) If j quantity of f (j)(t), j = 1, 2, ..., n − 1, for

all even j, are (I)-differentiable on (a, b) and for

i quantity of g(l)(t), l = 1, 2, ..., n, for all odd i,

are (I)-differentiable on (a, b). If H-differences

(f(t)⊖g(k)(t), k = 1, 2, ..., n−1, exist for t ∈ (a, b)

then f(t) ⊖ g(t) is n-order differentiable and for

all t ∈ (a, b), (f⊖g)(n)(t) = (−1)f (n)(t)+g(n)(t).

(c) If j quantity of f (j)(t), j = 1, 2, ..., n and i

quantity of g(l)(t), l = 1, 2, ..., n, for all even j

and i, are (I)-differentiable and the rest are (II)-

differentiable on (a, b). If H-differences (f(t) ⊖

g(t))(k), k = 1, 2, ..., n−1, exist for t ∈ (a, b) then

f(t) ⊖ g(t) is n-order differentiable and for all

t ∈ (a, b), (f ⊖ g)(n)(t) = g(n)(t)⊖ (−1)f (n)(t).

(d) If j quantity of f (j)(t), j = 1, 2, ..., n and

i quantity of g(l)(t), l = 1, 2, ..., n, for all odd

j and i, are (I)-differentiable and the rest (II)-

differentiable on (a, b). If (f(t) ⊖ g(t))(k), k =

1, 2, ..., n−1, exist for all t ∈ (a, b) then f(t)⊖g(t)

is n-order differentiable and for all t ∈ (a, b),

(f ⊖ g)(n)(t) = f (n)(t)⊖ g(n)(t).

Proof. (a) Let us consider j element of f (k)(t),

k = 1, 2, ..., n, for all odd j, are (I)-differentiable

and i element of, g(l)(t), l = 1, 2, ..., n, for all even

j, (II)-differentiable on (a, b).

For odd n in Theorem 6 we have:

f (n)(t) = lim
hց0

∑n

j=0(
n

j
)(Ej(f(t+ (n− j)h)))

hn

= ... = lim
hց0

∑n

j=0(
n

j
)(Ej(f(t+ (j + 1)h)))

hn

and

g(n)(t) = lim
hց0

∑n
j=0(

n

j
)(Ej(g(t+ jh)))

−hn

= ...

= lim
hց0

∑n
j=0(

n

j
)(Ej(g(t− (n− (j + 1)h)))

−hn

then

(f ⊖ g)(n)(t)

= lim
hց0

∑n

j=0(
n

j
)(Ej((f ⊖ g)(t+ (n− j)h)))

hn

= ...

= lim
hց0

∑n

j=0(
n

j
)(Ej((f ⊖ g)(t+ (j + 1)h)))

hn

⇒ (f⊖g)(n)(t)

= lim
hց0

∑n
j=0(

n

j
)(Ej(f(t+ (n− j)h)))

hn

⊖

∑n
j=0(

n

j
)(Ej(g(t+ (n− j)h)))

hn
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= ... = lim
hց0

∑n
j=0(

n

j
)(Ej(f(t+ (j + 1)h)))

hn

⊖

∑n
j=0(

n

j
)(Ej(g(t+ (j + 1)h)))

hn

⇒ (f⊖g)(n)(t)

= lim
hց0

∑n
j=0(

n

j
)(Ej(f(t+ (n− j)h)))

hn

+

∑n
j=0(

n

j
)(Ej(g(t+ (n− j)h)))

hn

= ... = lim
hց0

∑n
j=0(

n

j
)(Ej(f(t+ (j + 1)h)))

hn

⊖

∑n
j=0(

n

j
)(Ej(g(t+ (j + 1)h)))

hn

= f (n) ⊖ (⊖(−1)g(n)) = f (n)(t) + (−1)g(n)(t) �

Example 1. Let f, g : [0, π/2] → RF , f =

[5r − 4, 3− 2r]sint and g = [−3 + r,−1− r]t4:

(a) If f, f ′, f ′′ be (I)-differentiable on (0, π/2)

and g, g′, g′′ are (II)-differentiable on (0, π/2) or

if one of f, f ′, f ′′ is (I)-differentiable and two of

them are (II)-differentiable on (0, π/2) and one

of g, g′, g′′ is (II)-differentiable and two of them

are (I)-differentiable on (0, π/2). If H-differences

f(t)⊖g(t), f ′(t)⊖g′(t) and f ′′(t)⊖g′′(t) exist for

t ∈ (0, π/2) then f(t)⊖g(t) is third order differen-

tiable and for all t ∈ (0, π/2), (f ⊖ g)′′′(t) = [5r−

4, 3− 2r](−cost) + (−1)[−72 + 24r,−24− 24r]t.

(b) If f, f ′, f ′′ are (II)-differentiable on (0, π/2)

and g, g′, g′′ are (I)-differentiable on (0, π/2) or

if one of f, f ′, f ′′ is (II)-differentiable and two of

them are (I)-differentiable on (0, π/2) and one of

g, g′, g′′ is (I)-differentiable and two of them are

(II)-differentiable on (0, π/2). If H-differences

f(t) ⊖ g(t) and f ′(t) ⊖ g′(t) and f ′′(t) ⊖ g′′(t)

exist for t ∈ (0, π/2) then f(t) ⊖ g(t) is third

order differentiable and for all t ∈ (0, π/2),

(f ⊖ g)′′′(t) = (−1)[5r−4, 3−2r](−cost)+[−72+

24r,−24− 24r]t.

(c) If one of f, f ′, f ′′ is (II)-differentiable and

two of them are (I)-differentiable on (0, π/2) and

all of g, g′, g′′ are (II)-differentiable on (0, π/2).

If H-differences f(t) ⊖ g(t) and f ′(t) ⊖ g′(t)

and f ′′(t) ⊖ g′′(t) exist for t ∈ (0, π/2) then

f(t) ⊖ g(t) is third order differentiable and for

all t ∈ (0, π/2), (f ⊖ g)′′′(t) = [−72 + 24r,−24−

24r]t⊖ (−1)[5r − 4, 3− 2r](−cost). (d) If one of

f, f ′, f ′′ is (I)-differentiable and two of them are

(II)-differentiable on (0, π/2) and all of g, g′, g′′

are (I)-differentiable on (0, π/2). If H-differences

f(t)⊖g(t) and f ′(t)⊖g′(t) and f ′′(t)⊖g′′(t) exist

for t ∈ (0, π/2) then f(t)⊖g(t) is third order dif-

ferentiable and for all t ∈ (0, π/2), (f ⊖ g)′′′(t) =

[5r− 4, 3− 2r](−cost)⊖ [−72 + 24r,−24− 24r]t.

We show that (a) is correct. The other results

are provable similar.

(f ⊖ g)′′′(t0) =

limhց0
(f⊖g)(t0+3h)+(f⊖g)(t0+h)⊖(3(f⊖g)(t0+2h)+(f⊖g)(t0))

h3 =

[5r−4,3−2r]sin(t0+3h)⊖[−3+r,−1−r](t0+3h)4+[5r−4,3−2r]sin(t0+h)

⊖[−3+r,−1−r](t0+h)4⊖(3[5r−4,3−2r]sin(t0+2h))⊖3[−3+r,−1−r](t0+2h)4

+[5r−4,3−2r]sin(t0)⊖[−3+r,−1−r](t0)4)=[5r−4,3−2r]sin(t0+3h)

+[5r−4,3−2r]sin(t0+h)⊖3[5r−4,3−2r]sin(t0+2h)+[5r−4,3−2r]sin(t0)

⊖[−3+r,−1−r](t0+3h)4⊖[−3+r,−1−r](t0+h)4⊖(3[−3+r,−1−r](t0+2h)4)

⊖[−3+r,−1−r](t0)4

h3 = f ′′′(t0) + (−1)g′′′(t0)

Theorem 11. Let n, be an even:

(a) If j quantity of f (k)(t), k = 1, 2, ..., n, for

all odd j, are (I)-differentiable and the rest

(II)-differentiable on (a, b), and element i of

g(l)(t), l = 1, 2, ..., n − 1, for all odd i, are

(I)-differentiable on (a, b). Then f(t) ⊖ g(t)

is n-order differentiable and for all t ∈ (a, b),

(f + g)(n)(t) = f (n)(t) + g(n)(t).

(b) If j quantity of f (k)(t), k = 1, 2, ..., n,

for all even j, are (I)-differentiable and the

rest (II)-differentiable on (a, b), and element i

of g(l)(t), l = 1, 2, ..., n − 1, for all odd i, are

(I)-differentiable on (a, b). Then f(t) + g(t)

is n-order differentiable and for all t ∈ (a, b),

(f + g)(n)(t) = (−1)f (n)(t) + (−1)g(n)(t).

(c) If j quantity of f (k)(t), k = 1, 2, ..., n,

for all odd j, are (I)-differentiable and the rest
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(II)-differentiable on (a, b), and element i of

g(l)(t), l = 1, 2, ..., n − 1, for all odd i, are

(I)-differentiable on (a, b). Then f(t) + g(t)

is n-order differentiable and for all t ∈ (a, b),

(f + g)(n)(t) = (−1)f (n)(t)⊖ g(n)(t).

(d) If j quantity of f (k)(t), k = 1, 2, ..., n, for

all even j, are (I)-differentiable and the rest

(II)-differentiable on (a, b), and element i of

g(l)(t), l = 1, 2, ..., n − 1, for all even i, are (I)-

differentiable on (a, b). Then f(t) + g(t) is n-

order differentiable and for all t ∈ (a, b), (f +

g)(n)(t) = f (n)(t)⊖ (−1)g(n)(t).

Proof. (a)If n be a even number and

f (k)(t), k = 1, 2, ..., n be (I)-differentiable or (II)-

differentiable:

f (n)(t) = lim
hց0

∑n
j=0(

n

j
)(Ej(f(t+ (n− j)h)))

hn

= ... = lim
hց0

∑n
j=0(

n

j
)(Ej(f(t+ (j + 1)h)))

hn

and g(k), k = 1, 2, ..., n be (II)-differentiable we

have

g(n)(t0) = lim
hց0

∑n
j=0(

n

j
)(Ej(g(t+ (n− j)h)))

hn

= ... = lim
hց0

∑n
j=0(

n

j
)(Ej(g(t+ (j + 1)h)))

hn

Now we can write

(f + g)(n)(t) =

lim
hց0

∑n
j=0(

n

j
)(Ej(f+g)(t0+(n−j)h)))

hn

= ... = lim
hց0

∑n
j=0(

n

j
)(Ej(f+g)(t0+(j+1)h)))

hn .

Then

(f + g)(n)(t0) =

lim
hց0

∑n
j=0(

n

j
)(Ej(f(t0+(n−j)h)))+(Ej(g(t0+(n−j)h))))

hn

= ...

= lim
hց0

∑n
j=0(

n

j
)(Ej(f(t0+(n−j)h))))+(Ej(g(t0+(n−j)h)))

hn

Proof (b), (c) and (d) are similar and omit-

ted. �

Theorem 12. For all even n we have four cases

for (f ⊖g)(n), in respect to (I)-differentiability or

(II)-differentiability:

(a) If j elements of f (j)(t), j = 1, 2, ..., n,

for all odd j, are (I)-differentiable and the rest

(II)-differentiable on (a, b), and i elements of

g(l)(t), l = 1, 2, ..., n− 1, are (I)-differentiable on

(a, b) and the rest are (II)-differentiable. If H-

differences f (k)(t)⊖g(k)(t), k = 1, 2, ..., n−1 exist

for t ∈ (a, b) then f ⊖ g is n-order differentiable

at t on (a, b) and (f ⊖g)(n)(t) = f (n)(t)⊖g(n)(t).

(b) If j elements of f (j)(t), j = 1, 2, ..., n, are

(I)-differentiable and the rest (II)-differentiable

on (a, b),and i elements of g(l)(t), l = 1, 2, ..., n−

1, for all odd j and i, are (I)-differentiable

on (a, b) and the rest (II)-differentiable. If H-

differences f (k)(t) ⊖ g(k)(t), k = 1, 2, ..., n − 1

exist for t ∈ (a, b) then f(t) ⊖ g(t) is n-

order differentiable at t and (f ⊖ g)(n)(t) =

(−1)(f (n)(t)⊖ g(n)(t).

(c) If for odd number j, f (j)(t), j = 1, 2, ..., n

be (I)-differentiable on (a, b) and for even i,

g(i)(t), i = 1, 2, ..., n, be (I)-differentiable on

(a, b). If H-differences f (k)(t) ⊖ g(k)(t), k =

1, 2, ..., n − 1 exist for t ∈ (a, b) then f(t) ⊖ g(t)

is n-order differentiable at t and (f ⊖ g)(n)(t) =

g(n)(t)⊖ (−1)f (n)(t).

(d) If for even number j , f (j)(t), j = 1, 2, ..., n

be (I)-differentiable on (a, b) and for all odd i,

g(k)(t), k = 1, 2, ..., n − 1, be (I)-differentiable

on (a, b). If H-differences f (k)(t) ⊖ g(t)(k), k =

1, 2, ..., n−1 exist for t ∈ (a, b) then f(t)⊖g(t) is

fourth order differentiable at t and (f + g)(n) =
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f (n) + (−1)g(n).

Proof. (a) If n be a even number and

f (k)(t), k = 1, 2, ..., n be (I)-differentiable or (II)-

differentiable:

f (n)(t) = lim
hց0

∑n
j=0(

n

j
)(Ej(f(t+ (n− j)h)))

hn

= ... = lim
hց0

∑n
j=0(

n

j
)(Ej(f(t+ (j + 1)h)))

hn

and g(k), k = 1, 2, ..., n be (II)-differentiable we

have

g(n)(t0) = lim
hց0

∑n
j=0(

n

j
)(Ej(g(t+ (n− j)h)))

hn

= ... = lim
hց0

∑n
j=0(

n

j
)(Ej(g(t+ (j + 1)h)))

hn

Now we can write

(f + g)(n)(t) =

lim
hց0

∑n
j=0(

n

j
)(Ej(f⊖g)(t0+(n−j)h)))

hn

= ... = lim
hց0

∑n
j=0(−1)j+1⊖(

n

j
)(Ej(f⊖g)(t0+(j+1)h))

hn .

Then

(f + g)(n)(t0) =

lim
hց0

∑n
j=0(

n

j
)(Ej(f(t0+(n−j)h)))⊖(Ej(g(t0+(n−j)h)))

hn

= ...

= lim
hց0

∑n
j=0(

n

j
)(Ej(f(t0+(n−j)h)))⊖(Ej(g(t0+(n−j)h))))

hn .

Proof (b), (c) and (d) are similar and omit-

ted. �

Example 2. Let f, g : [0, π/2] −→ RF , f =

[5r − 4, 3− 2r]sint and g = [−3 + r,−1− r]t4.

(a) If f, f ′, f ′′, f ′′′, g, g′, g′′, g′′′ are differentiable

in same case ((I) or (II)) on (a, b) or f, f ′, f ′′, f ′′′

are (I)-differentiable and g, g′, g′′, g′′′ are (II)-

differentiable on (0, π/2) or inverse and if H-

differences f(t)⊖ g(t), f ′(t)⊖ g′(t), f ′′(t)⊖ g′′(t)

and f ′′′(t) ⊖ g′′′(t) exist for t ∈ (0, π/2) then

f ⊖ g is fourth order differentiable at t on (a, b)

and (f ⊖ g)(4) = [5r − 4, 3 − 2r]sint ⊖ [−72 +

24r,−24− 24r].

(b) If one of f, f ′, f ′′, f ′′′ are (II)-differentiable

and the others are (I)-differentiable and one

of g, g′, g′′, g′′′ be (I)-differentiable and the oth-

ers be (II)-differentiable on (0, π/2) or if one

f, f ′, f ′′, f ′′′ be (II)-differentiable and the oth-

ers be (I)-differentiable on (0, π/2) and similar

for g, g′, g′′, g′′′, or f one f, f ′, f ′′, f ′′′ are (I)-

differentiable and the others be (II)-differentiable

on (0, π/2) and similar for g, g′, g′′, g′′′. If H-

differences f(t)⊖ g(t), f ′(t)⊖ g′(t), f ′′(t)⊖ g′′(t)

and f ′′′(t)⊖g′′′(t) exist for t ∈ (0, π/2) then f⊖g

is fourth order differentiable at t and (f⊖g)(4) =

(−1)([5r−4, 3−2r]sint⊖ [−72+24r,−24−24r]).

(c) If one of f, f ′, f ′′, f ′′′ be (I)-differentiable

and the others be (II)-differentiable and all

of g, g′, g′′, g′′′ be (II)-differentiable or (I)-

differentiable on (0, π/2). If H-differences

f(t) ⊖ g(t), f ′(t) ⊖ g′(t), f ′′(t) ⊖ g′′(t) and

f ′′′(t)⊖ g′′′(t) exist for t ∈ (0, π/2) then f + g is

fourth order differentiable at t and (f ⊖ g)(4) =

(−1)[5r− 4, 3− 2r]sint+ [−72+ 24r,−24− 24r].

(d) If f, f ′, f ′′, f ′′′ be (II)-differentiable and one

of g, g′, g′′, g′′′ be (I)-differentiable and the others

be (II)-differentiable on (0, π/2) or if f, f ′, f ′′, f ′′′

be (I)-differentiable on (0, π/2) and one of

g, g′, g′′, g′′′ be (II)-differentiable and the others

be (I)-differentiable on (0, π/2). If H-differences

f(t)⊖g(t), f ′(t)⊖g′(t), f ′′(t)⊖g′′(t) and f ′′′(t)⊖

g′′′(t) exist for t ∈ (0, π/2) then f ⊖ g is fourth
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order differentiable at t and (f ⊖ g)(4) = [5r −

4, 3− 2r]sint+ (−1)[−72 + 24r,−24− 24r].

We show that (a) is correct, the other results

are provable similar.

(f ⊖ g)(4)(t0) =

limhց0
(f⊖g)(t0+4h)+6(f⊖g)(t0+2h)+(f⊖g)(t0)⊖(4(f⊖g)(t0+3h)+(f⊖g)(t0+h))

h4

= limhց0
[5r−4,3−2r]sin(t0+4h)⊖[−3+r,−1−r](t0+4h)4+6[5r−4,3−2r]sin(t0+2h)⊖6[−3+r,−1−r](t0+2h)4+[5r−4,3−2r]sin(t0)

⊖[−3+r,−1−r](t0)
4⊖(4[5r−4,3−2r]sin(t0+3h)⊖4[−3+r,−1−r](t0+3h)4)⊖[5r−4,3−2r]sin(t0+3h)⊖[−3+r,−1−r](t0+3h)4

h4

= limhց0
[5r−4,3−2r]sin(t0+4h)+6[5r−4,3−2r]sin(t0+2h)⊖[5r−4,3−2r]sin(t0)+(4[5r−4,3−2r]sin(t0+3h)⊖[5r−4,3−2r]sin(t0+3h)

h4

+limhց0
⊖[−3+r,−1−r](t0+4h)4+6[−3+r,−1−r](t0+2h)4⊖[−3+r,−1−r](t0)

4⊖4[−3+r,−1−r](t0+3h)4)+[−3+r,−1−r](t0+3h)4

h4

= f (4)(t0)⊖ g(4)(t0)

5. Solving Fuzzy Nth-order

Differential Equations

We define an nth-order fuzzy differentiable equa-

tion by:

x(n)(t) = f(t, x(t), x′(t), x′′(t), ..., x(n−1)(t)),

where x(t) is a fuzzy function of t,

f(t, x(t), x′(t), x′′(t), ..., x(n−1)(t)) is a fuzzy-

valued function and the fuzzy variables

x′(t), x′′(t), ..., x(n)(t) are the defined deriva-

tives of x(t), x′(t), ..., x(n−1)(t) respectively.

Given the initial values x(t0) = k0, x
′(t0) =

k1, ..., x
(n−1)(t0) = kn−1, we obtain a fuzzy

cauchy problem of the n-order






x(n)(t) = f(t, x(t), x′(t), x′′(t), ..., x(n−1)(t)),

x(t0) = k0,

x′(t0) = k1,
...

x(n−1)(t0) = kn−1

(13)

Theorem 13. Let f : [a, b]×E ×E × ...×E →

E be continuous, and suppose that there exist

M1,M2, ...,Mn > 0 such that

D(f(t, x1, x2, ..., xn); f(t, y1, y2, ..., yn))

≤
∑

MiD(xi, yi)

for all t ∈ [a, b], xi, yi ∈ E, i = 1, 2, ..., n. Then

the initial value problem (13) has a unique solu-

tion on [a, b] in each sense of differentiability.

Proof. See Theorem 3.3 in [21]. �
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Theorem 14. For even number n, if f :

[a, b] −→ RF and let a = b0 < b1 < ... < bn = b

be a division of the interval [a, b] such that f is

n-order differentiable of (I) or (II) differentiable

in the sense of Definition 7 on each of the inter-

vals [bi−1, bi], i = 1, 2, ..., n, with the same case of

(n − 1)-order differentiable on each subinterval.

Then:
∫ b

a
(
∫ b

a
...(

∫ b

a
f (n)(t)dt...)dt)dt = f(bi) −

a1f(bi−1) + a2f(bi−2) − ... − an−1f(bi−n+1) +

f(bi−n) + (−1) ⊙ (f(bn) − a1f(bi−n+1) +

a2f(bi−n+2)− ...− an−1f(bi−1) + f(bi)).

here ai = (
n

i
) and

I = {i ∈ {1, ..., n} such that for even number k,

f (k), k = 1, 2, ..., n, be (I)-differentiable}.

J = {j ∈ {1, ..., n} such that for odd number k,

f (k), k = 1, 2, ..., n− 1, be (I)-differentiable}

Proof.

f (n)(t) = lim
h→0

∑n

j=0(−1)j+1 ⊖ (
n

j
)f(t+ (n− j)h)

hn

= ... = lim
h→0

∑n

j=0(−1)j+1 ⊖ (
n

j
)f(t)(t+ (j + 1)h)

hn

then

∫ b

a

(

∫ b

a

...(

∫ b

a

f (n)(t)dt...)dt)dt

= lim
h→0

∫ b

a

(

∫ b

a

...(

∫ b

a

∑n
j=0(−1)j+1 ⊖ (

n

j
)f(t+ (n− j)h)

hn
dt...)dt)dt

= ... = lim
h→0

∫ b

a

(

∫ b

a

...

(

∫ b

a

∑n
j=0(−1)j+1 ⊖ (

n

j
)f(t)(t+ (j + 1)h)

hn
dt

...)dt)dt

�

Theorem 15. For odd number n, if f : [a, b] −→

RF and let a = b0 < b1 < ... < bn = b be a

division of the interval [a, b] such that f is n-

order differentiable of (I) or (II) differentiable in

the sense of Definition 7 on each of the inter-

vals [bi−1, bi], i = 1, 2, ..., n, with the same case of

(n − 1)-order differentiable on each subinterval.

Then:
∫ b

a
(
∫ b

a
f (n)(t)dt)...)dt = f(bi) − a1f(bi−1) +

... − an−1f(bi−n+1) + f(bi−n) + (−1) ⊙ (f(bn) −

a1f(bi−n+1) + ...− an−1f(bi−1) + f(bi)).

where ai = (
n

i
) and

I = {i ∈ {1, ..., n} such that for odd number k,

f (k), k = 1, 2, ..., n be (I)-differentiable}.

J = {j ∈ {1, ..., n} such that for even number k,

f (k), k = 1, 2, ..., n− 1 be (I)-differentiable}.

Theorem 16. Let t0 ∈ [a, b], and assume that

f : [a, b] × RF × RF × ... × RF → RF is contin-

uous. A mapping x : [a, b] → RF is a solution

of the initial value problem (13) if and only if

x ∈ Cn(I, RF ), and satisfies the following inte-

gral equations for all t ∈ [a, b]:

x(t) = k0 + c1(k1(t− t0) + c2(
(t− t0)

2

2!
+ ...

+ cn−1(
kn−1

(n− 1)!
(t− t0)

n−1

+ cn

∫ t

t0

∫ t

t0

...

∫ t

t0
︸ ︷︷ ︸

n

f(s, x(s), x′(s), ...

, x(n−1)(s))ds...dsds)...)) (14)

where

ci =

{

1, x(i)(t) is (I)− differentiable,

⊖(−1), x(i)(t) is (II)− differentiable.

for all i = 1, 2, ..., n.

Proof. Since f is continuous, it must be inte-

grable. Is considered that (14) is solution of

initial value problem (13). It is obvious that the
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solution for the following problem:







x(n+1)(t) = f(t, x(t), x′(t), x′′(t), ..., x(n)(t)),

x(t0) = k0,

x′(t0) = k1,
...

x(n)(t0) = kn

should be resulted as under:

x′(t) = k1 + c2(
k2
2! (t − t0)

2 + c3(
k3
3! (t −

t0)
3 + ... + cn−2(

kn−2

(n−2)!(t − t0)
(n−2) +

cn−1

∫ t

t0

...

∫ t

t0
︸ ︷︷ ︸

n

f(s, x(s), x′(s), ..., x(n)(s))ds...ds))).

By exercising integral over [t0, t], we can equiv-

alently have:

x(t) = k0 + c1(k1(t − t0) + c2(
k2
2! (t −

t0)
2 + ... + cn−1(

kn−1

(n−1)!(t − t0)
n−1 +

cn

∫ t

t0

∫ t

t0

...

∫ t

t0
︸ ︷︷ ︸

n+1

f(s, x(s), x′(s), ...

, x(n)(s))ds...dsds)))).

�

Example 3. Let following fuzzy differential

equation with initial values:







x′′(t) = x(t)

x(0) = [α− 1, 1− α],

x′(0) = [α, 2− α]

Then the solution of this fuzzy differential

equation for all t ∈ [0,∞] is

x(t) = [α − 1, 1 − α] + c2([α, 2 − α]t +

c1(
∫ t

0

∫ t

0 x(s)dsds)).

Let x(t) and x′(t) are (I)-differentiable, the so-

lution by Theorem 16 is obtained in the following:

x(t) = [α−1, 1−α]+[α, 2−α]t+
∫ t

0

∫ t

0 x(s)dsds

Now we can solve this interval-value integral

equation, it means two crisp integral equation

should be solve. The solution is gained by the

Modified Adomian method in the following:

x(t) = [α − 1 + αt + t2

2 (α − 1), 1 − α + (2 −

α)t+ t2

2 (1− α)].

Let x(t) and x′(t) be (II)-differentiable, the

solution by Theorem 16 is gained in the following

interval equation:

x(t) = [α − 1, 1 − α] ⊖ (−1)[α, 2 − α]t +
∫ t

0

∫ t

0 x(t)dsds

It means, the solution by solving two crisp

integral equations by Modified Adomian method

will be obtained in the following term:

x(t) = [α − 1 + (2 − α)t + t2

2 (α − 1), 1 − α +

αt+ t2

2 (1− α)].

Let x(t) be (I)-differentiable and x′(t) be (II)-

differentiable, the solution by Theorem 16 is in

the bottom interval equation:

x(t) = [α − 1, 1 − α] ⊖ (−1)[α, 2 − α]t ⊖

(−1)
∫ t

0

∫ t

0 x(t)dsds

It means, the solution by solving a crisp in-

tegral equation system by Modified Adomian

method will be obtained in the bottom term:

x(t) = [α − 1 + (2 − α)t + t2

2 (1 − α), 1 − α +

αt+ t2

2 (α− 1)].

Let x(t) be (II)-differentiable and x′(t) be (I)-

differentiable, the solution by Theorem 16 is ob-

tained in the following:

x(t) = [α − 1, 1 − α] + [α, 2 − α]t ⊖

(−1)
∫ t

0

∫ t

0 x(t)dsds

It means, the solution by solving a crisp in-

tegral equation system by Modified Adomian

method will be gained in the sequence:

x(t) = [α − 1 + αt + t2

2 (1 − α), 1 − α + (2 −

α)t+ t2

2 (α− 1)].
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6. Conclusion

In this work, we introduced a new method for

finding generalized fuzzy nth order derivative and

we proved some theorems in the relationships be-

tween fuzzy derivatives of nth order and we pre-

sented the solution of fuzzy differential equations

of nth order. For future research one can use gen-

eralized fuzzy nth order derivative for obtaining

the switching point of fuzzy differential equations

that is introduced by Bede [8].
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