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Abstract. In this paper, a new class of semilocal E-preinvex and related maps in Banach spaces is
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1. Introduction

In recent years, generalizations of convexity in
connection with optimality conditions and dual-
ity theory have been of much interest and many
contributions have been made to this develop-
ment. See, e.g., [1–6] and the references therein.

Preda and Stancu-Minasian [7] derived opti-
mality conditions for weak vector minima under
semilocal preinvexity and η-semidifferentiability
conditions and extended the Wolfe and Mond-
Weir duals. Later, Preda [8] further established
optimality conditions and duality results for a
nonlinear fractional multiple objective program-
ming problem with semilocal preinvex functions
involving η-semidifferentiability. Additionally,
Batista et al. [9] introduced the notions of prein-
vex maps in Banach spaces and obtained optimal-
ity conditions for vector problem. Subsequently,
Yu and Liu [10] studied optimality and duality
for the same vector problem involving the gener-
alized type-I maps in Banach spaces.

On the other hand, Chen [11] proposed a class
of semi-E-convex functions and discussed its ba-
sic properties. On the basis of this notion, Hu
et al. [12] also brought forward the concept

of semilocal E-convexity, and studied its some
characterizations, and established some optimal-
ity conditions and duality results for semilocal E-
convex programming. Recently, Fulga and Preda
[13] extended the E-convexity to E-preinvexity
and local E-preinvexity, and studied some of their
properties and an application. More recently, Luo
and Jian [14] presented semi E-preinvex maps in
Banach spaces and discussed their properties.

Motivated by research works of [10, 12, 14] and
references therein, in present paper, I introduce
the concepts of semilocal E-(pre)invexity, E-η-
semidifferentiablity and E-type-I maps in Banach
spaces and study some of their important prop-
erties.

Additionally, I establish some optimality con-
ditions for a nondifferentialbe vector optimiza-
tion problem with restrictions of inequalities un-
der semilocal E-preinvexity, semilocal E-invexity
and E-type-I assumptions, respectively. Further-
more, I formulate a dual type for this optimiza-
tion problem and obtain weak and converse dual-
ity results using E-type-I maps. This work par-
tially extends earlier works of [10, 14] to a wider
class of maps.
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2. Preliminaries and Definitions

Throughout this paper, let X, Y and Zj , j ∈
M = {1, 2, . . . ,m} be real Banach spaces with
topological duals X∗, Y ∗ and Z∗

j , respectively,
E : X → X and η : X × X → X be two fixed
mappings.

Consider the following optimization problem:

(P )















min f(x)
s.t.− g(x) = −(g1(x), . . . , gm(x))
∈ (D1×, . . . ,×Dm),
x ∈ K ⊂ X,

(1)

where f : X → Y and gj : X → Zj are maps,
K and Dj are subsets of X and Zj . Denote the
feasible set of (P ) by F = {x ∈ K : −gj(x) ∈
Dj , j ∈ M}. We assume that the spaces Y and
Zj are ordered by cones C ⊂ Y , Dj ⊂ Zj and
that these cones are pointed, closed, convex, and
with nonempty interior. The dual cone of C is
denoted by

C∗ = {µ∗ ∈ Y ∗ : 〈µ∗, x〉 ≥ 0, ∀x ∈ C}.
The cone C induces a partial order≤C on Y given
by:
x, y ∈ Y , x ≦C y if and only if y − x ∈ C;
x, y ∈ Y , x ≤C y if and only if y − x ∈ C\{0Y };
x, y ∈ Y , x <C y if and only if y − x ∈ intC.

Analogously, Dj induces a partial order on Zj .
Recall some definitions and results that will be

used in the sequel.

Definition 1. ([14]) A set K ⊂ X is said to be
E-invex with respect to η if

E(y)+λη(E(x), E(y)) ∈ K, ∀x, y ∈ K, λ ∈ [0, 1].

Definition 2. ([14]) Let K ⊂ X be an E-invex
set with respect to η. A map f : X → Y is said
to be semi E-preinvex on K with respect to η if

f(E(y) + λη(E(x), E(y)))
≦C λf(x) + (1− λ)f(y),

∀x, y ∈ K, λ ∈ [0, 1].

Definition 3. ([10]) We say that x̄ ∈ F is a
weakly efficient solution [or, an efficient solution]
of problem (P ), if there exists no x ∈ F such that

f(x) <C f(x̄) [or, f(x) ≤C f(x̄)].

Lemma 1. ([15]) Let C ⊂ Y be a convex cone
with intC 6= ∅ and C∗ the dual cone of C. Then,
(a) ∀µ∗ ∈ C∗ \ {0Y ∗}, x ∈ intC ⇒ 〈µ∗, x〉 > 0;
(b) ∀µ∗ ∈ intC∗, x ∈ C \ {0Y } ⇒ 〈µ∗, x〉 > 0.

We below introduce the concepts of local star-
shaped E-convex set, local E-invex set, semilocal
E-convex map and local E-preinvex map in Ba-
nach spaces. Especially, ifX = Rn, Y = R, these
concepts were given by earlier research (see[12,
13]).

Definition 4. A set K ⊂ X is said to be lo-
cal starshaped E-convex, if there is a map E

such that corresponding to each pair of points
x, y ∈ K, there is a maximal positive number
a(x, y) ≤ 1 satisfying

λE(x)+(1−λ)E(y) ∈ K, ∀λ ∈ [0, a(x, y)]. (2)

Definition 5. A map f : X → Y is said to
be semilocal E-convex on a local starshaped E-
convex set K ⊂ X if for each pair of x, y ∈
K(with a maximal positive number a(x, y) ≤ 1
satisfying (2)), there exists a positive number
b(x, y) ≤ a(x, y) satisfying

f(λ(E(x)) + (1− λ)E(y))

≦C λf(x) + (1− λ)f(y),

∀λ ∈ [0, b(x, y)].

Definition 6. A set k ⊂ X is said to be local
E-invex with respect to η, if ∀x, y ∈ K, there
exists a(x, y) ∈ (0, 1] such that, ∀λ ∈ [0, a(x, y)],

E(y) + λη(E(x), E(y)) ∈ K. (3)

Remark 1. Every local starshaped E-convex set
is a local E-invex set with respect to η, where
η(x, y) = x − y, ∀x, y ∈ X. Every E-invex set
with respect to η is a local E-invex set with re-
spect to η, where a(x, y) = 1, ∀x, y ∈ X. But
their converses are not necessarily true.

Definition 7. A map f : X → Y is said to
be local E-preinvex on k ⊂ X with respect to
η if for any x, y ∈ K(with a maximal positive
number a(x, y) ≤ 1 satisfying (3)), there exists
0 < b(x, y) ≤ a(x, y) such that K is a local
E-invex set and

f(E(y) + λη(E(x), E(y)))

≦C λf(E(x)) + (1− λ)f(E(y)),

∀λ ∈ [0, b(x, y)].

3. Semilocal E-preinvex and Related

Maps

In this section, we introduce the concepts of
semilocal E-preinvex and related maps in Banach
spaces and study some of their basic properties.

Definition 8. A map f : X → Y is said to be
semilocal E-preinvex on k ⊂ X with respect to
η if for any x, y ∈ K(with a maximal positive
number a(x, y) ≤ 1 satisfying (3)), there exists
0 < b(x, y) ≤ a(x, y) such that K is a local
E-invex set and

f(E(y) + λη(E(x), E(y))) ≦C

λf(x) + (1− λ)f(y), ∀λ ∈ [0, b(x, y)].

If the inequality sign above is strict for any x, y ∈
K and x 6= y, then f is called as a strict semilo-
cal E-preinvex map.
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Remark 2. Every semilocal E-convex map is a
semilocal E-preinvex map, where η(x, y) = x −
y, ∀x, y ∈ X. Every semi E-preinvex map with
respect to η is a semilocal E-preinvex map, where
a(x, y) = b(x, y) = 1, ∀x, y ∈ X. But their con-
verses are not necessarily true.

See the following example.

Example 1. Let the map E : R → R be defined
as

E(x) =







0, if x < 0,
1, if 1 < x ≤ 2,
x, if 0 ≤ x ≤ 1 or x > 2,

(4)

and the map η : R×R → R be defined as

η(x, y) =

{

0, if x = y,

1− x, if x 6= y.
(5)

Obviously, R is a local starshaped E-convex set
and a local E-invex set with respect to η. Let
f : R → R be defined as

f(x) =















0, if 1 < x ≤ 2,
1, if x > 2,

−x+ 1, if 0 ≤ x ≤ 1,
−x+ 2, if x < 0.

(6)

We can prove that f is semilocal E-preinvex on
R with respect to η. However, when x0 = 2, y0 =
3, and for any b ∈ (0, 1], there exists a sufficiently
small λ0 ∈ (0, b] satisfying

f(λ0E(x0) + (1− λ0)E(y0)) = f(3− 2λ0)

= 1 > 1− λ0 = λ0f(x0) + (1− λ0)f(y0).

That is, f(x) is not a semilocal E-convex map on
R.

Similarly, taking x1 = 1, y1 = 4, we have

f(E(y1) + λ1η(E(x1), E(y1))) = f(4)

= 1 > 1− λ1 = λ1f(x1) + (1− λ1)f(y1),

for some λ1 ∈ [0, 1].
Thus, f(x) is not a semi E-preinvex map on

R with respect to η.

Definition 9. A map f defined on a local E-
invex set k ⊂ X is said to be quasi-semilocal
E-preinvex(with respect to η) if for all x, y ∈
K(with a maximal positive number a(x, y) ≤ 1
satisfying (3)) satisfying f(x) ≦C f(y), there is
a positive number b(x, y) ≤ a(x, y) such that

f(E(y) + λη(E(x), E(y))) ≦C f(y),

∀λ ∈ [0, b(x, y)].

Definition 10. A map f defined on a local E-
invex set K ⊂ X is said to be pseudo-semilocal
E-preinvex (with respect to η)if for all x, y ∈
K(with a maximal positive number a(x, y) ≤ 1
satisfying (3)) satisfying f(x) <C f(y), there are

a positive number b(x, y) ≤ a(x, y) and a posi-
tive number c(x, y) such that

f(E(y) + λη(E(x), E(y))) ≦C f(y)− λc(x, y),

∀λ ∈ [0, b(x, y)].

Remark 3. Every semilocal E-preinvex map on
a local E-invex set K with respect to η is both
a quasi-semilocal E-preinvex map and a pseudo-
semilocal E-preinvex map.

Theorem 1. Let f : X → Y be a local E-
preinvex map on a local E-invex set K ⊂ X with
respect to η, then f is a semilocal E-preinvex map
if and only if f(E(x)) ≦C f(x), ∀x ∈ K.

Proof. Suppose that f is a semilocal E-preinvex
map on set K with respect to η, then for each
pair of points x, y ∈ K (with a maximal positive
number a(x, y) ≤ 1 satisfying (3)), there exists
a positive number b(x, y) ≤ a(x, y) satisfying

f(E(x) + λη(E(y), E(x)))

≦C λf(y) + (1− λ)f(x), λ ∈ [0, b(x, y)].

By letting λ = 0, we have f(E(x)) ≦C f(x), ∀x ∈
K.

Conversely, assume that f is a local E-preinvex
map on a local E-invex set K, then for any
x, y ∈ K, there exist a(x, y) ∈ (0, 1] satisfying
(3) and b(x, y) ∈ (0, a(x, y)] such that

f(E(y) + λη(E(x), E(y)))

≦C λf(E(x)) + (1− λ)f(E(y)), ∀λ ∈ [0, b(x, y)].

Since f(E(x)) ≦C f(x), ∀x ∈ K, then

f(E(y) + λη(E(x), E(y)))

≦C λf(x) + (1− λ)f(y), ∀λ ∈ [0, b(x, y)].

The proof is completed. �

Remark 4. A local E-preinvex map on a local
E-invex set with respect to η is not necessarily a
semilocal E-preinvex map.

Example 2. Let K = [−4,−1)
⋃

[1, 4],

E(x) =

{

x2, if |x| ≤ 2,
−1, if |x| > 2,

(7)

η(x,y)=















x−y, if x≥0,y≥0, or x≤0,y≤0,

−1−y, if x>0,y≤0, or x≥0,y<0,

1−y, if x<0,y≥0, or x≤0,y>0,

(8)

and f : R → R be defined by f(x) = x2, then f

is local E-preinvex on K with respect to η.
Since f(E(2)) = 16 > f(2) = 4, from Theorem

1, it follows that f is not a semilocal E-preinvex
map.
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Definition 11. The set G = {(x, α) : x ∈
K ⊂ X, α ∈ Y } is said to be a local E-
invex set with respect to η corresponding to X

if there are two maps η, E and a maximal pos-
itive number a((x, α1), (y, α2)) ≤ 1, for each
(x, α1), (y, α2) ∈ G such that

(E(y) + λη(E(x), E(y)), λα1 + (1− λ)α2) ∈ G,

∀λ ∈ [0, a((x, α1), (y, α2))].

Theorem 2. Let K ⊂ X be a local E-invex
set with respect to η. Then f is a semilocal E-
preinvex map on K with respect to η if and only
if its epigraph Gf = {(x, α) : x ∈ K, f(x) ≦C

α, α ∈ Y } is a local E-invex set with respect to
η corresponding to X.

Proof. Assume that map f is semilocal
E-preinvex on K with respect to η and
(x, α1), (y, α2) ∈ Gf , then x, y ∈ K, f(x) ≦C

α1, f(y) ≦C α2. Since K is a local E-invex
set, there is a maximal positive number a(x, y) ≤
1 such that

E(y) + λη(E(x), E(y)) ∈ K, ∀λ ∈ [0, a(x, y)].

In addition, in view of f being a semilocal E-
preinvex map on K with respect to η, there is a
positive number b(x, y) ≤ a(x, y) such that

f(E(y) + λη(E(x), E(y)))
≦C λf(x) + (1− λ)f(y) ≦C λα1 + (1− λ)α2,

∀λ ∈ [0, b(x, y)].

That is, (E(y) + λη(E(x), E(y)), λα1 + (1−
λ)α2) ∈ Gf , ∀λ ∈ [0, b(x, y)].
Therefore, Gf = {(x, α) : x ∈ K, f(x) ≦C

α, α ∈ Y } is a local E-invex set with respect
to η corresponding to X.

Conversely, if Gf is a local E-invex set with
respect to η corresponding to X, then for any
points (x, f(x)), (y, f(y)) ∈ Gf , there is a max-
imal positive number a((x, f(x)), (y, f(y))) ≤ 1
such that

(E(y) + λη(E(x), E(y)), λf(x) + (1− λ)f(y))
∈ Gf , ∀λ ∈ [0, a((x, f(x)), (y, f(y)))].

That is, E(y) + λη(E(x), E(y)) ∈ K,

f(E(y) + λη(E(x), E(y)))

≦C λf(x) + (1− λ)f(y),

∀λ ∈ [0, a((x, f(x)), (y, f(y)))].

Thus,K is a local E-invex set and f is a semilocal
E-preinvex map on K. �

Theorem 3. If f is a semilocal E-preinvex map
on a local E-invex set K ⊂ X with respect to
η, then the level set Sα = {x ∈ K : f(x) ≦C α}
is a local E-invex set for any α ∈ Y .

Proof. For any α ∈ Y and x, y ∈ Sα, then
x, y ∈ K and f(x) ≦C α, f(y) ≦C α. Since K is
a local E-invex set, there is a maximal positive
number a(x, y) ≤ 1 such that

E(y) + λη(E(x), E(y)) ∈ K, ∀λ ∈ [0, a(x, y)].

In addition, due to the semilocal E-preinvexity of
f , there is a positive number b(x, y) ≤ a(x, y)
such that

f(E(y) + λη(E(x), E(y)))
≦C λf(x) + (1− λ)f(y) ≦C λα+ (1− λ)α = α,

∀λ ∈ [0, b(x, y)].

That is, E(y) + λη(E(x), E(y)) ∈ Sα, ∀λ ∈
[0, b(x, y)].
Therefore, Sα is a local E-invex set with respect
to η for any α ∈ Y . �

Theorem 4. Let f : X → Y be a map defined on
a local E-invex set K ⊂ X. Then f is a semilocal
E-preinvex map with respect to η if and only if
for each pair of points x, y ∈ K(with a maximal
positive number a(x, y) ≤ 1 satisfying (3)), there
exists a positive number b(x, y) ≤ a(x, y) such
that

f(E(y) + λη(E(x), E(y))) <C λα+ (1− λ)β,
∀λ ∈ [0, b(x, y)],

whenever f(x) <C α, f(y) <C β.

Proof. Let x, y ∈ K and α, β ∈ Y such that
f(x) <C α, f(y) <C β. Due to the local E-
invexity ofK, there is a maximal positive number
a(x, y) ≤ 1 such that

E(y)+λη(E(x), E(y)) ∈ K, ∀λ ∈ [0, a(x, y)].

In addition, owing to the semilocal E-preinvexity
of f , there is a positive number b(x, y) ≤ a(x, y)
such that

f(E(y) + λη(E(x), E(y)))
≦C λf(x) + (1− λ)f(y) <C λα+ (1− λ)β,
∀λ ∈ [0, b(x, y)].

Conversely, let (x, α) ∈ Gf , (y, β) ∈
Gf (see epigraph Gf in Theorem 2), then x, y ∈
K, f(x) ≦C α, f(y) ≦C β. Hence, f(x) <C α+ ǫ

and f(y) <C β+ǫ hold for any ǫ >C 0. According
to the hypothesis, for x, y ∈ K(with a positive
number a(x, y) ≤ 1satisfying (3)), there exists a
positive number b(x, y) ≤ a(x, y) such that

f(E(y) + λη(E(x), E(y))),
<C λα+ (1− λ)β + ǫ∀λ ∈ [0, b(x, y)].

Let ǫ → 0+, then

f(E(y) + λη(E(x), E(y))) ≦C λα+ (1− λ)β,
∀λ ∈ [0, b(x, y)].

That is, (E(y)+λη(E(x), E(y)), λα+(1−λ)β) ∈
Gf , ∀λ ∈ [0, b(x, y)].
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Therefore, Gf is a local E-invex set correspond-
ing to X.
From Theorem 2, it follows that f is semilocal
E-preinvex on K with respect to η . �

Theorem 5. Assume that a map f : X → Y

is semilocal E-preinvex on a local E-invex set
F ⊂ X with respect to η. If E(x̄) = x̄ ∈ F is
a local weakly efficient solution for problem (P ),
then x̄ is a global weakly efficient solution for (P )
on F .

Proof. By contradiction, suppose that E(x̄) =
x̄ ∈ F is not a global weakly efficient solution for
(P ) on F , then there exists y ∈ F such that

f(x̄)− f(y) ∈ intC. (9)

Since map f is semilocal E-preinvex on local E-
invex set F , there exist positive number b(x̄, y) ≤
a(x̄, y) ≤ 1 such that E(x̄)+λη(E(y), E(x̄)) ∈ F

for any λ ∈ (0, a(x̄, y)] and

f(E(x̄) + λη(E(y), E(x̄)))
≦C λf(y) + (1− λ)f(x̄), ∀λ ∈ (0, b(x̄, y)],

or equivalently,

λf(y)+(1−λ)f(x̄)−f(E(x̄)+λη(E(y), E(x̄))) ∈ C,

that is,

λ(f(y)− f(x̄)) + f(x̄)
−f(x̄+ λη(E(y), x̄)) ∈ C, ∀λ ∈ (0, b(x̄, y)].

(10)

Since C is a pointed cone, from (9) and (10), we
obtain η(E(y), x̄) 6= 0.
We observe

f(x̄)− f(x̄+ λη(E(y), x̄))
= [λ(f(y)− f(x̄)) + f(x̄)− f(x̄+ λη(E(y), x̄))]
+λ[f(x̄)− f(y)] ∈ C + intC ⊂ intC,

∀λ ∈ (0, b(x̄, y)],

which contradicts the local weakly efficiency of x̄
for problem (P ).
Thus, x̄ is a global weakly efficient solution for
problem (P ) on F . �

Remark 5. If a(x, y) = b(x, y) = 1, ∀x, y ∈ X,
the results presented in this section reduce to the
results given in [14].

4. Optimality Criteria

In this section, we establish some optimality
conditions for the vector optimization problem
(P ) involving semilocal E-preinvex, semilocal E-
invex and E-type-I maps, respectively.

First, we give an optimality condition for (P )
involving semilocal E-preinvex maps.

Theorem 6. Assume that a map f : X → Y is
semilocal E-preinvex on local E-invex set F ⊂ X

with respect to η and x̄ is a weakly efficient solu-
tion for the following optimization problem:

(PE) min (f ◦ E)(x), s.t. x ∈ F = {x ∈
K : −gj(x) ∈ Dj , j ∈ M}.
Then, E(x̄) is a weakly efficient solution for prob-
lem (P ).

Proof. Since x̄ is a weakly efficient solution for
problem (PE), then there exists no x ∈ F such
that

f(E(x)) = (f ◦ E)(x) <C (f ◦ E)(x̄) = f(E(x̄)).

Suppose to the contrary that E(x̄) is not a weakly
efficient solution for (P ), then there exists a point
x̂ ∈ F such that

f(x̂) <C f(E(x̄)).

From necessity of Theorem 1, it follows that

f(E(x)) ≦C f(x), ∀x ∈ F.

Thus, we have

f(E(x̂)) <C f(E(x̄)),

which is in contradiction with the weakly effi-
ciency of x̄ for problem (PE).
Hence, the theorem is proved. �

Next, we introduce some concepts that will be
used in the sequel.

Definition 12. Let f : K → Y be a map, where
K ⊂ X is a local E-invex set with respect to
η. We say that f is E-η-semidifferentiable at
E(x̄) ∈ K if f ′(E(x̄); η(E(x), E(x̄))) exists for
each x ∈ K, where

f ′(E(x̄); η(E(x), E(x̄)))

= lim
λ→0+

1

λ
[f(E(x̄) + λη(E(x), E(x̄)))− f(E(x̄))],

(the right derivative at E(x̄) along the direction
η(E(x), E(x̄))).

Remark 6. If E is an identity map, the E-η-
semidifferentiability is the η-semidifferentiability
notion[16]. If E is an identity map and η(x, x̄) =
x− x̄, the E-η-semidifferentiability is the semid-
ifferentiability notion. If a function is direction-
ally differentiable, then it is semidifferentiable ,
but the converse is not true.

Definition 13. (a) A map f : X → Y is called
semilocal E-invex at x̄ ∈ k ⊂ X with respect to η

on K, if f is E-η-semidifferentiable at x̄, where
E(x̄) = x̄ and

f(x)− f(x̄) ≧C f ′(x̄; η(E(x), x̄)), ∀x ∈ K.

(b) A map f : X → Y is called quasi-semilocal
E-invex at x̄ ∈ k ⊂ X with respect to η on K, if
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f is E-η-semidifferentiable at x̄, where E(x̄) = x̄

and

f(x) ≦C f(x̄) ⇒ f ′(x̄; η(E(x), x̄)) ≦C 0, ∀x ∈ K.

(c) A map f : X → Y is called pseudo-semilocal
E-invex at x̄ ∈ k ⊂ X with respect to η on K, if
f is E-η-semidifferentiable at x̄, where E(x̄) = x̄

and

f ′(x̄; η(E(x), x̄)) ≧C 0 ⇒ f(x) ≧C f(x̄), ∀x ∈ K.

Remark 7. If a semilocal E-preinvex map f is
E-η-semidifferentiable at x̄, where E(x̄) = x̄,
then f is a semilocal E-invex map at x̄; If f

is a semilocal E-invex map at x̄, then f is both
a quasi-semilocal E-invex map and a pseudo-
semilocal E-invex map at x̄; If f is a semilocal
E-invex map at x̄, then f is nondifferentiable at
x̄.

Below, we give a necessary and sufficient op-
timality condition for problem (P ) involving
semilocal E-invex maps.

Theorem 7. Assume that a map f : X → Y de-
fined on a local E-invex set K ⊂ X is semilocal
E-invex at u ∈ K. Then u is a weakly efficient
solution of map f on K if and only if u satisfies
the inequality

f ′(u; η(E(v), u)) ≧C 0, ∀v ∈ K. (11)

Proof. Since the map f is semilocal E-invex at
u ∈ K on K with respect to η,

f(v)− f(u) ≧C f ′(u; η(E(v), u)), ∀v ∈ K.

If u ∈ K satisfies the inequality (11), then

f(u) ≦C f(v), ∀v ∈ K,

which means u ∈ K is the weakly efficient solu-
tion of map f on K.

Conversely, assume that u is a weakly efficient
solution of map f on K, then,

f(u) ≦C f(w), ∀w ∈ K.

Since K is a local E-invex set, for any v ∈ K,
there exists a(u, v) ∈ (0, 1] such that

E(u) + λη(E(v), E(u)) ∈ K, ∀λ ∈ (0, a(u, v)].

Thus, from semilocal E-invexity of f at u ∈ K,
it follows that

f(u) ≦C f(E(u) + λη(E(v), E(u)))
= f(u+ λη(E(v), u)), ∀λ ∈ (0, b(u, v)].

That is,

f(u+λη(E(v), u))−f(u) ≧C 0, ∀λ ∈ (0, b(u, v)].

Dividing the above inequality by λ and taking
λ → 0+, we get

f ′(u; η(E(v), u)) ≧C 0, ∀v ∈ K,

which is the desirable result (11).
Therefore, the proof is completed. �

By [9, Lemma 2.3], Definition 13 is also equiv-
alent to the next definition.

Definition 14. (a) A map f : X → Y is called
semilocal E-invex at x̄ ∈ k ⊂ X with respect to η

on K, if f is E-η-semidifferentiable at x̄, where
E(x̄) = x̄ and for any x ∈ K, µ∗ ∈ C∗ such that

〈µ∗, f(x)− f(x̄)〉 ≥ (µ∗ ◦ f)′(x̄; η(E(x), x̄));

(b) A map f : X → Y is called quasi-semilocal
E-invex at x̄ ∈ k ⊂ X with respect to η on K, if
f is E-η-semidifferentiable at x̄, where E(x̄) = x̄

and for any x ∈ K, µ∗ ∈ C∗ such that

〈µ∗, f(x)〉 ≤ 〈µ∗, f(x̄)〉

⇒ (µ∗ ◦ f)′(x̄; η(E(x), x̄)) ≤ 0;

(c) A map f : X → Y is called pseudo-semilocal
E-invex at x̄ ∈ k ⊂ X with respect to η on K, if
f is E-η-semidifferentiable at x̄, where E(x̄) = x̄

and for any x ∈ K, µ∗ ∈ C∗ such that

(µ∗ ◦ f)′(x̄; η(E(x), x̄)) ≥ 0

⇒ 〈µ∗, f(x)〉 ≥ 〈µ∗, f(x̄)〉.

Throughout the remainder of this paper, we
always assume that f : X → Y and gj : X →
Zj , j ∈ M are E-η-semidifferentiable.

Now, we extend the generalized type-I maps in
[10] as follows.

Definition 15. (f, g) is said to be E-type-I at
x̄ ∈ K with respect to η, if E(x̄) = x̄ and for
each x ∈ K, there exist two maps E and η, such
that for all µ∗ ∈ C∗ and v∗j ∈ D∗

j , j ∈ M

〈µ∗, f(x)−f(x̄)〉 ≥ (µ∗◦f)′(x̄; η(E(x), x̄)); (12)

−
m
∑

j=1

〈v∗j , gj(x̄)〉 ≥
m
∑

j=1

(v∗j ◦ gj)
′(x̄; η(E(x), x̄)).

(13)

Definition 16. (f, g) is said to be quasi E-type-I
at x̄ ∈ K with respect to η, if E(x̄) = x̄ and for
each x ∈ K, there exist two maps E and η, such
that for all µ∗ ∈ C∗ and v∗j ∈ D∗

j , j ∈ M

〈µ∗, f(x)〉 ≤ 〈µ∗, f(x̄)〉

⇒ (µ∗ ◦ f)′(x̄; η(E(x), x̄)) ≤ 0; (14)

−
m
∑

j=1

〈v∗j , gj(x̄)〉 ≤ 0

⇒

m
∑

j=1

(v∗j ◦ gj)
′(x̄; η(E(x), x̄)) ≤ 0. (15)



A class of semilocal E-preinvex maps in Banach spaces with applications to nondifferentiable. . . 7

Definition 17. (f, g) is said to be pseudo E-type-
I at x̄ ∈ K with respect to η, if E(x̄) = x̄ and for
each x ∈ K, there exist two maps E and η, such
that for all µ∗ ∈ C∗ and v∗j ∈ D∗

j , j ∈ M

(µ∗ ◦ f)′(x̄; η(E(x), x̄)) ≥ 0

⇒ 〈µ∗, f(x)〉 ≥ 〈µ∗, f(x̄)〉; (16)

m
∑

j=1

(v∗j ◦ gj)
′(x̄; η(E(x), x̄)) ≥ 0

⇒ −

m
∑

j=1

〈v∗j , gj(x̄)〉 ≥ 0. (17)

Definition 18. (f, g) is said to be quasipseudo
E-type-I at x̄ ∈ K with respect to η, if E(x̄) = x̄

and for each x ∈ K, there exist two maps E and
η, such that for all µ∗ ∈ C∗ and v∗j ∈ D∗

j , j ∈ M

〈µ∗, f(x)〉 ≤ 〈µ∗, f(x̄)〉

⇒ (µ∗ ◦ f)′(x̄; η(E(x), x̄)) ≤ 0; (18)

m
∑

j=1

(v∗j ◦ gj)
′(x̄; η(E(x), x̄)) ≥ 0

⇒ −
m
∑

j=1

〈v∗j , gj(x̄)〉 ≥ 0. (19)

If in the above relation, we have

m
∑

j=1

(v∗j ◦ gj)
′(x̄; η(E(x), x̄)) ≥ 0

⇒ −
m
∑

j=1

〈v∗j , gj(x̄)〉 > 0. (20)

Then, we say that (f, g) is quasistrictlypseudo E-
type-I at x̄ ∈ K.

Definition 19. (f, g) is said to be pseudoquasi
E-type-I at x̄ ∈ K with respect to η, if E(x̄) = x̄

and for each x ∈ K, there exist two maps E and
η, such that for all µ∗ ∈ C∗ and v∗j ∈ D∗

j , j ∈ M

(µ∗ ◦ f)′(x̄; η(E(x), x̄)) ≥ 0

⇒ 〈µ∗, f(x)〉 ≥ 〈µ∗, f(x̄)〉; (21)

−
m
∑

j=1

〈v∗j , gj(x̄)〉 ≤ 0

⇒
m
∑

j=1

(v∗j ◦ gj)
′(x̄; η(E(x), x̄)) ≤ 0. (22)

Remark 8. If (f, g) is E-type-I at x̄ ∈ K with
respect to η, then (f, g) is both quasi E-type-I and
pseudo E-type-I at x̄ ∈ K with respect to η. If E

is an identity map and m = 1, the above def-
initions reduce to the definitions of generalized
type-I maps in [10].

Now, we establish the sufficient optimality
conditions for (P ) involving E-type-I maps.

Theorem 8. Assume that there exist x̄ ∈ F and
µ∗ ∈ C∗ \ {0Y ∗} [or, µ∗ ∈ intC∗], v∗j ∈ D∗

j , j ∈
M such that the following two relations are sat-
isfied,

(µ∗ ◦ f)′(x̄; η(E(x), x̄))

+
m
∑

j=1

(v∗j ◦ gj)
′(x̄; η(E(x), x̄)) ≥ 0, ∀x ∈ F,

(23)

m
∑

j=1

〈v∗j , gj(x̄)〉 = 0. (24)

Furthermore, if any one of the following condi-
tions holds:
(a) (f, g) is E-type-I at x̄ ∈ F with respect to
the same η;
(b) (f, g) is pseudoquasi E-type-I at x̄ ∈ F with
respect to the same η;
(c) (f, g) is quasistrictlypseudo E-type-I at x̄ ∈
F with respect to the same η.
Then x̄ is a weakly efficient solution [or, an effi-
cient solution] of (P ).

Proof. By contradiction, we assume that x̄ is
not a weakly efficient solution [or, an efficient so-
lution] of (P ). Then there is a feasible solution x̆

of problem (P ) such that

f(x̆) <C f(x̄) [or, f(x̆) ≤C f(x̄)].

From µ∗ ∈ C∗ \ {0Y ∗} [or, µ∗ ∈ intC∗] and
Lemma 1, we have

〈µ∗, f(x̆)− f(x̄)〉 < 0. (25)

If condition (a) holds, then from relation (12), it
follows that

(µ∗ ◦ f)′(x̄; η(E(x̆), x̄)) < 0. (26)

According to relations (13) and (24), we obtain

m
∑

j=1

(v∗j ◦ gj)
′(x̄; η(E(x̆), x̄)) ≤ 0. (27)

Adding (26) and (27), we have

(µ∗ ◦ f)′(x̄; η(E(x̆), x̄))

+
m
∑

j=1

(v∗j ◦ gj)
′(x̄; η(E(x̆), x̄)) < 0,

which is in contradiction with (23).
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If condition (b) holds, then from relations (22)
and (24), it follows that

m
∑

j=1

(v∗j ◦ gj)
′(x̄; η(E(x̆), x̄)) ≤ 0.

Considering (23), we get

(µ∗ ◦ f)′(x̄; η(E(x̆), x̄)) ≥ 0.

By (21), we have

〈µ∗, f(x̆)− f(x̄)〉 ≥ 0,

which is a contradiction to (25).
If condition (c) holds, then from relations (18)

and (25), it follows that

(µ∗ ◦ f)′(x̄; η(E(x̆), x̄)) ≤ 0.

Combining the above inequality with (23), we get

m
∑

j=1

(v∗j ◦ gj)
′(x̄; η(E(x̆), x̄)) ≥ 0.

From (20), it leads to

−
m
∑

j=1

〈v∗j , gj(x̄)〉 > 0,

which contradicts (24).
Therefore, the theorem is proved. �

Remark 9. If E is an identity map and m = 1,
the results obtained in the above theorem become
the results of Yu and Liu[10].

5. Duality

In this section, we provide weak and converse du-
ality results utilizing E-type-I maps.

Consider the following dual type for problem
(P ):

(D)































max f(y)
s.t. (µ∗ ◦ f)′(y; η(E(x), y))
+
∑m

j=1(v
∗
j ◦ gj)

′(y; η(E(x), y)) ≥ 0,

∀x ∈ F,
∑m

j=1〈v
∗
j , gj(y)〉 ≥ 0,

y ∈ K,µ∗ ∈ C∗, v∗j ∈ D∗
j , j ∈ M.

(28)

Denote the feasible set of problem (D) by G,
i.e.,

G = {(y, µ∗, v∗j ) : (µ∗ ◦ f)′(y; η(E(x), y))

+
m
∑

j=1

(v∗j ◦ gj)
′(y; η(E(x), y)) ≥ 0,

m
∑

j=1

〈v∗j , gj(y)〉 ≥ 0,

∀x ∈ F, y ∈ K,µ∗ ∈ C∗, v∗j ∈ D∗
j , j ∈ M}.

Theorem 9. (Weak duality) Let x ∈
F, (y, µ∗, v∗j ) ∈ G, j ∈ M , µ∗ ∈ C∗ \ {0Y ∗}

[or, µ∗ ∈ intC∗], and v∗j ∈ D∗
j . Furthermore, if

any one of the following conditions holds:
(a) (f, g) is E-type-I at y ∈ F with respect to the
same η;
(b) (f, g) is pseudoquasi E-type-I at y ∈ F with
respect to the same η;
(c) (f, g) is quasistrictlypseudo E-type-I at y ∈ F

with respect to the same η.
Then, f(x) ≮C f(y) [or, f(x) �C f(y)].

Proof. Assume to the contrary that there exist
x̆ ∈ F, (y, µ∗, v∗j ) ∈ G such that

f(x̆) <C f(y) [or, f(x̆) ≤C f(y)].

By µ∗ ∈ C∗ \ {0Y ∗} [or, µ∗ ∈ intC∗] and Lemma
1, we have

〈µ∗, f(x̆)− f(y)〉 < 0. (29)

From (y, µ∗, v∗j ) ∈ G, it follows that

−
m
∑

j=1

〈v∗j , gj(y)〉 ≤ 0. (30)

According to the first inequality in (28) and
x̆ ∈ F , we get

(µ∗ ◦ f)′(y; η(E(x̆), y))

+
m
∑

j=1

(v∗j ◦ gj)
′(y; η(E(x̆), y)) ≥ 0. (31)

Utilizing relations (29), (30) and condition (a),
we obtain

(µ∗ ◦ f)′(y; η(E(x̆), y)) < 0,

m
∑

j=1

(v∗j ◦ gj)
′(y; η(E(x̆), y)) ≤ 0.

Summing the above two inequalities, we have

(µ∗ ◦ f)′(y; η(E(x̆), y))

+

m
∑

j=1

(v∗j ◦ gj)
′(y; η(E(x̆), y)) < 0,

which is a contradiction to relation (31).
If condition (b) holds, then−

∑m
j=1〈v

∗
j , gj(y)〉 ≤

0 implies that
m
∑

j=1

(v∗j ◦ gj)
′(y; η(E(x̆), y)) ≤ 0.

Taking (31) into account, we obtain

(µ∗ ◦ f)′(y; η(E(x̆), y)) ≥ 0.

By condition (b) again, the above relation means
that

〈µ∗, f(x̆)− f(y)〉 ≥ 0,

which contradicts (29).
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If condition (C) holds, then (29) leads to

(µ∗ ◦ f)′(y; η(E(x̆), y)) ≤ 0.

On account of (31), we have

m
∑

j=1

(v∗j ◦ gj)
′(y; η(E(x̆), y)) ≥ 0.

Using condition (C) again, we get

−
m
∑

j=1

〈v∗j , gj(y)〉 > 0,

which is in contradiction with (30).
Therefore, the theorem is proved. �

Theorem 10. (Converse duality) Let
(ȳ, µ̄∗, v̄∗j ), j ∈ M be a weakly efficient solu-

tion [or, an efficient solution] for problem (D).
Assume that µ̄∗ ∈ C∗ \ {0Y ∗} [or, µ̄∗ ∈ intC∗]
and all conditions in Theorem 9 hold at ȳ. Then
ȳ is a weakly efficient solution [or, an efficient
solution] for (P ).

Proof. We proceed by contradicting. If ȳ is not
a weakly efficient solution [or, an efficient solu-
tion] for (P ), there exists y̆ ∈ F such that

f(y̆) <C f(ȳ) [or, f(y̆) ≤C f(ȳ)].

From µ̄∗ ∈ C∗ \ {0Y ∗} [or, µ̄∗ ∈ intC∗] and
Lemma 1, it follows that

〈µ̄∗, f(y̆)− f(ȳ)〉 < 0. (32)

By (ȳ, µ̄∗, v̄∗j ) ∈ G, j ∈ M , we have

(µ̄∗ ◦ f)′(ȳ; η(E(y̆), ȳ))

+
m
∑

j=1

(v̄∗j ◦ gj)
′(ȳ; η(E(y̆), ȳ)) ≥ 0, (33)

and
m
∑

j=1

〈v̄∗j , gj(ȳ)〉 ≥ 0. (34)

On account of (32) and condition (a) of Theorem
9, we get

(µ̄∗ ◦ f)′(ȳ; η(E(y̆), ȳ)) < 0. (35)

Since condition (a) of Theorem 9 holds and y̆ ∈
F, (ȳ, µ̄∗, v̄∗j ) ∈ G, j ∈ M , it yields that

m
∑

j=1

(v̄∗j ◦ gj(ȳ))
′(ȳ; η(E(y̆), ȳ)) ≤ 0. (36)

Summing (35) and (36), we obtain

(µ̄∗ ◦ f)′(ȳ; η(E(y̆), ȳ))

+
m
∑

j=1

(v̄∗j ◦ gj(ȳ))
′(ȳ; η(E(y̆), ȳ)) < 0

which is a contradiction to (33).

If condition (b) or (c) of Theorem 9 holds, by
the analogous argument to that of Theorem 9,
we obtain

〈µ̄∗, f(y̆)− f(ȳ)〉 ≥ 0, (37)

or

−
m
∑

j=1

〈v̄∗j , gj(ȳ)〉 > 0. (38)

The inequalities (37) and (38) contradict (32) and
(34), respectively.
Therefore, the theorem is proved. �

Remark 10. If E is an identity map and m = 1,
the results presented in this section reduce to the
results given by Yu and Liu [10] .

6. Conclusions

In this paper, we have introduced a new
concept of semilocal E-preinvex maps in Ba-
nach spaces, which extend the semi E-preinvex
maps presented by Luo and Jian (2011)[14]. Si-
multaneously, we have derived some of its ba-
sic properties. Next, we have defined an E-η-
semidifferentiable map, which generalizes the η-
semidifferentiable function introduced by Preda
and Stancu-Minasian (1997)[7]. Based on this,
we have proposed a new notion of nondifferen-
tiable maps called semilocal E-invex maps and
the concepts of E-type-I maps, which extend the
generalized type-I maps brought forward by Yu
and Liu (2007)[10]. In the framework of the
new concepts, we have established some opti-
mality conditions for the nondifferentiable vec-
tor optimization problem with inequalities con-
straints using semilocal E-preinvex, semilocal E-
invex and E-type-I maps, respectively. Moreover,
we have proved weak and converse duality re-
sults under various types of E-type-I maps re-
quirements. The results presented in this paper
extend and improve many results of [10, 14] and
generalize results obtained in the literatures on
this topic.
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