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Abstract. In this paper, a new class of second order (¢, o) -univex and second order (¢, p)

pseudo univex function are introduced with example. A pair Mond-Weir type second order mixed
symmetric duality for multiobjective nondifferentiable programming is formulated and the duality

results are established under the mild assumption of second order (¢, o) univexity and second order
pseudo univexity. Special cases are discussed to show that this study extends some of the known

results in related domain.
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1. Introduction

Mond [16] initiated second order symmetric
duality type in nonlinear programming and
proved second order symmetric duality theorems
under second order convexity. Mangasarian [12]
discussed second order duality in nonlinear
programming under inclusion condition. Mond
[16] and Mangasarian [12] also indicated
possible computational advantages of the second
order dual over the first order dual. Later, Bector
and Chandra [6] presented a pair of Mond-Weir
type second order dual programs and proved
weak, strong and self duality theorems under
pseudo bonvexity and pseudo convexity
assumption. Ahmad and Sharma [5] established
second order duality for non differentiable
multiobjective programming under generalized
F-convexity. The concept of mixed duality is
interesting and useful both from theoretical as
well as from algorithmic point of view.
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Xu [19] formulated two mixed type duals in
multiobjective programming and also proved
duality theorems. Earlier, Chandra et al. [9] and
Bector et al. [7,8] formulated mixed symmetric
duality for a class of nonlinear programming
problems. Yang et al. [20] discussed a mixed
symmetric duality for a class of nondifferentiable
nonlinear programming problems. Aghezzaf [2]
formulated a second order multiobjective mixed
type dual and obtained various duality results
involving a new class of generalized second order
(F,p)-convex function. Mishra et al. [14, 15] and
Mishra [13] presented mixed symmetric first and
second order duality in nondifferentiable
mathematical programming problem under F-
convexity. Recently, Ahmad and Husain [3]
discussed a pair of multiobjective mixed
symmetric dual programs over arbitrary cones
and established duality results under K-preinvex
/K-pseudo invexity assumption. Also, Kailey et
al. [10] established mixed second order
multiobjective symmetric duality with cone
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constrain under -bonvexity. Li and Gao [11] and
Agarwal et al. [1] introduced a model of mixed
symmetric duality for a class of non
differentiable ~ multiobjective  programming
problem with multiple arguments.

In this paper, a pair of second order
multiobjective mixed symmetric dual programs
using square root term is formulated and duality
theorems are proved for these programs under
generalized (¢, p) univexity. Special cases are

discussed to show that this study extends some of
the known results in related domain.

2. Notations and definitions

Let R" and R"™ are n-dimensional and m-
dimensional Euclidean space respectively. R’
and R their respective nonnegative orthant. The

following conventions for vectors x,u e R" will

be  followed  throughout this paper:
X<U<& X, <U, XU X<u;i=L2,..n.
For any wvector x,ueR" we denote
T n
X u=>y xu .
i=1

Let X and Y are open subset sets of R" and R"
respectively. Let f (x,y) be areal valued twice

differentiable function defined onXx xY . Let
vV, f.(x,y) and Vv f,(x,y) denote the gradient
vectors of f (x,y) with respect to first variable
x and second variable y respectively. Also
v f(x,y) and Vv f (x,y) denote the Hessian

w T y Ti
matrix of f (x,y) with respect to the first
variable x and second variable y respectively.
For peR", V (V,, f(x,y)p)and

vV, (v, fi(x,y)p) are nxm and

matrix obtained by differentiating the elements of
v, f.(x,y)p with respect to x and vy

mxm

respectively.

Consider  the  following
programming problem (MP):
MP :( Primal) Minimize

F(X) = (£,(0), £,(X), .00, F,(x))
Subject to h(x)<0,xe X < R",

where f: X > R",h: X > R".

Let X,
problem (P); thati.e. X, ={x e X | h(x) < 0}.

multiobjective

be the set of all feasible solutions of

Definition 2.1 A vector x e X, is said to be
an efficient solution of problem (P) if there exists
no x e X, such that

f(x) < F(X), f(x)= f(X).

Definition 2.2 A vector x € X, issaid to be a
weakly efficient solution of problem (P) if there
existsno x e X, suchthat f(x) < f (X).

Definition 2.3 A vector x e X, issaid to be a

properly efficient of problem (P) if it is
efficient and there exists a positive constant M
such that whenever f (x) < f (x) for x e X

and for ie{1,2,..r}, there exist at least one
je{t,2,...,r} suchthat f,(x) < f,(x)and
f(X)= f.(x)<M(f,(x)-f,(X).

Definition 2.4 :( Schwartz
x,yeR" and AeR"xR"

Inequality) Let
be a positive semi

1 1
definite matrix, thenx' Ay < (x" Ax)2(y" Ay)?,
equality holds if for some 1 >0, Ax = 1 Ay.

Letr,p < R . Suppose 4, and ¢; are a real valued
function defined on  R"'x R"'xR""  gnd
R'!x R™!x RM™ for i =1,2; respectively such
that ¢o(x',u'.%) and ¢, (v',y',*) , i=12.are
convex on R" R™"respectively with
gy (x',u',(0,r))>0, and ¢/ (v',y',(0,r)) >0,
for i=12 and reR,. b; and bli are non
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negative function defined on R""'xR™' and

R"!'x R™! j=1,2. respectively .

Throughout this chapter, we assume that
v, R - R satisfying y;(u)>0= u=>0,
and v, (-a) = -y, (a),
yi(-a) = -y, (a)fori=1,2.

y/li(u)SO:uﬁO

Now we define a new class of second order
(¢, p) -Univex, second order (g, p) -pSeudo
univex and second order (¢4, p) -quasi-univex as

follows.
Definition 2.5 A real-valued twice differentiable

function f.(x,y): X xX — R s said to be
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second order (¢, p)-univex at ue X with

respect to geR" for b:XxX >R,

w iR —> R, ifthereexistg : X x X xR"™ - R,

p € R such that

(fi(x,y)—fi(u,y) \\

bouw| 1 |
L+Eq Vi fi(u.y)qj

( (V,f(uy) 1)
MLX’U'LWuu fi(u,y)%PU

Definition2.6 A real-valued twice differentiable
function f, (*,y) : X x X - R is said to be

second order (¢, p) -pseudo univex at ue X

with respect to ge R"for b: X x X - R, and

w iR — R, ifthereexistg : X x X xR"™ > R,

p € R such that

pxu; (V, fi(u,y)+V, fi(u,y)d,p) =0
(f(x,y) = fi(uy) )

= b(x,u)y 1, |20.
L+Eq A" fi(u,y)qJ

Definition 2.7 A real-valued twice differentiable
function f, (*,y) : X x X -> R is said to be

second order (g, p) -quasiunivex at u e X with

respect to qe R" for b:XxX —» R, and

w iR — R, ifthereexistg : X x X xR"™ > R,
p € R such that
(fi(X,y)—fi(U,y) \
b(X,U)l//| 1 . |ZO
L+Eq Vuufi(u,y)qJ

= ¢(x,u;(V, f(u,y)+V,, f(u,y)g,p)=0.

Definition 2.8 A real valued twice differentiable
function f is second order (¢, o) - unicave and

second order (¢, p) -pseudounicave if — fis
second order (¢, p) -univex and second order
(4, p) pseudounivex respectively.

Remark 2.1 If we consider the case b =1,
p(x,u; (V, f(u)+V,, f(u)a,p))

=F(x,u;V, f(u)+V,f)g)+pd’(xu)
with F is sub linear in third argument and p=0,

then the above definitions reduce to second
order F-convexity and second order F-pseudo
convexity as introduced by Mishra [13].

Example 2.1  Let f:RxR — R defined as

XZ 7y2

f(x,y)=e " —e¢

2
X

Sowe have V f(x,y)=-2xe"
V. f(xy)=(4x?—2)e ",
Now f (x, y) is not convex at u=0, as
FOGY) = F(u,y)—(x=u)'V, f(u,y)
—e Xl (x—u)(—2ue’“2)

—e X _120 for u=0,x=0.
1

Let g =F 1. Then
o]

f(x,y)—fu,y)++q'v,, f(u,y)q
—(x=u) [V, f(uy)+V, f(u, y)al
T L(4u® - 2)e ™
“(x—u)[-2ue™ + (4u®—2)e ]

=e’x2+2x—220, foru=0,x=1.

So f(x,y) isnotsecond order convex/bonvex at
u=0,

Let :RxRxR? — R defined as
p(x,u;(a, p))=0-2")e " +u'a;

w :R — R definedas y (x) = x;

b:RxR — R, definedas b(x,u) =1.

Now

b(x,u)y[f(x,y)= f(u,y)+3q"V,, f(u,y)al
—¢(x,u, (V f(u,y)+V,, f(u,y)a p))

e —e ™+ l(aut-2)e ™ —(1-2")e ™"
[—2ue™ +(4u’—2)e "]

—e ¥ _1-1-(1-2°)+2 atu=0,

—e X 427150 for p>0,VxeR.
So f(x,y) is second order (¢,p) -univex
function at u=0.

Hence from the above example it is clear that
second order (¢, p) -univex function is more

generalized than convex and second order convex
function.
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Example 2.2
Let g:R, xR, — R defined as
g(x,y)=xInx—-ylny, V. g(x,y)=1+Inx,
V. 9(xy) =1+
Now g (x, y) is not convex at u=1, since
g% y)—gu,y)-(x-u)'V g(u,y)
=XxInx—ulnu—-x—-xInu+u+ulnu
=xInx—=x—xInu=xInx-x%0 for xe(0,e).
Again g(x,y)-g(u,y)+3d"'V,g(u,y)g
~(x=u)"[V,g(u,y)+V . g(u,y)q]
=xInx+u+5;+1-x—xlnu-*

5

=xlInx+3>-2x foru=1.

=xInx+3-2x20, for xe[2,0)

So g(x,y) isnotsecond order convex/bonvex at
u=1,
Let ¢ : Rx RxR?> —» R defined as
p(x,u;(a, p))=0-2")e " +u'a;
w :R — R defined as y (x) = x;
b:RxR — R, definedas b(x,u) =1.
b(x, Wy [g(x,¥)-g(u,¥)+3d"V,g(u,y)d]
=xInx—-ulnu+ -
Let g(x,u;(V,9+V,90),p))20
= @1-2")e " +(V,9+V,00)
=(1-2")e" +(@+Inu+3)=0
= (1-2")e " +2>0, atu=1,
= (1-2")e " +2>0= x>0, for p=1.
Let q :|—1—|.
o]
Now
b(x, Y)w[g(x,y)-g(u,y)+5a'V g, y)d]
=xInx-ulnu+5->0,for x> 0.

So g(x,y) issecond order (4, p) -pseudo-
univex function at u=1.

Hence from the above example it is clear that
second order (¢, p) -pseudo-univex function is

more generalize than convex and second order
convex function.

3. Mond-Weir type second order mixed
symmetric dual program

For N={1,2,...,n} and M={1,2,...,m}, let J, = N
andJ, =N \J,.Similarlyk, c M andk, =M \K;.

Let |3,| denote the number of elements in J, .
The numbers|s,| |K,|,|K,]| are  defined
similarly. Notice thatif| J, |=0,then|J, |=n. It
is clear that any x e X < R" can be written as
x = (x', x%), x'e R and x? < R, Similarly,
anyy eY < R™,canbe writtenas y = (y',y?),
yhe R‘Kl‘, y’e R‘KZ‘.

Let f :R"™ xR™ - R and

g, :R"'xR" 5 R

differentiable functions.
Leta, e R, pl e R™ wl e R p2 e RI:I w2 e RIF?!,

qi1 € R'Jl‘,qi2 € RUZ‘, ail € R'Jl‘, ai2 € R‘le,

are thrice continuously

' =(py, P, D), PP = (P, D% P),
4 =(a.9),0q) a" =(a’a’ ),
2

a'=(a;,a',..,a'),a’=(a’,a’,...,a%),

wh= (whw o wh), wh = (whw? L w®), and
E', E’
matrices of order | J, |, J, |,| K, |and | K, |
respectively for i =1,2,...,r.

Now we formulate the following pair of
multiobjective mixed symmetric dual programs
and prove duality theorems:
(SMSP): Second order

primal:

C/,C/? are positive semi definite

mixed symmetric

(H (Y, w,pp), )

Minimize H(x,y,w, p) = LHZ(X, Y, Wy, Py), J

o H (XYW, p,)

Subject to
r
Z 4LV . .yt - clwi + Vo £ yHpil<o, (3.1)
i=1
r
Z ii[Vyzgi(xz, y2)-ciw? + Vyzyzgi(xz, yHp21<0,  (3.2)

i=1

r
uHT Z ALV 1 i odyh-clwt+v Sy i ot yhetzo, (3.3)
i=1
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(y2>Tzr: ALY 2002 y?) - cBwl 4 v 262 yhefizo, (3.4)

i1
(x', x*) >0, (3.5)
(wH'Clw' <1,i=1,2,..r. (3.6)
(w’)' Cclw’ <1i=12,.r. (3.7)
/1>0,zr/1i =1 (3.8)

i1

(SMSD): Second order Mixed Symmetric

Dual:
(Gl(u’v’al’ql)! \‘
Maximize G(u,v,a,q):LGZ(u,v,az,qz), J

.G, (u,v,a,,q,)

Subject to
r
Z ALV i fi V) + Efal + v it vhe= 0, (3.9)
i=1
r
z li[Vuzgi(uz,vz) + Eiza.2 + Vuzuzg(uz,vz)] >0, (3.10)
i=1
.
wh’ 2 409 itV s Efal v vt et vhail <o, (3.11)
i=1

r
(uZ)T Z Ai[Vuz gi(uz,v2)+ Eizai2 + Vuzuzg i(uz,vz)qiz]s 0, (312)

i=1
vty a0, (3.13)
(@) Efa; <1 i=12,..r, (3.14)
(aiZ)T Eizaiz <1;,i=12,..r, (315)
>0, 4 =1. (3.16)
i=1
where
1
Oy + 0,03, y2) + () Elx)2
1
Hi(x,y,w,p)= HOATEN:)Z - (yhT clwy
) ChwE - STV L0y et
2 yy
1
,E(piZ)Tvyzyzg(xzyvz)Piz
£l
) + gy v?) + ()T Cv)2
1
Gi(u,v,a,q) = +(v) e 2 - T Efay
Ny Efaiz‘%(q?)TVululf(“l’Vl)q‘l
ST 0w’ ]
fori=1,2,..,r.

Remark 3.1

Since the objective function of (MSP) and
(MSD) contain the quadratic term like (x'Ax)
these problems are nondifferentiable
multiobjective programming problems.

Theorem 3.1(Weak duality) Let

ot x2 vt y% a,whw?, pt, p?) be feasible solution
of (SMSP) and (u*,u®v',v? 1,a",a%,7',2°) be
feasible solution (MSD) and

1. zzi[fi(*,vl)Jr(*)TE.lail] is second
i=1
order (4¢,p) -univex at u*for fixed v*.
2. 3 4L (x*,*) - (x)" ciw’] is second order

i=1
(¢!, p) -unicave at y* for fixed x*.

3 2,19, (=, v?)+ (x)T E7a’] is second order

i=1

(42, p) -pseudo univex at u® for fixed v?
4. 3 4lgi(x*,-(x'cfw] is  second
i=1

order (42, p) -pseudo unicave at y* for
fixed x?.
5. ¢i(x1,u1;(§1,p)) +uhH" e > 0; where

.
gt = z LIV o f (u' v +Efal + Vot (u*,vHarl.
i=1

#2(x* %%, p)) + (uP)T &% = 0; where

r
2

4

i=1

1,7 1

7. ¢ (yhst ) + (v ¢t < 0;where

r
¢t =Y IV Oty = Clw + VL E O YY) pil
i=1

8. 42(v*.y*i(c% P+ (y*) ¢ <0, where

.
2 2 2 2.2 2 2 2
c =§ ALV 29 (X yT) = Ciwi +V g (X, YT piT]

i=1

Then Inf (SMSP) > Sup(SMSD).

Proof: Since > 4Lf (= v+ (%" Efa’] IS second

i=1

order (¢, p) -univex at u* for fixedv*andx > 0,

= zi[Vuzg(uz,v2)+ Eizai2+Vu2uzg(u2,v2)qi2].



26 A. K. Tripathy / Vol.4, No.1, pp.21-33 (2014) © 1JOCTA

with
o - RPI X RIS R 5 R we have

respect to by : RV xR 5 R,
|[ \[[fi(xl,vlw(xl)T Efal] H
bi(xlvul)wéllz 2 J [t v+ T Efal] H
l |
C | J

i=1 1
+ E(q?)T Vo f vy

uu !

)
2 go (¢ uh D (Ve fiuh v + Efay + Vs vl 0).
i=1

(3.17)

From the hypothesis (5), we get
o (X U (&N, p)) + (U &7 20

= gy (X, U5 (&, p)) 2 —(uh)' £

Using (3.11) in the above inequality, we get
Pt o)z e 20 and  with the

property of b’ and , (3.17) becomes

> ALV + ()T Elayl

i=1

r
11 1Teo11 Lo 11y 1
I LI ORDERCD) Eial = (@) Y fih )il

i=1

(3.18)

Now Zﬂi[fi(xl,*)-(*fcﬁwh is second order

i=1
(¢!, p) -unicave at y* for fixedx', for A >0
with respect to b} :R"™/ xR 5 R, ,yl:R >R,

g R RIS RIS 5 R we have

[f, 03 vh) - vhT clwi

( ( ]
I \
bf(vl,yl)wil Ail—[mxl,yl)— (yH' ciwi] L
1= \
Co
|

[N —

1 a7 11,1
N CUANRUCRRLY

.
1,1 1 1.1 1.1 1 .1, .1
Sa YO ALY Oy - Clw + Vs Oy D pil ).

i=1

(3.19)

Hypothesis  (7) in light of (3.3) implies

r
1.1 1 1.1 1.1 1 .11
Ay ALV fOG YD) ~Clwg + VO y ) bl p)) < 0.
i=1

(3.20)
So from (3.19), (3.20) and with the property of

b, and y,, we get

> alt, v - vhH T elwil
i=1
<> {[fi(xl,yl) ~ () Ciwl+ %(p?)Tvylyl f (xl,yl)p?}
i=1
(3.21)
Subtracting (3.21) from (3.18), we get

Z AIOHT Elal + (v ciwl 2
i=1

r [ty + b Efal

A 11
1 [Ty

1.7 1.1, 1
_%(qi) Vgt fium vl
RN EETRR 111
) CiWi’E(pi) vylylfi(x,y)pi]J

(3.22)

Now from (6), we get
62 (x*,u?; (%, p))+ ()T €% > 0, which implies in
light of (3.12) as

p20Cu%(ER P 2 —(uP) E% 2 0. (3.23)

Since z Ailg;(+v?)+ (+)T EZa?] IS second order

i=1
(42, p) -pseudo univex at u? for fixed v? and

using (3.23) with the properties of b and y,°,

we get " AL, (x2 v+ (x*)T EZa?]

i=1

r
23 Ao v+ (W) Efal - 2V 220507 vE)af ]
i=1

(3.24)

Similarly from the hypothesis (6), (8) and (3.12)
with the property of b,*, v ,° we get

i A4lg, 0 v = (v)T ciw!]
i=1
< Al 0y - ()T efwd - 2DV 2 20167y ) pf]
i=1
(3.25)
Subtracting (3.25) from (3.24), we get

Z li[XZT Eizaiz 4 VZTCiZWiZ]
i=1

2T -2 11T

r rgi(uz,v2)+u E; af—;qi V|J2uzgi(u2,v2)qi2+1

>y 4 |
=~ [gi(xzyyzh yTclw] fipi”Vyzyzgi(xz,yz)pr
(3.26)

Adding (3.22) and (3.26), we obtain

Z [(xl)T Eilai1 + (vl)T Cilwi1 + (><2)T Eizai2 + (v2)T Cizwiz}
i=1
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[t ) + () Efal - 2(aD)" v . it Vel 1|
RO YD)+ )T Cw = ()T fi (YY) By

+o, WA V) + () Efal - 2(0F)V 220, 0PVl ]

v
R

|
2 2 25\T 2.2 25\T 2 2 2|
L9, 0y )+ (y7) Cowr = 2(P0) V0, (YT P

r 7(xl)T Eilai1 + (vl)T Cilwil W‘

i
+(x2)T Eizai2 + (vz)TCiZWiZJ

1

r [fi(ul,vl)+(u1)T Eilail—;(qil)TVuluMi(ul,vl)qil] ]L
1

E R e R SR IC L]

1

Te2.2 1 27 2.2, 2
*;(qi) Vuzuzgi(u WV )qi] L

r et s wd) EZa/
+ Zij
\
(

2T.~2.2 1 27T 2 020 2]
) Ciwj —;(pi) Vy2y20i(x7.y5)pp]

(3.27)
From Schwartz inequality, (3.6), (3.7), (3.14)
and (3.15), we have

I\T 1.1 INT ~1 1 2\T 2.2 2\T ~2 2
(x7) Eiaj +(v7) Ciw; +(x") Eva; +(v7) Ciw;

o ity

1 1 1 1
<(OHTELM 2 (@) ElaN) 2 + ()T civh 2 (whT)ciw) 2

1 1 1
H(A)TEE®) 2 (0T EZa?) 2 + ((vP) civB) 2 (wd)T cwd

1 1 1 1
<(HTELN 2 1 ((hHT el 2 + (3T EZ®) 2 + (v T civ?) 2
(3.28)

Using (3.28) in (3.27), we get

r
1 1 1 1
D AlEhT ERDZ (DT bz - T e T - @hT et

i=1

1.1 1T 1.1 1.7 11,1
Uity + @h T Efay - 2@V il v

[
|
J—[ iedyh e ohT efwd - DTV 1oty e
\
\
\

+gi 2 v?) + @2)T E2a?

r
34

1,,2,T 2 v2yg2
i1 -5 @) V220t viar]

2 .2 2T ~2 2 2.\T 2 2,2
100y + D) cfwd - 21TV 2 20i 6%y

1
fiodyh + 00 y3) + (hT ELG) 2
r 1
=3 sy D2 - (hT cfud - o) ofw?
i=1

1 1.7 11,1 1 27T 2 2,2
—Z(p,) Vylylfi(x Yy )p,—;(p,) Vyzyzgi(x YO,

1

il + gij? v+ (hT eluhy2
r 1
> Z 4+ AT ER?)2 - (hHT chul - (vH)T cfw?
i=1

11T 11,1 1 27 2 2,2
—;(pi) Vylylfi(x Yy )pi—;(ui) Vyzyzgi(x YO,

= Inf (MSP) > Sup(MSD). U

Theorem 3.2 (Strong Duality) Suppose
f:RMIxRMI 5 R oand g, :RVIxR®I 5 R be

thrice differentiable function and let

(%%, 94, 9%, AW w2, prply)  be  a weak

efficient solution for (SMSP). Let 2 = 2 be fixed
in (MSD). Assume that

(i) the Hessian matrices v ..f,(:*yH  and
yy !

vyzyzgi(xz,yz) are nonsingular for all i=12,..r;

(i) the matrix and

.

A1
Z AV 1 (Vg i)
i-1

r
DAY 2 (V220D are positive definite or

i=1

negative definite and

(iii) the set

v,h —CWiy + Vo fo ﬁj,...,vyl f —ChW! Vot pr}
and

{Vngl—Cfo +Vyzy291ﬁ12 ----- Vyzgr *Crzwrz *Vy2y29rf’r2}
are linearly independent.

Then there exist a; e R™,a? e R"”?' such that
(X, %%, 9", 9%, 4,4 ,4%,4" =0,4° = 0) is

feasible solution of (SMSD) and the two objective

values are equal. Also if the hypotheses of
theorem 3.1 are satisfied for all feasible solution

of (SMSP) and (SMSD), then
(X, %%,y', 9%, 4,4 ,4%,4" =0,4° = 0) is

efficient solution of (SMSD).

Proof. Since (%', %°,¥",§°, 4, W/, W’, p!, p’) is
a weak efficient solution of (SMSP) by Fritz-John
condition [12] there eXxist «eR",zeR", seR",

yeR, pterl geRrl®l g e RMI £2 ¢ RP2I'such that

r
DV, fi+Ed -5V (Y,
i=1

A1
J fipi)]

YAV e VLV DI -9 - €T =0,
i=1
(3.29)

.
Y ailV 0+ EFAT -3V (Vg B7)]
i=1

r
ALY e OV (Va0 BB -9 -7 =0,
i=1

(3.30)
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D (e = 7ADIY i = G T+ D AV i (B = 79" - 7 B))
i=1 i=1

DY GV BBDIE! - 79 - Leipi1=0, (3.31)
i=1

z (O!i - 7ii)[v J2 9 - Cizwiz]

i=1

IR DIVAEFAAETE 5

i=1

AV o (V8 POINB® - 7974 - S B1= 0,
i=1
(3.32)
(B =79Vt —ChI +V £ B1- 58] =0,

i=1,2,.,r, (3.33)

(B -r9*) [V,.9 -clwf +V 220 p21-s% =0,
i=12,..,r, (3.34)

1 RN A14T i ;
[(B™ =7 ¥ )4 —a; bl vyly1 fi=0i=12.r (335)

(B2 -y93) 4 —a,p?1 V0= 00 =12 (3.36)

a,Clyt+ (Bt -y 4cl = 2c,chit =121, (3.37)
a,C2y% + (B2 - y9*) Aict = 2r,cti?, i=1,2,..,1, (3.38)
($HTElal = (RHTENYE, i=12,r, (3.39)
(x2)T E242 = (x3)T E2%%)%, i=12,...1, (3.40)

BH' DALV - cha + Vo pi1=0, i=12,..r,
i=1
(3.41)

r
2 2.2 .2 .
B )TZii[Vyzgi—Ci w; +Vy2yzgipi 1=0,i=12,..,r,
i=1

(3.42)

IO LIV i -Chi 4V L fipiT=0, (343)

i=1
I DALV 20 —CPW +V L agip1=0, (3.44)
i=1

o, [(W) Ciwi —1]1=0,i=1,2,...,r, (3.45)

7 [(W) Clwi -1]=0,i=1,2,..r, (3.46)

Ti=0 (3.47)
574 =0, (3.48)
LE =0 (3.49)
R°e? =0 (3.50)
a'E’a <1, i=12,.,r, (3.51)
a’"E’a’ <1,i=1,2,..,r, (352)
(o, B,7,7,8,8) 20, (3.53)
(o B, 7,7,8,8) # 0. (3.54)

Since 1 >0, inequalities (3.47) and (3.48)

implies that 5* =0,5% = 0.
Consequently (3.34) and (3.35) implies that

(ﬂl_}/fll)T[vy1 f, —CilVTli1+Vylyl f.pi1=0. (3.55)
and (8% - 9%’ [Vyzgi _Ciz‘ﬁ/i2 +V 220 f)iz] =0.
(3.56)

Since v ..f, and V ..g, are nonsingular

matrix for i=12,..r. (3.35) and (3.36)
implies
(ﬁl_yyl)/{i :ai ﬁ.l (357)

and (B -yy*)A = a,pl. (3.58)
Using (3.57) in (3.31) we get

D (@i =PIV i = ClL + (V£ )]

i=1
ALY LV DI -9 = 0. (3.59)

i=1

Similarly by using (3.58) in (3.32), we get

> (e = 7A)IV 20 = CiW + V229 B)]

i=1

P ALY (Va0 BONBY - 797 = 0. (3.60)
i=1

Multiplying (3.59) by (8 —ry")"
(3.55) the result reduces to

and using

(B =79 D AV (VL fBD(BT - 79 = 0.(3.61)
i=1
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And multiplying (3.60) by (8*-»y*)" and using
(3.56), we get

(ﬁz - 792)TZ iivyz (v y2y? gi f)lz)(ﬂz - }/)72) =0. (362)

i=1

Using the hypothesis (2) in (3.61) and (3.62), we

get ﬁl = 7y1 (3.63)
and Bl =yy>. (3.64)
Therefore (3.59) and (3.60) reduced to
3 (i = AV o - G+ (V8D = 0. (3.65)
i=1
Z (aj = J/ii)[V y29i CiZV"i2 +Vv y2y2Yi Faiz)] =0. (366)

i1
Using hypothesis (iii) in (3.65) and (3.66) we get
(3.67)
If =0, then o, =0;i=12,..r. and (3.63)
and (3.64) implies p* = g% =0.
Therefore (3.29) and (3.30) implies &' = £% =0
and (3.37), (3.38) impliesz, =0, i=1,2,....r.
Thus (a,B,y,7,6,£)=0.
This is a contradiction to (3.54).
Hence y > 0. (3.68)
Since 4, >0,i=12,..r , (3.67) implies ¢, > o,
i=1,2,...r. (3.69)
Using (3.63) in (3.57) and (3.64) in (3.58), we get
apl=0,for i=1,2,..r and j=1,2. (3.70)
Using (3.69) in (3.70), we obtain

p! =0, fori=12,..r and j=12. (3.71)
Again using (3.63) and (3.71) in (3.29) and (3.64)
and (3.71) in (3.30), it gives

Y alv . f+E4]=¢" and

i=1

> alV .g,+E’a’]= &, which by (3.67) gives

i=1

AV . f.+E'a]1=2->0 (3.72)
i=1 7/
o 52
and > A4[V .0, +E4’]=="—20. (3.73)
i=1 7/
r S1T .1
Now ()" 3" 4 [V, f, + El4}] = X< o (374)
i=1 4
(by using (3.49) )
r 52T o2
and (x*)" 3" 4V g, + E}4]] = X o (375)
i=1 4
(by using (3.50))
Also from (3.63), (3.64) and (3.53), we have
o B e B
y =—2>0,y =—2>0. (3.76)
4 7

Hence from (3.51), (3.52) and from (3.71) to
(3.76), we get

(X, %%, 9", 9%, 4,4 ,47,4' =0,47 = 0) is a
feasible solution of (SMSD).
27
Let 5 —t, then t>0. From (3.37), (3.38),
a;

(3.63) and (3.64), we get

Ciyt =tcii;,cly? =tciw?. (3.77)

This is a condition of Schwartz Inequality.
Therefore (397 chi! = (37 clyh)z (W' clity?

(3.78)
and (52)" c2w? = (33 C29%)7 (W CAwd)?.
(3.79)
In caser; >0, from (3.45) and (3.46), we get

ALT ~1 A1 A2

wehw =1,w clw’ =1 and

ALNT A1 A1

soweget (59" clw = ()7 ¢y and

(93T caw? = (95T cF9?)* .

In case 7, =0 we get %:t:O. So (3.77)
impliescly' =c?y® = o.
Hence (YT chit = (9T iyt =0 and
(97)T chaf = (37797 = 0.
Thus in either case

(9T ¢l = (9T ¢l9h* (3.80)

and (°)7 2w’ = (32)7Cc29%)* . (3.81)
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Therefore using (3.39), (3.40), (3.78) and (3.79),
we get

£ (RN 9N + g, (32, 9%) + (RTEMY) T 4 (x2TE2R%)T

—leCi:LW;l _ 92Tci2Wi2

= £, (9 + g, (%5, 95 + (KTEMA)) + (RPTE/&D)

el —(gPTeght, (3.82)

foreach i=1,2,3,....r;

or H, (%%, 94 92 whw®, pt =0, p? =0) =
G(x',%%,¥",9%,a,4%,4" =0,4” = 0)

foreach i=1,2,3,...... r,

or H@ 2,91 92,0 w2,0,0) = 6 (1 22, 91, 92,41, 42,0,0).

(3.83)

So the objective values of both problems are
equal.

Now we claim that

()n(l,)A(Z’ 91’ yz,él,éz,l,dl _ 0,(32 _ 0)
efficient solution for (SMSD).

is properly

First we have to show it is an efficient solution of

(SMSD). If this would not be the case, then there
would exist a feasible solution
@6t 9% a"a%,4,4" =0,4°=0) of (SMSD)

such that G (', %%,¥",y%,4",4%,4"' =0,4° = 0)

<G(u'u%v'v? 4" 4%, 6" =0, = 0).

This by (3.83) gives

H()?l )22 91 yZ’Wl,WZ bl :0 A 2 :0)
<G(u',u%,v',v’,4a,4°,4 =0,4" =0)
This is a contradiction to Theorem 3.1.

Hence (%', %%,y',y%,4",4°,4,4' =0,6° =0)
is an efficient solution of (SMSD).

Now we have to claim
(Xl,)zz y y2,él ézlﬂ’qlzquz

properly efficient for (SMSD).

=0) is

For that rewriting the objective function of
(SMSD) into minimization form we get

92 él éz dl:O q2:0)

If (x*,%%,y",9%,4",4%,4,4" =0,4° = 0) were
not properly efficient for (SMSD), then for every
scalarM > 0 there exist a feasible solution

min G, (x, %%, ",

(ljl A2 Al A2 Al A2
H

v',v?,a%,4%,4,4"=0,42 = 0)
of (SMSD) and an indexi such that
{G, (u',d*v'v* 4",4%,0,0)
,0,0)}

jG(xx yhye, aaOO)l
<M

-G (%', %%, 9", 9,4, 4°

(3.84)
|-G (@',d*v",v%,4",4%,0,0)
and for all j satisfying
G]ﬁ()?l,)zz,yl,yz,wl,WZ,O,O)
<Gj(d',a*,v',v*,a',a%,0,0), (3.85)
whenever G (d4*,u°,v",9%,4",4°,0,0)
<G/ (%', %%, 9", 9%, 4',4%,0,0) (3.86)

This implies that

G, (d*,4% v',v%,a",4%,0,0)-G, (%, %%, ", §°,4",4°,0,0)

Al

(G (%', %%,y", y%,4",4%,0,0) )
L G,(i',u%,v'v*, 4,4’ 0,0)J
forall j satisfying

. (3.87)

G, (%, %%,y y%,4",4%,0,0)> G, (0',0% v v*,4",47,0,0),
(3.88)
whenever G, (', Az,\71,\72 4*,4%,0,0)
> G, (%', %%, 9", 9%,4',4%,0,0) (3.89)

Since M > 0 and using (3.88) in (3.87), we get
G,(u*,4%,v',v* 4", 4%0,0)

-G, (%', %%, 9',y%,4",4%,0,0) > 0.
Using (3.83) in (3.90), we
G,(u*,4%,v',v* 4", 4%0,0)

—H, (&, %%, 9", 9%,4',4%,0,0) > 0

(3.90)
obtain

= G, (d',4°,v",v*,4",4%,0,0) >
Hi()z17)227911921é11é21010)-

Foreach 4, > 0, we have

ZA{G (4*,a%,v',v*, 4", 4%,0,0)} >

i=1
Zﬂ,H (Al,/\z,/\l A2 I\]. /\2 00)

This agaln contradlcts Theorem 3.1.
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Hence
(x',%%,9",9%,4",4*,4,4' =0,4" = 0) is
properly efficient solution of (SMSD).

Theorem 3.3 (Converse Duality)

Let f:R%IxR" > Rr and g, :RV:IxR" 5 R

be thrice differentiable functions and let

(@*,a%,v',v%,1,4,87,4-,47) be a weak

efficient solution for (SMSD). Let 4 = A4 be fixed

in (SMSD). Assume that (i) the Hessian matrices

1 A1

VR

52 A2

and Vv ,.g,(%°,y") are

nonsingular for all i =1,2,....r. (ii) The matrix

and > livxl(vxlxlgidf)

i=1

AV (V. fd)
i=1

are positive definite or negative definite and
(iii) The set

Vaf+ Elal+v Ayl f,63...., Voaf+ Eral+ Vot f,Gl} and

{nggl+E12é12+szngld12 ..... szgr+Er2é,?+Vszzgrti,?}
are linearly independent.

Then there exist wierl®ilw?cr®:l  such that

@*,6%,94,92, 1, @ w2, 6t = 0,67 =0)

is feasible solution
of (SMSD) and the two objective values are equal.
Also if the hypotheses of theorem 3.1 are satisfied

for all feasible solution of (SMSP) and (SMSD),

then (a*,4? v'v% 2w @/ df = 0,67 = 0)

is properly
efficient solution of (SMSP).

Proof: It follows on the lines of theorem 3.2.

4. Special Case
1. If y3,1=0,k,|=0,then our problem reduces

to a pair of (MP) and (MD) given by Thakur
etal. [18].

2. If p(x,u;(VE(u), p)) = F(x,u;VE(u)) withp =0,
b=Ly =1,c) ={E)x);x)TEx) <13,
Dij ={Ci’jyj;ijCi'jyj <13,

(ijEijxj)% =s(x'|c/) and
(y"c/iyh)? =s(y' D), where E' and
Ci’j are positive semi definite,
c'wl=z)Ela)] =w/ iz12,..rj=12
then our problem (MSP) and (MSD) reduces

to the pair of dual and dual results given by Li
and Gao [11], Mishra et al. [14, 15].

3. If g(x,u; (VF(u), p)) = F(x,u; VF(u)) With
p=0,b=Ly=1c) ={Ex);xTEX <13,
D) ={c/ly iy eyl <13,
(ijEijxj)% = s(x'|c/) and

(y'c/ly"? =s(y' D), where E' and

C, are positive semi definite matrices,

clw!' =z E'a =w/ i=12,..rj=12

Clw, = v i (x',y") Eja; =V  f(u',v)

and then our problem (MSP) and (MSD)

reduce to the problem (MP) and (MD) given
by Agarwal et al. [1].

4. If b=1y=1,]3,|=0]K,|=0, p=0,

XU (V f(u)+V, f(Wa,p))=FxuV,fu)+Vv,,fu)a)
and, c;=g=0,i=12..r,then the problem
(SMSP) and (SMSD) reduces to a pair of
problems (MP) and (MD) and the results studied
by Suneja and Lalita [17].

5.1fb=1Ly=1,]J,|=0,|]K,|=0, p=0,

o, us(Vy fu)+Vv,, fua,p))=FxuVv,fu)+v,fu)a),
in (SMSP) and (SMSD), then we obtain a pair of
nondifferentiable second order symmetric dual in
multiobjective program considered by Ahmad and
Husain [4].

5. Conclusion

In this article, a new pair of nondifferentiable
multiobjective second order mixed symmetric
dual programs is presented and duality relations
between primal and dual problems are
established. The results developed in this paper
improve and generalize a number of existing
results in the literature. The results discussed in
this paper can be extended to higher order as well
as to other generalized convexity assumptions.
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These results can be extended to the case of
continuous — time problems as well.
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