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Abstract. In this paper, we developed a novel algorithmic approach for the solution of multi-parametric
non-convex programming problems with continuous decision variables. The basic idea of the proposed
approach is based on successive convex relaxation of each non-convex terms and sensitivity analy-
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examples are presented to illustrate the effectiveness and applicability of the proposed method on
multi-parametric non-convex programming problems with polyhedral constraints.
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1. Introduction

Variability and uncertainty emerges in all differ-
ent levels of industry from the detailed process
description to multi-site manufacturing. The ex-
istence of parameter variability in most real pro-
cess design and operation problems necessitates
the consideration of uncertainties in the math-
ematical programming models used to simulate
and optimize the design, performance and pro-
cess operations [1]. Many process engineering
problems involve varying parameters such as at-
tributed to fluctuations in resource, market re-
quirements, prices and so on, which can affect
the feasibility and economics of the project [2],
[3].

According to the parameters description, dif-
ferent solution approaches have been proposed.
Among these parametric programming approach

is the one which is based on the sensitivity anal-
ysis theory. Sensitivity analysis provides solu-
tions in the neighborhood of the nominal value
of the varying parameters, whereas parametric
programming provides a complete map of the op-
timal solution in the space of the varying param-
eters [3].

The key advantage of multi-parametric pro-
gramming approach is that the optimal solution
is obtained as a function of the varying parame-
ters without exhaustively enumerating the entire
space of the varying parameters [2].

Algorithms and applications of multi-
parametric programming approaches have been
extensively studied in the literature [1, 2, 4, 5,
6, 7] but all existing algorithms are limited to
convex multi-parametric programming problems
even if practical problems may include non-
convex formulation. In the last decade, Pis-
tikopous et al., [3] proposed algorithmic strategy
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for parametric non-convex programming prob-
lems, but in practice the proposed algorithm is
costly and limited to bilinear terms in addition
to linear terms in the objective function as well
as in constraint sets and a single perturbation
parameter. It is difficult to use the proposed
algorithm, even when there exist convex nonlin-
ear terms in the objective in addition to bilinear
terms, because of the difficulty in the algorithm
to compare nonlinear functions of parameters.
Furthermore, the efficiency of the algorithm in
[3] is highly affected when the parameters are
vectors instead of single parameter. In general,
existing algorithmic conditions do not hold for
general multi-parametric non-convex program-
ming problems.

In this paper we have developed a novel global
optimization technique, by modifying the key
procedures in [3], for solving a more general
multi-parametric non-convex programming prob-
lems using sensitivity analysis theory which over-
comes the limitations of the existing algorith-
mic methods. In particular, the solution ap-
proach effectively solves parametric problems
with any twice continuously differentiable non-
linear objective function and having polyhedral
constraints.

This paper is organized as follows: in section
2, some preliminary concepts such as: convexi-
fication of non-convex terms and the theory of
non-linear multi-parametric programming prob-
lem with respective critical regions are described.
Moreover, the major difficulties associated with
obtaining global parametric solution using the
existing methods have been discussed in this sec-
tion. The proposed algorithm for the solution of
multi-parametric non-convex programming prob-
lems with affine constraints is then described
in Section 3, and illustrative examples are pre-
sented. The paper ends with conclusive remarks
in Section 4.

2. Preliminary

2.1. Convex relaxation

If the optimization problem contains non-convex
terms, the Karush-Kuhn-Tucker (KKT) condi-
tions may not produce optimal solutions to such
problems. To apply the KKT conditions as so-
lution mechanism to non-convex problems, the
occurrence of any non-convex term both in the
objective as well as in the constraint must be un-
derestimated by a convex envelope to approxi-
mate it by a convex function (see, for instance,
[8, 9, 10]).

The convex envelope of bilinear terms bijxixj
taken over the rectangle R = {(xi, xj) : xLi ≤
xi ≤ xUi , x

L
j ≤ xj ≤ xUj } is denoted by

V exR[bijxixj ] and can be found as follows:

Theorem 1. [8] Let bij, for i = 1, 2, . . . , n − 1
and j = i + 1, . . . , n, be a real number, then the
convex envelope of a bilinear term bijyiyj can be
formulated as:

V exR[bijxixj ] = max{bij l
1
ij(xi, xj), bij l

2
ij(xi, xj)}

where,

l1ij(xi, xj) =

{

xLj xi + xLi xj − xLi x
L
j , bij > 0

xUj xi + xLi xj − xLi x
U
j , bij ≤ 0

and

l2ij(yi, yj) =

{

xUj xi + xUi xj − xUi x
U
j , bij > 0

xLj xi + xUi xj − xUi x
L
j , bij ≤ 0

Univariate concave functions can be trivially
underestimated by their linearization at the lower
bound of the variable range [9]. Thus, the con-
vex envelope of the concave function f(x) over
the interval [xL, xU ] is the linear function of x:

CEnve = f(xL) +
f(xU )− f(xL)

xU − xL
(x− xL) (1)

All other general non-convex terms for which
customized lower bound do not exist are underes-
timated as proposed in [9]. A generic non-convex
function f(x) is underestimated over the entire
domain [xL, xU ] by the function F (x) and defined
as:

F (x) = f(x) + α
n
∑

i=1

(xLi − xi)(x
U
i − xi) (2)

where α is a positive scalar and is given by:
α ≥ max{0,minxL≤x≤xU λi(x)}, where the λi’s
are eigenvalues of the Hessian matrix (Hf (x)) of
f(x).

Theorem 2 (Properties of F (x)).

(i) F (x) is a valid under-estimator of f(x)
(ii) F (x) matches f(x) at all corner points.
(iii) F (x) is convex in xi ∈ [xL, xU ], i =

1, 2, . . . , n.
(iv) The maximum separation between the

non-convex term of generic structure
f(x) and its convex relaxation F (x) is
bounded and proportional to the positive
parameters αi and to the square of the di-
agonal of the current box constraints

Proof : see [10]
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2.2. Multi-parametric nonlinear

programming problem

Consider the general parametric nonlinear pro-
gramming problem:

Z(θ) = min
x

f(x, θ)

s.t.

gi(x, θ) ≤ 0, for all i = 1, 2, . . . , p, (3)

hj(x, θ) = 0, for all j = 1, 2, . . . , q

x ∈ X ⊆ R
n, θ ∈ Θ ⊆ R

m,

where f , g’s and h’s are twice continuously dif-
ferentiable in x and θ. Assume also that f is a
convex function and gi’s, hj ’s define a convex set.

The first-order KKT optimality conditions for
(3) are given as follows:

L = f(x, θ) +

p
∑

i=1

λigi(x, θ)

+

q
∑

j=1

µj hj(x, θ),

▽xL = 0, (4)

gi(x, θ) ≤ 0, λigi(x, θ) = 0,

λi ≥ 0, for all, i = 1, 2, . . . , p

hj(x, θ) = 0, for all, j = 1, 2, . . . , q

where, λ and µ are vectors of Lagrange multipli-
ers. The main sensitivity result for (3) is derived
directly from system (4) and is given in the next
theorem.

Theorem 3. [11] Let θ0 be a vector of parame-
ter values and (x0, λ0, µ0) be a KKT triple corre-
sponding to (4), where, λ0 is nonnegative and x0
is feasible in (3). Also assume that,

(1) Strict complementary slackness (SCS)
condition holds,

(2) The gradients of all binding constraints
are linearly independent (LICQ: Lin-
ear Independence Constraint Qualifica-
tion condition holds), and

(3) The second-order sufficiency conditions
(SOSC) hold.

Then, in the neighborhood of θ0, there exists
a unique, once continuously differentiable func-
tion, Z(θ) = [x(θ), λ(θ), µ(θ)], satisfying (4) with
Z(θ0) = [x(θ0), λ(θ0), µ(θ0)], where x(θ) is a
unique isolated minimizer for (3), and







dx(θ0)
dθ

dλ(θ0)
dθ

dµ(θ0)
dθ






= −M−1

0 ·N0 (5)

where, M0 and N0 are the Jacobian of system (4)
with respect to x and θ:

M0 =

























∇xxL ∇xg1 . . . ∇xgp
λ1∇

T
x g1 − g1 0

...
. . .

λp∇
T
x gp − gp 0

∇T
xh1 0 · · · 0
...

∇T
xhq 0 · · · 0

























N0 =
(

∇2
θxL,−λ1∇θg1, . . . ,−λp∇θgp,

−∇θh1, . . . ,−∇θhq)
T

Note that the assumptions in Theorem 3 en-
sure that the inverse of the Jaccobian of Equa-
tion (5) exists [4, 6, 3]. In other words, when M0

is not invertible any violation of assumptions in
Theorem 3 is easily detected.

In [6] Dua et al., have proposed an algorithm
to solve Equ. (5) in the entire range of the vary-
ing parameters for general convex problems. This
algorithm is based on approximations of the non-
linear optimal expression, x = γ⋆(θ) by a set of
first order approximations.

Corollary 1. (First order estimation of x(θ),
λ(θ), µ(θ), near θ = θ0 [12]). Under the consid-
eration of Theorem 3, a first order approximation
of [x(θ), λ(θ), µ(θ)] in the neighborhood of θ0 is,





x(θ)
λ(θ)
µ(θ)



 =





x0
λ0

µ0



−M−1
0 ·N0 · (θ − θ0) (6)

where (x0, λ0, µ0)=(x(θ0), λ(θ0), µ(θ0)),M0 =
M(θ0), N0 = N(θ0)

The space of θ where this solution (6) remains
optimal is defined as the critical region, CR, and
can be obtained by using feasibility and optimal-
ity conditions. Feasibility is ensured by substi-
tuting x(θ) into the inactive inequalities given in
problem (3), whereas the optimality condition is
given by λ̌(θ) ≥ 0, where λ̌(θ) corresponds to
the vector of active inequalities, resulting in a
set of parametric constraints. Each piecewise lin-
ear approximation is confined to regions defined
by feasibility and optimality conditions [6]. If ǧ
corresponds to the non-active constraints, and λ̌
to the lagrangian multipliers of the active con-
straints:

CR =

{

ǧ(x(θ), θ) ≤ 0 Feasibility conditions
λ̌(θ) ≥ 0 Optimality conditions.

Consequently, the explicit expressions are
given by a conditional piecewise linear function
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[6]:



















x = C1 +K1 · θ, if θ ∈ CR1

x = C2 +K2 · θ, if θ ∈ CR2

...
...

...
x = Cp +Kp · θ, if θ ∈ CRp

, (7)

where Ci are column vectors and Ki are real ma-
trices, whereas CRi ∈ Rm are critical regions and
note that CRi denotes the ith critical region.

For problems involving convex f , g and h, the
parametric solutions, as described in equation (7)
within the corresponding critical regions, are nec-
essary and sufficient. As a result, the existing al-
gorithms which are proposed in [1, 2, 4, 5, 6, 7]
work efficiently. However, for the general non-
linear case, the convexity assumption of f , g and
h are usually extended to include non-convex
cases as long as KKT necessary conditions are
met and hence, the KKT conditions can no longer
guarantee global optimality of the problem for
fixed parameter θ = θ0. Hence, methods based
on sensitivity theory for the solution of general
nonlinear multi-parametric programming prob-
lems bound to local.

Recently, Pistikopoulos et al., [3] have pro-
posed a solution strategy for special non-convex
multi-parametric programming problems based
on a branch-and-bound algorithm to locate the
global parametric solution. It may work well
when the objective function contains only affine
functions with respect to x and θ explicitly, where
θ is a scalar parameter. When non-linear (even
polynomial) functions appear at the objective
function the bounding procedure becomes un-
manageable. The complexity further increases
significantly, as the number of parameters in-
crease. A further difficulty arises when there ex-
ists general non-convex terms in addition to spe-
cial non-convex terms at the objective function
defined in polyhedral region.

In the following section we have proposed a
new algorithmic approach which can be applied
to approximate the solution of multi-parametric
non-convex programming problems.

3. The Proposed Approach

3.1. Mathematical aspects of the

proposed algorithm

In this section we have presented a solution
approach for non-convex multi-parametric pro-
gramming problems which is optimized over a
convex polyhedral region. But, the algorithm can

be extended to any non-linear constraint func-
tions by taking each non-linear constraints to the
objective function using penalty terms.

To proceed the presentation, consider the
following multi-parametric non-convex program-
ming problem:

Z(θ) = min
x







fn(x, θ) +
n−1
∑

i=1

n
∑

j=i+1

bijxixj

+cf(x, θ) + c(x, θ)
}

s.t. g(x, θ) ≤ 0 (8)

h(x, θ) = 0,

xL ≤ x ≤ xU ,

θL ≤ θ ≤ θU

where, fn and c are generic non-convex and linear
combination of concave functions in x, whereas
cf is a convex term and g and h define a convex
polyhedron.

Thus, problem (8) can be reduced to a stan-
dard non-linear programming problem by fixing
a feasible value to a parameter vector, θ = θ0;

Z(θ0) = min
x







fn(x, θ0) +
n−1
∑

i=1

n
∑

j=i+1

bijxixj

+cf(x, θ0) + c(x, θ0)}

s.t. g(x, θ0) ≤ 0 (9)

h(x, θ0) = 0,

xL ≤ x ≤ xU

As discussed in Subsection 2.1, each generic non-
convex, bilinear, and concave terms can be under-
estimated by F (x, θ0), V exR[bijxixj ] and CEnve
respectively. Thus, the convex under-estimator
of problem (9) can be formulated as:

Z(θ0) = min
x







F (x, θ0) +

n−1
∑

i=1

n
∑

j=i+1

V exR[bijxixj ]

+cf(x, θ0) + CEnve}

s.t. g(x, θ0) ≤ 0 (10)

h(x, θ0) = 0,

xL ≤ x ≤ xU

Then one can solve problem (9) locally to obtain

an upper bound, Ẑ, and problem (10) to obtain
a lower bound, Ž, of the exact solution of the
original problem around θ0. If problem (10) is

infeasible and its objective value is above Ẑ, we
fathom the region for θ0. Otherwise, one com-
pares Ẑ and Ž (note that both of them are real
numbers). If the difference is greater than the
pre-defined tolerance error, ǫ, the lower bound,
Ž will be stored along with the solution set and
the optimization variable, with the longest side
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from among those which contribute to the non-
convexity of the problem, will be branched as fol-
lows:

R1 =





















xL1 xU1
xL2 xU2
...

...

xLi
(xL

i
+xU

i
)

2
...

...
xLn xUn





















and,

R2 =





















xL1 xU1
xL2 xU2
...

...
(xL

i
+xU

i
)

2 xUi
...

...
xLn xUn





















Solving problem (9) over both sub-rectangles
locally gives the upper bounds. By comparing
the two upper bounds with the previous upper
bound the minimum of them will be taken as a
current upper bound CẐ.

Again problem (9) will be under-estimated in-
side each of the two sub-rectangles R1 and R2

as:

Z(θ0) = min
x







F (x, θ0) +

n−1
∑

i=1

n
∑

j=i+1

V exR[bijxixj ]

+cf(x, θ0) + CEnve}

s.t. g(x, θ0) ≤ 0 (11)

h(x, θ0) = 0,

x ∈ R1

and,

Z(θ0) = min
x







F (x, θ0) +

n−1
∑

i=1

n
∑

j=i+1

V exR[bijxixj ]

+cf(x, θ0) + CEnve}

s.t. g(x, θ0) ≤ 0 (12)

h(x, θ0) = 0,

x ∈ R2

Then one solves the resulting problems and
stores the objective values along with the solution
set, if the obtained solution is feasible and objec-
tive values are less than the upper bound Ẑ. Oth-
erwise the respective sub-rectangle for θ = θ0 will
be fathomed. The minimum over the stored solu-
tion set, Ž, will be chosen as the lower bound and
it will be compared with the current upper bound
Ẑ. If Ẑ−Ž > ǫ, the lower bound will be discarded

and the same procedure will be repeated as dis-
cussed above with working variable bound corre-
sponds to the previously found minimum lower
bound, (i.e., the variable box corresponding to
the discarded minimum value should be further
branched to obtain another lower bounds) until
the difference falls below the pre-defined toler-
ance error, (i.e., Ẑ − Ž ≤ ǫ).

Theorem 4. The difference between Ẑ and
Ž converges within finite number of branching
steps.

Proof. To prove the statement of the theorem
we need to show that the lower bound Ž is an
increasing sequence. To this end, let Žk denote
the lower bound for kth iteration (kth branching
step). As a result of the above procedure, we
have the current lower bound defined by: CŽk =
min{min{Ži}

k−1
i=1 , Žk} and the selected minimum

value has to be discarded if it does not satisfy
the stopping criteria. Hence, we have large val-
ues in the solution set. Similarly, at k + 1 we
have, CŽk+1 = min{min{Ži}

k
i=1 \ CŽk, Žk+1},

(since CŽk has already been discarded from the
set) and as the size of the rectangular domain
(like R1 and R2) decreases, the maximum sepa-
ration between the original non-convex function
and its respective convex under-estimator func-
tion decreases. This implies that CŽk+1 ≥ CŽk.
This shows that the lower bound is increasing.

On the other hand, let Ẑk denote the upper
bound for kth iteration. Again from the above
mathematical procedure, we have the current up-
per bound, CẐk = min{min{Ẑi}

k−1
i=1 , Ẑk} and at

the (k + 1)th step we have the current upper

bound, CẐk+1 = min{min{Ži}
k
i=1, Ẑk+1}, but,

CẐk = min{Ẑi}
k
i=1. This implies, CẐk+1 =

min{CẐk, Ẑk+1}. Hence, we have a decreasing

sequence of upper bounds, i.e., CẐk ≥ Ẑk+1

Therefore, since CẐk(x) decreases as k in-
creases and CŽk(x) increases as k increases, we
can conclude that the difference is a decreas-
ing sequence and hence it converges within finite
step. �

If the difference falls below the given tol-
erance error at the kth branching step (sub-
rectangle), the approximate solution of the kth

under-estimator subproblem is taken as a KKT
triple (x0, λ0, µ0) for θ = θ0 and the problem it-
self to define approximate parametric solution to
the original problem in the neighborhood of θ0



94 A.M. Kassa, and S.M. Kassa /Vol.4, No.2, pp.89-98 (2014) c©IJOCTA

as;




x(θ)
λ(θ)
µ(θ)



 =





x0
λ0

µ0



−M−1
0 ·N0 ·(θ−θ0), θ ∈ CR

(13)
where, CR is a convex polyhedron which is called
a critical region and can be obtained as described
in Subsection 2.2

Theorem 5. Expression (13) is an approximate
parametric solution of problem (8) over the cor-
responding critical region, CR.

Proof. From the discussion above the KKT
triple (x0, λ0, µ0) is an approximate solution for
problem (8) for θ = θ0. Hence by recalling The-
orem 3 and Corollary 1, we have that expres-
sion (13) is an approximate parametric solution
of problem (8). �

If CR has not covered the parametric region,
we repeat again the same mathematical proce-
dure as in above with any new feasible param-
eter (θ = θ0) taken from the rest of parametric
regions until the parametric region has been ex-
plored successfully.

To define the rest of the parametric region,
consider CRIG = [θL, θU ] to be the over-
all parametric region and let the inequalities
{c1 ≤ 0, c2 ≤ 0, c3 ≤ 0} define CR. Now the
rest of the parametric region can be defined as
CRrest = CRIG \ CR, which can be obtained
by reversing the inequalities in CR one-by-one.
For example, consider inequality c1 ≤ 0, the
rest of the region can be addressed by revers-
ing the sign of inequality c1 ≤ 0 and remov-
ing redundant constraints in CRIG, which is
CRrest

1 = {c1 ≥ 0, θ1 ≥ θL2 , θ2 ≤ θU2 } where,
θ = (θ1, θ2). Thus by considering the rest of the
inequalities, the total of the rest region is given
by, CRrest = {CRrest

1 ∪ CRrest
2 ∪ CRrest

3 }, where
CRrest

1 , CRrest
2 and CRrest

3 are given in Table 1.

Table 1. Definition of the rest regions

Region Inequalities

CRrest

1 c1 ≥ 0, θ1 ≥ θL1 , θ2 ≤ θU2
CRrest

2 c1 ≤ 0, c2 ≥ 0, θ1 ≤ θU1 , θ2 ≤ θU2
CRrest

3 c1 ≤ 0, c2 ≤ 0, c3 ≥ 0, θL1 ≤ θ1 ≤ θU2 , θL2 ≤ θ2

Theorem 6. Let X ⊆ R
m be a polyhedron and

CRQ = {x ∈ X : g̃2(x) − b̃ ≤ 0} ⊆ X, be
a critical region. Assume CRQ 6= ∅. Also let

CRi = {x ∈ X : g̃i2(x) − b̃i > 0, g̃j2(x) − b̃j ≤
0, ∀j < i, i = 1, 2, . . . ,K} where K = size(b),

and let CRrest =
⋃K

i=1CRi. Then

(1) CRrest
⋃

CRQ = X,

(2) CRQ
⋂

CRi = ∅,
(3) CRi

⋂

CRj = ∅, ∀i 6= j, i.e.
{CRQ, CR1, . . . , CRK} is a partition of
X.

Proof. (1) Since CRi ⊆ X for all i
and CRQ ⊆ X, it is clear that
CRrest

⋃

CRQ ⊆ X. To show the back-
ward inclusion let x ∈ X and assume
that x /∈ CRQ. Then, there exists an
index i such that g̃i2(x) − b̃i > 0. Let

i∗ = mini≤K{i : g̃i2(x) > b̃i}, by def-

inition of i∗ we have g̃i
∗

2 (x) > b̃i
∗

and

g̃j2(x) < b̃j , ∀j < i∗. This implies that

x ∈ CRi∗ , thus x ∈ CRRest
⋃

CRQ.
Hence CRrest

⋃

CRQ = X.
(2) If x ∈ CRQ then by definition, there

doesn’t exist an index i that satisfy
g̃i2(x) − b̃i > 0. which implies that x /∈
CRi.

(3) Let x ∈ CRi and take i > j. Since
x ∈ CRi, by definition of CRi(i > j)

g̃j2(x) − b̃j ≤ 0, which implies that x /∈
CRj .

�

Theorem 6 shows that the parametric region
CRIG can be explored (partitioned) within a fi-
nite feasible choice of the parameter θ = θ0. This
indicates that the above procedure terminates af-
ter finite number of partitions of the parameter
space.

3.2. Algorithm for multi-parametric

non-convex programming problems

The steps of the proposed global optimiza-
tion framework for a multi-parametric non-
convex programming problem with polyhedral
constraints are presented as follows:

Step 1: Initialize the upper bound, Ẑ of the solution
as Ẑ = +∞, the optimization variable box
[xL,xU ], the parameter space [θL,θU ] and the
tolerance value ǫ.

Step 2: Reduce problem (8) into standard non-
convex problem by fixing the feasible param-
eter θ = θ0 as:

Z(θ0) = min
x







fn(x, θ0) +
N−1
∑

i=1

N
∑

j=i+1

bijxixj

+cf(x, θ0)}

s.t. g(x, θ0) ≤ 0 (14)

h(x, θ0) = 0,

xL ≤ x ≤ xU

Step 3: Solve problem (14) locally within an appro-
priate optimization variable bound. If the
solution is feasible update the current upper
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bound to the solution as: CẐ = min(current

objective value, Ẑ).
Step 4: Replace each non-convex term in problem

(14) by its tight convex under-estimator and
solve the resulting problem. If the solution is
feasible and Ž is less than Ẑ store the solu-
tion along with solution set of lower bounds;
otherwise fathom the region for θ = θ0.

Step 5: Branch (or bisect) the optimization variable
having longest side from among those which
contribute to the non-convexity of the prob-
lem, as:

R1 =





















xL
1 xU

1

xL
2 xU

2
...

...

xL
i

(xL

i
+xU

i
)

2
...

...
xL
n xU

n





















and

R2 =





















xL
1 xU

1

xL
2 xU

2
...

...
(xL

i
+xU

i
)

2 xU
i

...
...

xL
n xU

n





















Step 6: Solve problem (14) inside each of the two sub-
rectangles locally to obtain upper bounds say,
Ẑ2 and Ẑ3. Now compare the obtained upper
bounds with previous current upper bound
CẐ and take the minimum one as the cur-
rent upper bound CẐ.

Step 7: Underestimate every non-convex terms by its
tight lower bounding function in each sub-
rectangle R1 and R2 as discussed in Subsec-
tion 2.1 and solve the resulting convex prob-
lems. If the solutions are feasible and less
than the current upper bound, store the so-
lutions along with the solution set of lower
bounds. Otherwise, fathom the respective
rectangle for θ = θ0.

Step 8: From the solution set (in Step 7), take the
minimum as Ž and compare it with current
upper bound CẐ. If the difference CẐ− Ž ≤
ǫ then go to Step 9. Otherwise, discard Ž
from the solution set and go to Step 5 with
the sub-rectangle containing the previously
found minimum lower bound.

Step 9: Compute M0, N0 as discussed in Subsec-
tion 2.2 from the respective tighter under-
estimator subproblem.

Step 10: Characterize the parametric optimal solution
x(θ), Lagrange multipliers λ(θ), µ(θ) and the
critical region, where the given solution is
valid and remove any redundant constraint
from this region.

Step 11: Define the rest of the parameter region by
reversing one by one the inequalities of the
hyperplanes defining the critical region and
again remove any occurrence of redundancy
as discussed above.

Step 12: For each new region NRi, set CRIG = NRi

and store each region as: CRrest =
⋃

i NRi

Step 13: Compute the Chebyshev center θ0 and radius
r of CRIG. If r ≤ 0 and CRrest is empty exit;
else go to Step 2 with new θ = θ0 which is
from the rest of the parametric region.

Corollary 2. Let CRrest
⋃

CRQ =
X, CRQ

⋂

CRi = ∅ ∀i and CRi
⋂

CRj = ∅, ∀i 6=
j be a partition of X and the difference between
Ẑ and Ž is a decreasing sequence, then the above
algorithm converges.

Proof. This is an immediate consequence of
Theorem 4 and Theorem 6.

�

3.3. Illustrative examples

Example 1
Consider the following multi-parametric

non-convex programming problem:

min
x

1

2
x2
1 − 2θ1x1x2 +

5

2
x2
2 − θ1x1 − θ2x1

s.t −
1

3
x1 + x2 − 2θ2 ≤ 0

−x1 −
1

3
x2 − 2θ1 ≤ 0 (15)

1 ≤ x1 ≤ 5, 1 ≤ x2 ≤ 2

0 ≤ θ1 ≤ 10, 0 ≤ θ2 ≤ 10

Solving problem (15) using the proposed al-
gorithm for ǫ = 10−16, we have got the follow-
ing parametric solutions and the union of the
corresponding critical regions are depicted in
Figure 1 and the algorithm converges within
19.8433 CPU time.

CRR

1 =















































x(θ) =





2.56− 0.1247θ2 − 3.1232θ1

0.5254θ1 − 0.0749θ2 + 1.5015





1.5561θ1 − 2.0337θ2 ≤ −0.6765

0.9483θ1 + 0.1497θ2 ≤ 3.0000

1.0000θ2 ≤ 10.0000

−1.0000θ1 ≤ 0

CRR

2 =



































x(θ) =





1.0532θ1 + 7.0670θ2 − 23.4361

26.3377− 3.9420θ2 − 1.7585θ1





−2.1061θ1 − 8.2747θ2 ≤ −34.0656

−1.5561θ1 + 2.0337θ2 ≤ 0.6765

1.0000θ1 ≤ 10.0000
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CRR
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



x(θ) =





0.3798θ2 − 1.1057θ1 + 5.4361

10.8632− 0.3604θ2 − 1.1091θ2





−0.7443θ1 − 2.4857θ2 ≤ −9.0693

−0.9483θ1 − 0.1497θ2 ≤ −3.0000

1.5561θ1 − 2.0337θ2 ≤ −0.6765

1.0000θ1 ≤ 10.0000

1.0000θ2 ≤ 10.0000
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x(θ) =
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

24− 5.8787θ2 − 3.1998θ1

0.0125θ1 + 3.6034θ2 − 2.5352





1.0685θ1 + 3.5433θ2 ≤ 10.7465

−1.5561θ1 + 2.0337θ2 ≤ 0.6765

1.0000θ1 ≤ 10

−1.0000θ1 ≤ 0

−1.0000θ2 ≤ 0
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9.4825− 0.7760θ2 − 1.5458θ1





0.7443θ1 + 2.4857θ2 ≤ 9.0693

−0.9483θ1 − 0.1497θ2 ≤ −3.0000

1.5561θ1 − 2.0337θ2 ≤ −0.6765
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
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
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
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
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x(θ) =

[

15.9447− 2.4510θ2 − 1.1321θ1

1.1953θ2 − 0.3726θ1 + 5.2436

]

−1.0685θ1 − 3.5433θ2 ≤ −10.7465

2.1061θ1 + 8.2747θ2 ≤ 34.0656

−1.5561θ1 + 2.0337θ2 ≤ 0.6765
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Figure 1. Corresponding critical re-
gions of problem (15)

Example 2
The second test problem is a problem with

general non-convex formulation in the objec-
tive function and described in the form:

min
x

x1x2 sin(x2)−
x2

x2
2 + 1

+ θ1 + θ2

s.t 5x1 + x2 − 2θ2 − 2 ≤ 0

x1 −
1

3
x2 − 2θ1 − 5 ≤ 0 (16)

−2 ≤ θ1, θ2 ≤ 2,

−2 ≤ x1 ≤ 2, −2 ≤ x2 ≤ 4

Solving problem (16) using the above pro-
posed method for ǫ = 10−16, one can get

the following parametric solutions with cor-
responding critical regions and the total ex-
plored parametric region has been shown in
Figure 2 and the algorithm converges within
20.6389 CPU time.
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x(θ) =





3.1046e−1θ1 + 1.7161e−009θ2 − 0.1507

1.3964− 8.8514e−008θ2 − 5.6204e−010θ1





−2.0000θ2 ≤ 1.3572

1.0000θ1 ≤ 2.0000

1.0000θ2 ≤ 2.0000

−1.0000θ1 ≤ 2.0000
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x(θ) =
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

6.4566e−010θ1 + 0.4367θ2 + 0.5081

−0.1834θ2 − 3.2283e−009θ1 − 0.5403





2.0000θ2 ≤ −1.3572

1.0000θ1 ≤ 2.0000

−1.0000θ1 ≤ 2.0000

−1.0000θ2 ≤ 2.0000
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Figure 2. Corresponding critical re-
gions of problem (16)

Example 3
Consider the following problem with

generic non-convex formulation appeared on
its objective function:

min
x

f2 = cos(x1) sin(x2)−
x1θ1
x2
2 + 1

s.t −
1

3
x1 + x2 − 2θ2 ≤ 0 (17)

−x1 −
1

3
x2 − 2θ1 ≤ 0

−1 ≤ x1 ≤ 2, −1 ≤ x2 ≤ 1

0 ≤ θ1, θ2 ≤ 2

After solving problem (17) using the algo-
rithm described in this paper, we have got
a parametric solution given below. The cor-
responding critical region is shown in Figure
3. For this problem, the algorithm converges
within tolerance error ǫ = 10−16 and 42.5103
CPU time.



Approximate solution algorithm for multi-parametric non-convex programming . . . 97

CR
R

1 =



























































x(θ) =





1.0414× 10−8θ2 − 7.0264θ1 + 7.3198

3.4634− 1.0399× 10−8θ2 − 3.4634θ1





−1.1446θ1 − 2.0000θ2 ≤ −1.0479

6.1803θ1 ≤ 8.4732

1.0000θ2 ≤ 2.0000

−1.0000θ1 ≤ 0

−1.0000θ2 ≤ 0

CR
R

2 =



































x(θ) =





1.1239× 10−8θ2 − 1.7082θ1 + 0.8636

0.85631θ2 − 2.2258θ1 + 0.2011





1.1446θ1 + 2.0000θ2 ≤ 1.0479

−1.0000θ1 ≤ 0

−1.0000θ2 ≤ 0

CRR

3 =



























































x(θ) =





18.7304− 1.3873× 10−9θ2 − 10.9232θ1

5.3693− 3.478× 10−9θ2 − 3.2033θ1





0.4191θ1 − 2.0000θ2 ≤ 0.8118

−6.1803θ1 ≤ −8.4732

1.0000θ1 ≤ 2.0000

1.0000θ2 ≤ 2.0000

−1.0000θ2 ≤ 0

CRR

4 =



































x(θ) =

[

26.2252− 3.20657× 10−6θ2 − 12.9923θ1

6.3876− 3.1265× 10−6θ2 − 3.2033θ1

]

−0.4191θ1 + 2.0000θ2 ≤ −0.8118

1.0000θ1 ≤ 2.0000

−1.0000θ2 ≤ 0

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

θ
1

θ 2

Figure 3. Corresponding critical re-
gions of problem (17)

4. Conclusion

In this paper we have given a detailed de-
scription of an approximate solution algo-
rithm for multi-parametric non-convex pro-
gramming problems with convex polyhedron
constraints. The approach is constructed
through successive convex relaxation of each

of the non-convex terms followed by employ-
ing sensitivity analysis theory. Special atten-
tion is given to general non-convex formula-
tions in the objective function with convex
polyhedral constraints. The algorithm has
been tested for a variety of example prob-
lems having a general non-convex formula-
tion at their objective functions. The pro-
posed algorithm can be extended to a gen-
eral but twice continuously differentiable non-
linear multi-parametric programming models
by making some mathematical modifications
on the presented algorithm to transform non-
linear constraints into the objective part.
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