
An International Journal of Optimization

and Control: Theories & Applications

Vol.3, No.2, pp.111-119 (2013) c⃝ IJOCTA

ISSN:2146-0957 eISSN:2146-5703

DOI:10.11121/ijocta.01.2013.00167

http://www.ijocta.com

Minimization over randomly selected lines

İsmet Şahin

Mathematical and Computational Science Division
National Institute of Standards and Technology

Gaithersburg, MD 20899-8910 USA
Email: isahin@gmail.com

(Received April 25 , 2013 ; in final form June 23 , 2013)

Abstract. This paper presents a population-based evolutionary optimization method for minimizing
a given cost function. The mutation operator of this method selects randomly oriented lines in the
cost function domain, constructs quadratic functions interpolating the cost function at three different
points over each line, and uses extrema of the quadratics as mutated points. The crossover operator
modifies each mutated point based on components of two points in population, instead of one point as
is usually performed in other evolutionary algorithms. The stopping criterion of this method depends
on the number of almost degenerate quadratics. We demonstrate that the proposed method with these
mutation and crossover operations achieves faster and more robust convergence than the well-known
Differential Evolution and Particle Swarm algorithms.

Keywords: Random lines; nonlinear optimization; evolutionary optimization; population-based opti-
mization; quadratic interpolation; crossover operator; mutation operator; stopping criterion; differential
evolution; particle swarm.

AMS Classification: 90-04, 90-08, 90B50

1. Introduction

Population-based evolutionary optimization
methods try to minimize a given cost function
by using a set of points [1, 2, 3]. They are called
evolutionary as they create variations in popula-
tion through mutation and crossover operations
and then select the variations that improve pre-
vious generation. In general they create vari-
ations based on only cost function evaluations
thus they are easy-to-use for the cost functions
whose gradient and Hessian are not known due to
their complexity, discontinuity, or non-numeric
structure. This paper presents a new mutation
operation based on quadratic functions and a
new crossover operation for creating variations.

Quadratic functions are frequently used in
both deterministic and stochastic optimization

methods. The Newton’s method uses qua-
dratic approximation of the cost function at
current iterate and assigns its minimizer as
the next best guess [4]. The quasi-Newton
algorithm finds a descent direction based on
the BFGS (Broyden–Fletcher–Goldfarb–Shanno)
Hessian approximation and performs an inexact
line search by using quadratic and cubic function
models in [5]. The line search in [6] also uses qua-
dratic interpolation for finding a minimizer over
the line. The stochastic method Controlled Ran-
dom Search [7] has a mutation operator which
randomly chooses three points in population and
fits a quadratic to these points. A similar mu-
tation operator for Differential Evolution (DE)
is also used in [8], which constructs the mutated
vector by using either the DE mutation scheme
or the quadratic interpolation based on a fixed
mutation probability.

This work is supported in part by the US National Science Foundation under grant DMR-0520547.

111

112 İ. Şahin / Vol.3, No.2, pp.111-119 (2012) c⃝IJOCTA

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
α1

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

α
2

x1

x2

x3

x4

x5

f(α1,α2) =(1−α1)
2 +100

(
α2−α 2

1

)
2

Figure 1. The contours of 2-dimensional Rosenbrock function with five random lines. The

minimizer of this function xopt = [1, 1]
T
is illustrated by the star sign. White circles represent

parent points, yellow circles represent randomly sampled points, and red diamonds represent
extrema of the quadratics passing through three different points over the lines.

The proposed mutation operator tries to learn
cost function surface by fitting quadratics over
one-dimensional slices taken from the search
space. These slices are defined by lines pass-
ing through pairs of points in population. The
points are randomly paired in order to achieve as
uniform approximation as possible to the func-
tion. Using minima of convex quadratics as mu-
tated points improves convergence rates as they
often indicate regions of the search space with
smaller function values. We note that this mu-
tation approach is different than DE’s mutation
[9, 10, 11] which depends on only the points in
population, whereas the proposed approach uses
both the points as well as function values at
these points. The crossover operation involves
two points in population for improving robust-
ness and efficiency. It replaces randomly selected
entries of a mutated vector by corresponding en-
tries of two other vectors in population. The
proposed method’s stopping criterion stops the
search when at least a pre-specified number of
quadratics are almost degenerate.

2. Formulation

Consider a set of n-dimensional real vectors X =
{x1, x2, . . . , xnP } with nP elements. The algo-
rithm pairs each point xi with another point xj
in X randomly. The paired points (xi, xj) are

called the parent points. For instance a pop-
ulation of five points x1, x2, x3, x4, and x5 are
illustrated as white circles in Figure 1 for two
dimensional Rosenbrock function, where random
pairing resulted into these pairs: (x1,x5), (x2,x1),
(x3,x4), (x4,x2), and (x5,x4). The parent point
xi is also called a target point since it competes
with a trial point x̂i, which is a variational point
constructed by the mutation and crossover oper-
ators described in this section. The pairing pro-
cess results into nP pairs, where ith pair has xi
as its first entry thus guaranteeing each point in
X to be a target point.

The parametric form of the line passing
through xi and xj can be written as xi+µ(xj−xi)
where µ is a real number. For instance five
lines passing through the paired points are il-
lustrated in Figure 1. The algorithm randomly
chooses a number µk and finds a third point
xk = xi + µkpi over the line where pi = xj − xi.
Note that a step µkpi from xi toward xj is taken
if µk > 0, otherwise a step in the opposite di-
rection is taken. When xk is far from xi and
xj , the resulting quadratic model may have large
mismatches with the underlying cost function.
Therefore we choose relatively small step sizes by
uniformly drawing µk from the union of two inter-
vals: [−µ2,−µ1]∪[µ1, µ2] where 0 < µ1 < µ2 < 1.
Note that µk chosen from this distribution sat-
isfies µk ̸= 0 and µk ̸= 1 thus xk ̸= xi and

Minimization over randomly selected lines 113

xk ̸= xj , and a unique quadratic passing through
(xi, f(xi)), (xj , f(xj)), and (xk, f(xk)) exists. In
Figure 1 five sampled points are represented by
yellow circles.

Consider the function ϕ(µ) = f(xi+µpi) repre-
senting the one-dimensional cross section of f(x)
along the line passing through xi and xj . Since
function values ϕ(0) = f(xi) , ϕ(1) = f(xj) ,
and ϕ(µk) = f(xk) are known, the coefficients

of the interpolating quadratic function ϕ̂(µ) =
aµ2 + bµ+ c can be found as:

a = ϕ(1)− ϕ(0)− b

b = µk

µk−1ϕ(1)−
µk+1
µk

ϕ(0)− 1
µk(µk−1)ϕ(µk)

c = ϕ(0).

(1)

The critical point of ϕ̂(µ) is µ∗ = −b/(2a) and
corresponding point is x∗ = xi+µ∗pi. If the qua-
dratic is convex (a > 0), then x∗ is assigned to be
the mutated point. When the quadratic is con-
cave, it has a maximizer instead of a minimizer.
In this case, the step µ∗pi from xi leads to the
maximizer, thus the step −µ∗pi away from the
maximizer is taken, i.e. x∗ = xi + (b/ (2a)) pi.
This concave case handling is in contrast to our
previous study[12] which allows steps toward the
maximizer under a condition. For numerical sta-
bility we treat the model being convex if a > 10−6

and concave if a < −10−6. When |a| 6 10−6, the
quadratic is considered to be degenerate and xi
remains in the next generation. Figure 1 demon-
strates a concave quadratic over the line passing
through (x1, x5) and four convex quadratics over
the other lines.

The crossover operator constructs the trial
vector x̂i by replacing some entries of x∗ with
the corresponding entries of either xi and xj by
the following rule:

x̂k
i =


xk
i if rk 6 1

2 (1− ρCR)

xk
j if rk > 1

2 (1 + ρCR)

xk
∗ if 1

2 (1− ρCR) < rk < 1
2 (1 + ρCR)

(2)

where superscript k denotes the kth entry of the
vector, rk is drawn from Uniform[0,1], the uni-
form distribution between 0 and 1, and ρCR de-
notes a pre-fixed crossover constant chosen be-
tween 0 and 1. This rule means that 100 · ρCR

percent of the trial vector x̂i is determined by
x∗, half of the remaining entries is determined
by xi, and the other half by xj . For instance, if
ρCR = 0.8, the contributions of x∗, xi, and xj
vectors are 80, 10, and 10 percents on average
respectively.

The selection operator selects x̂i as the ith

member of the next generation if f(x̂i) < f(xi).
Otherwise, the target vector xi remains in the
next generation.

The above mutation, crossover, and selection
operations are performed until a stopping crite-
rion is satisfied. The stopping criterion of this
method depends on the number of almost degen-
erate quadratics. The method stops when the
number of quadratics nD satisfying |a| < ϵD and
|b| < ϵD is equal to or larger than nD max, where
ϵD is a small positive number and nD max is a
number such that 1 6 nD max 6 nP . This means
that if at least nD max quadratics are approxi-
mately constant functions, then the search stops.
When this stopping criterion is not satisfied for
some cost functions, the method also stops if im-
provement in the function value is smaller than
a positive number ϵNI over at least nNI max gen-
erations [13].

Since minimization is based on extrema over
randomly selected lines, we shortly refer to this
approach as the Random Lines (RL) method and
summarize it in Figure 2.

3. Performance Evaluation

Performance of a stochastic optimization method
is often determined by its robustness and ef-
ficiency. When the same function is mini-
mized multiple times, a robust method finds the
global minimizer more frequently and an effi-
cient method finds the minimizer after smaller
number of function evaluations. We minimize
each cost function 20 times and count total num-
ber of successes nS as a measure of robustness.
Since the stopping criterion using the absolute
values of quadratic coefficients is only relevant to
the RL method, for a systematic comparison of
all methods we consider that a run is success-
ful when a method finds a point xbest satisfying
f(xbest)− f(xopt) < ϵopt where xopt is the known
global minimizer and ϵopt = 10−5. The run is un-
successful if improvement in function value is less
than ϵNI = 10−12 for nNI = 50 generations. In
order to compare efficiency, the average of num-
ber of function evaluations nFE for minimizing
each cost function is also determined.

Since performance may vary for cost func-
tions with different properties, we perform com-
parison over 50 cost functions listed in Table
1. The test suite includes separable and non-
separable, normally-scaled and ill-scaled, uni-
modal and multimodal cost functions which are
often used in optimization literature [14, 15, 17].
In order to compare scalability of the methods
to higher dimensional problems, we minimize 2,
10, and 20-dimensional forms of the 16 extendible
cost functions listed in Table 1.

The RL method is compared with the DE [9]
and the Particle Swarm with constriction (PS)

114 İ. Şahin / Vol.3, No.2, pp.111-119 (2012) c⃝IJOCTA

1 Star t with XC = {x1, x2, . . . , xnP } // i n i t i a l i z a t i o n . . .
2 fbest prev = min(f(x1), f(x2), . . . , f(xnP

))
3 X+ = XC

4 nNI = 0
5 s a t i s f i e d = 0
6 whi l e (s a t i s f i e d == 0)
7 fo r each i in {1, 2, ..., nP }
8 draw j from {1, 2, . . . , i− 1, i+ 1, . . . , nP } // pa i r i n g and f i nd i n g xk . . .
9 pi = xj − xi

10 draw µk from [−µ2,−µ1]U [µ1, µ2]
11 xk = xi + µkpi
12 bi =

µk

µk−1f(xj)− µk+1
µk

f(xi)− 1
µk(µk−1)f(xk) // quadrat i c c o e f f i c i e n t s . . .

13 ai = f(xj)− f(xi)− bi
14 i f ai > 10−6 //mutation operator . . .
15 µ∗ = −bi/(2ai) //µ∗ f o r a convex quadrat i c
16 e l s e i f ai < −10−6

17 µ∗ = bi/(2ai) //µ∗ f o r a concave quadrat i c
18 e l s e
19 cont inue //|a| 6 10−6 , go to l i n e 7
20 end i f
21 x∗ = xi + µ∗pi
22 fo r each k in {1, 2, ..., n} // c r o s s ov e r operator . . .
23 draw rk from Uniform[0, 1]
24 i f rk 6 0.5(1− ρCR)
25 xk

∗ = xk
i

26 e l s e i f rk > 0.5(1 + ρCR)
27 xk

∗ = xk
j

28 end i f
29 endfor
30 i f f(x∗) < f(xi) // s e l e c t i o n operator . . .
31 x∗ ∈ X+

32 end i f
33 endfor
34 fbest = min(f(x1), f(x2), . . . , f(xnP

)) where xi ∈ X+ // stopping c r i t e r i a . . .
35 nD i s the t o t a l number o f quadra t i c s s a t i s f y i n g |ai| < ϵD and |bi| < ϵD
36 i f nD > nD max

37 s a t i s f i e d = 1
38 e l s e
39 i f fbest < fbest prev − ϵNI

40 nNI = 0 // improvement on fbest
41 e l s e
42 nNI = nNI + 1 //no improvement on fbest
43 i f nNI > nNI max

44 s a t i s f i e d = 2
45 end i f
46 end i f
47 end i f
48 XC = X+ //update f i e l d s . . .
49 fbest prev = fbest
50 endwhi le

Figure 2. The Random Lines (RL) method. The default parameter values are µ1 = 0.3,
µ2 = 0.7, ρCR = 0.9, ϵD = 10−4, nD max = 0.2nP , ϵNI = 10−12, nNI max = 50, nP = 10n. The
symbols XC and X+ denote the current and next generations. The keyword “continue” means
to skip the rest of the for loop and continue with the next i. Comments are written after two
slash characters. Increase nP for increasing robustness. Increase nD max and/or decrease ϵD
for increasing accuracy of solution.

Minimization over randomly selected lines 115

Table 1. The cost functions used in performance comparison. The initial population is gener-
ated by uniformly choosing points from the hypercube defined by αk ∈ [l1, l2] for k = 1, 2, . . . , n
where [l1, l2] are listed under search space columns. Dimensions of cost functions are listed in
parenthesis, where the extendible functions are indicated by (n) symbol.

Cost Function Search Space Reference Cost Function Search Space Reference
Ackley(n) [-30, 30] [14] Hyperellipsoid(n) [-5.12, 5.12] [14]
Alpine(n) [-10, 10] [14] Jennrich(2) [-1,1] [15]
Aluffi(2) [-10, 10] [16] Kowalik(4) [-5,5] [14]
Bard(3) [-10, 10] [15] Levy1(n) [-10, 10] [17]
Beale(2) [-10, 10] [14] Matyas(2) [-10, 10] [14]
Becker(2) [-10, 10] [17] Miele(4) [-1, 1] [17]
Bohachevsky1(2) [-50, 50] [17] MultiGaussian(2) [-2, 2] [17]
Branin(2) α1∈[−5,0],α2∈[10,15] [14] Periodic(2) [-10, 10] [17]
Brown(2) [-1e7, 1e7] [15] Powell(2) [-10, 10] [15]
Camel3(2) [-5, 5] [14] PowellsQ(4) [-10, 10] [17]
Camel6(2) [-5, 5] [14] Rastrigin(n) [-5.12, 5.12] [14]
Colville(4) [-10,10] [14] Rosenbrock(n) [-2.048, 2.048] [14]
Cubic(2) [-100, 100] [18] Schaffer1(2) [-100, 100] [17]
Dejong4(n) [-1.28, 1.28] [14] Schaffer2(2) [-100, 100] [17]
Dekker(2) [-20, 20] [17] Schwefel12(n) [-65, 65] [14]
Easom(2) [-10, 10] [14] Schwefel221(n) [-100, 100] [14]
Exponential(n) [-1,1] [17] Schwefel222(n) [-10, 10] [14]
Freudenstein(2) [-20, 20] [15] Shekel5(4) [0, 10] [14]
Gaussian(3) [-10, 10] [15] Shekel7(4) [0, 10] [14]
Goldstein(2) [-2, 2] [17] Shekel10(4) [0, 10] [14]
Griewangk(n) [-600, 600] [14] Sphere(n) [-5.12, 5.12] [14]
Gulf(3) α1∈[0,100],α2∈[0,25],α3∈[0,5] [15] Step(n) [-100, 100] [14]
Hartman3(3) [0, 1] [14] Sum.Diff.Powers(n) [-1, 1] [14]
Hartman6(6) [0, 1] [14] Wood(4) [-10, 10] [17]
Helical(3) [-10, 10] [15] Zakharov(n) [-5, 10] [14]

[19, 20] methods. All methods have the same
population size of nP = 20n. The DE and RL
methods have the crossover constant of ρCR =
0.9. Since the DE/rand/1/bin variant of the DE
algorithm is robust and fast convergent, this vari-
ant is used in many studies [9, 14, 21, 22], there-
fore it is also used in this section. The scaling
factor for DE is ρF = 0.5. The constricted Par-
ticle Swarm method uses the default constriction
constants c1 = 2.8 and c2 = 1.3. The RL uses
the default parameters specified in Figure 2 ex-
cept nP . The initial generations are constructed
by uniformly drawing points from the hypercubes
specified in Table 1.

Table 2 presents performance results for the
cost functions with fixed dimensions and for 2-
dimensional forms of the extendible functions.
We note that RL is the most robust method by
achieving total number of 985 successes over 1000
runs, while PS and DE converge over 932 and
910 runs respectively. Since number of function
evaluations for one cost function can be an out-
lier, total number of function evaluations may not
indicate efficiency without bias. We count total
number functions for which an algorithm requires
the least number of function evaluations. In this
sense, RL is the most efficient method by requir-
ing least number of function evaluations for 29

functions, which is followed by DE and PS with
14 and 7 functions respectively.

To compare scalability to higher dimensional
cost functions, the results for 10 and 20-
dimensional forms of the extendible functions are
listed in Table 3 and 4 respectively. Results for
PS are not presented in these tables as its robust-
ness decreases substantially for these cost func-
tions. Table 3 shows that the RL is more robust
than DE since they converge over 303 and 260
runs out of 320 runs respectively. Notice that
DE cannot achieve any success for 3 functions
whereas RL achieves at least 6 successes for any
cost function. The RL method is more efficient
for 12 cost functions while this number is 1 for
DE. When the problem dimension increases to
20, robustness of DE decreases as its nS reduces
from 260 to 206. In contrast, robustness of RL
slightly increases as its nS increases from 303 to
308. RL achieves at least 10 successes for any
20-dimensional function while DE does not have
any success for 4 functions. RL is also more ef-
ficient than DE for 11 functions and DE is more
efficient for 1 function.

In the next experiment, the RL method de-
scribed above remains the same but its crossover
operation given by (2) is replaced with a
crossover operation similar to DE’s crossover:

116 İ. Şahin / Vol.3, No.2, pp.111-119 (2012) c⃝IJOCTA

Table 2. The total number of successes nS and the average and standard deviation of nFE

for 50 cost functions

PS DE RL
Cost functions nS ave(nFE) std(nFE) nS ave(nFE) std(nFE) nS ave(nFE) std(nFE)
Ackley(2) 20 4,246 336.0 20 2,248 151.7 20 2,943 340.4
Alpine(2) 20 3,284 456.2 20 2,726 435.3 20 4,216 1,319.0
Aluffi(2) 20 1,064 198.7 20 824 111.9 20 572 178.4
Bard(3) 20 4,056 811.2 20 3,195 359.9 20 4,248 1,073.1
Beale(2) 20 1,774 348.8 20 1,220 164.9 20 1,100 301.4
Becker(2) 20 1,526 361.4 20 1,914 373.3 20 704 223.4
Bohachevsky1(2) 20 2,512 404.5 20 1,640 118.9 20 740 85.6
Branin(2) 20 1,468 256.7 20 884 109.3 20 368 51.3
Brown(2) 19 12,810 3,070.5 0 80,694 42,951.4 20 4,432 808.0
Camel3(2) 20 1,326 241.5 20 994 117.0 20 468 130.5
Camel6(2) 20 1,608 267.1 20 1,514 179.5 20 852 178.4
Colville(4) 20 9,784 5,749.6 20 9,804 1,345.3 20 17,415 5,134.1
Cubic(2) 20 4,490 1,507.7 18 4,784 6,113.2 18 5,977 1,365.2
Dejong4(2) 20 156 62.1 20 242 80.5 20 152 47.9
Dekker(2) 20 3,256 255.4 20 2,478 419.0 20 1,284 165.2
Easom(2) 20 1,428 346.3 20 1,244 126.4 20 1,721 457.6
Exponential(2) 20 616 180.9 20 582 96.7 20 256 69.2
Freudenstein(2) 20 3,068 1,013.0 19 1,990 706.5 20 1,859 546.8
Gaussian(3) 20 3,309 516.2 17 5,373 1,099.7 20 10,340 3,256.1
Goldstein(2) 20 1,952 274.3 20 1,310 102.1 20 1,128 234.1
Griewangk(2) 14 6,552 2,709.1 20 3,408 388.2 20 4,647 1,856.6
Gulf(3) 20 4,773 745.5 20 3,447 1,532.4 20 3,676 1,116.0
Hartman3(3) 20 2,358 310.9 20 1,923 152.6 20 1,620 275.2
Hartman6(6) 7 17,784 8,309.5 11 19,416 7,513.6 20 8,880 1,227.5
Helical(3) 20 4,299 269.9 20 3,855 362.0 20 2,904 454.2
Hyperellipsoid(2) 20 1,326 233.7 20 908 99.8 20 280 45.0
Jennrich(2) 20 2,354 341.5 20 1,862 157.6 20 2,204 252.2
Kowalik(4) 13 28,392 37,572.7 3 1,023,708 998,646.2 16 27,363 20,572.7
Levy1(2) 20 1,732 254.7 20 1,144 129.4 20 584 108.8
Matyas(2) 20 1,204 228.1 20 866 112.6 20 224 69.2
Miele(4) 20 772 208.1 20 1,264 237.3 20 3,286 720.9
MultiGaussian(2) 18 2,232 1,661.0 16 2,314 1,391.1 15 3,506 1,279.6
Periodic(2) 13 4,754 2,505.2 11 3,776 1,407.2 20 4,109 2,253.1
Powell(2) 20 7,436 1,086.1 0 24,020 5,821.4 19 11,749 2,315.6
PowellsQ(4) 20 6,168 1,032.7 20 4,888 311.4 20 2,576 777.3
Rastrigin(2) 19 2,908 1,081.6 20 2,282 225.0 20 1,981 453.0
Rosenbrock(2) 20 1,704 292.9 20 1,322 177.2 20 2,296 351.7
Schaffer1(2) 9 5,382 1,686.4 15 5,362 1,232.7 17 7,291 2,547.6
Schaffer2(2) 20 8,656 496.5 20 5,534 281.7 20 6,726 459.4
Schwefel12(2) 20 2,098 223.8 20 1,268 125.9 20 400 84.1
Schwefel221(2) 20 4,158 324.6 20 2,284 146.8 20 4,016 817.1
Schwefel222(2) 20 3,440 344.1 20 1,956 129.7 20 2,829 588.0
Shekel5(4) 12 9,940 4,718.2 20 6,876 602.3 20 6,689 2,261.1
Shekel7(4) 13 9,308 4,770.6 20 6,344 534.5 20 6,384 1,240.2
Shekel10(4) 15 8,996 4,700.8 20 6,536 520.5 20 6,439 1,327.8
Sphere(2) 20 1,238 189.2 20 884 104.6 20 288 44.2
Step(2) 20 564 207.2 20 540 74.0 20 212 79.0
Sum.Diff.Powers(2) 20 456 224.2 20 484 113.1 20 204 71.0
Wood(4) 20 9,784 5,749.6 20 9,804 1,345.3 20 17,399 4,776.7
Zakharov(2) 20 1,498 309.4 20 1,008 115.1 20 512 89.5
SUM 932 225,999 99,445.6 910 1,274,943 1,079,153.5 985 202,049 64,479.6

x̂ki = xki if rk > ρCR , otherwise x̂ki = xk∗. No-
tice from Table 5 that the RL crossover slightly
increases the robustness as there are 13, 4, and 5
more number of successes for the cost functions in
Tables 2, 3, and 4 respectively. The RL crossover
also achieves smaller number of function evalua-
tions than the DE crossover over 39, 11, and 11
functions in Tables 2, 3, and 4 respectively.

In order to determine suitable values for the
stopping criterion parameters ϵD and nD max for
the RL method, 12 cost functions are selected
and minimized for 20 times. These cost functions
are Ackley(2), Alpine(2), Bard(3), Branin(2),

Camel6(2), Exponential(2), Goldstein(2), Rosen-
brock(2), Schwefel12(2), Schwefel221(2), Schwe-
fel222(2), and Sphere(2). Let ferror be the differ-
ence between the function value fbest at the con-
verged point xbest and the function value fopt at
the global minimizer. Note that fbest 6 f (xi) for
all xi ∈ X. Table 6 shows the average ferror and
the associated average number of function evalu-
ations for different ϵD and nD max values, where
nD max = ρratio · nP , ρratio is a number satisfy-
ing 0 < ρratio 6 1, and nP = 20n. Notice that
accuracy of the solution and the number of func-
tion evaluations increase for increasing ρratio and
decreasing ϵD values. For instance average error
is less than 10−4 for ϵD 6 10−3. Similarly error
is smaller than 10−2 for all ρratio > 0.3. Even

Minimization over randomly selected lines 117

Table 3. The total number of successes nS and the average and standard deviation of nFE

for 10-dimensional cost functions

DE RL
Cost functions nS ave(nFE) std(nFE) nS ave(nFE) std(nFE)
Ackley(10) 20 70,560 1,275.9 20 50,390 2,262.8
Alpine(10) 0 58,960 15,781.5 20 53,534 23,125.7
Dejong4(10) 20 15,920 627.1 20 4,560 907.2
Exponential(10) 20 24,800 922.2 20 12,637 2,362.2
Griewangk(10) 0 39,920 7,887.5 6 73,447 18,076.3
Hyperellipsoid(10) 20 37,330 705.7 20 23,157 2,776.9
Levy1(10) 20 33,830 808.6 20 20,333 1,907.5
Rastrigin(10) 0 24,310 11,018.2 18 82,657 20,137.1
Rosenbrock(10) 20 104,450 5,464.9 20 156,173 10,318.1
Schwefel12(10) 20 75,600 1,711.9 20 47,202 6,695.7
Schwefel221(10) 20 98,520 2,275.2 20 81,668 5,401.8
Schwefel222(10) 20 72,580 1,511.9 20 45,821 1,925.8
Sphere(10) 20 33,970 1,001.6 20 20,415 2,549.3
Step(10) 20 22,380 979.6 19 12,601 4,856.3
Sum.Diff.Powers(10) 20 10,520 700.1 20 2,580 354.8
Zakharov(10) 20 62,170 1,969.5 20 40,747 4,590.1
SUM 260 785,820 54,641.2 303 727,922 108,247.8

Table 4. The total number of successes nS and the average and standard deviation of nFE

for 20-dimensional cost functions

DE RL
Cost functions nS ave(nFE) std(nFE) nS ave(nFE) std(nFE)
Ackley(20) 20 408,520 4,276.9 20 194,309 9,170.9
Alpine(20) 0 83,840 35,897.0 20 148,028 17,199.0
Dejong4(20) 20 114,460 3,998.5 20 21,688 6,813.2
Exponential(20) 20 154,660 3,339.8 20 56,084 5,116.1
Griewangk(20) 2 217,880 72,470.6 10 188,474 29,020.3
Hyperellipsoid(20) 20 234,380 3,562.3 20 109,935 7,197.8
Levy1(20) 20 207,060 5,025.0 20 88,836 5,976.9
Rastrigin(20) 0 62,660 29,701.5 19 174,422 16,419.2
Rosenbrock(20) 18 657,900 47,238.3 20 996,399 65,248.7
Schwefel12(20) 0 199,260 160,923.4 20 331,934 27,746.1
Schwefel221(20) 13 668,840 255,689.8 20 583,869 76,594.6
Schwefel222(20) 13 332,200 208,154.8 20 162,684 4,349.8
Sphere(20) 20 204,660 4,625.4 20 93,155 6,265.3
Step(20) 20 140,740 5,455.7 19 61,721 14,401.0
Sum.Diff.Powers(20) 20 59,760 3,335.1 20 5,120 729.5
Zakharov(20) 0 28,860 17,074.1 20 256,098 17,472.3
SUM 206 3,775,680 860,768.2 308 3,472,756 309,720.8

Table 5. Results for the RL method with the RL crossover given by (2) and with the DE’s
crossover operator. Last column specifies the number of cost functions for which a method
requires less number of function evaluations than the other method.

Cost

functions in

nS ave(nFE) nfunc

DE RL DE RL DE RL
Table2 972 985 243,356 202,049 11 39
Table3 299 303 827,687 727,922 4 11
Table4 303 308 3,384,473 3,472,756 5 11

118 İ. Şahin / Vol.3, No.2, pp.111-119 (2012) c⃝IJOCTA

Table 6. The average number of function evaluations ave(nFE) and average error in function
values ave(ferror) after RL finds at least nD max = ρratio · nP quadratics satisfying |a| < ϵD
and |b| < ϵD.

Upper limits (ϵD) on |a| and |b|
ρratio 1 10−1 10−2 10−3 10−4 10−5

ave(nFE)

0.1 502 871 1,216 1,680 2,295 2,855
0.2 670 1,028 1,391 1,991 2,617 3,285
0.3 782 1,170 1,582 2,329 3,034 3,751
0.4 912 1,338 1,820 2,777 3,561 4,232
0.5 1,064 1,491 2,125 3,229 3,926 4,529
0.6 1,512 2,014 2,912 4,037 4,633 5,013
0.7 2,066 2,628 3,830 4,768 5,208 5,431

ave(ferror)

0.1 3.07e-01 4.52e-03 7.75e-04 9.57e-05 2.50e-06 3.44e-07
0.2 3.51e-02 2.32e-03 3.58e-04 1.33e-05 9.29e-07 1.73e-07
0.3 8.13e-03 1.32e-03 1.67e-04 4.96e-06 3.47e-07 1.20e-07
0.4 5.32e-03 8.08e-04 1.20e-04 1.98e-06 1.65e-07 9.51e-08
0.5 3.97e-03 6.11e-04 4.77e-05 8.08e-07 1.21e-07 9.35e-08
0.6 2.06e-03 2.44e-04 9.90e-06 3.10e-07 9.61e-08 9.27e-08
0.7 1.35e-03 1.00e-04 1.81e-06 1.18e-07 9.35e-08 9.26e-08

though accuracy figures may vary largely for dif-
ferent cost functions, ϵD = 10−4 and ρratio =
0.2 might be good initial choices for achieving
smaller errors within smaller number of function
evaluations. In order to achieve more accurate re-
sults, one needs to further increase ρratio and/or
decrease ϵD.

4. Conclusion

The paper proposes an evolutionary optimiza-
tion method with new mutation and crossover
operations. The mutation operation uses qua-
dratic interpolating functions over randomly se-
lected lines in the cost function domain. The
crossover operation replaces entries of a mutated
vector with the corresponding entries of either of
two parent vectors. Its stopping criterion is sat-
isfied if a pre-specified number of quadratics is
almost degenerate. Numerical performance eval-
uation over many types of cost functions demon-
strates that proposed method yields promising
results compared to the well-known DE and PS
algorithms. It is also shown that this method
scales to minimize higher dimensional functions
successfully.

Acknowledgments

The author thanks largely to Paul Kienzle at the
National Institute of Standards and Technology,
Brent Fultz and Mike McKerns at the California
Institute of Technology, and Robert M. Briber at
the University of Maryland for their encourage-
ment and useful comments.

References

[1] Törn, A., Global optimization. Springer-
Verlag (1989).

[2] Price, K., Storn, R.M., Lampinen, J.A., Dif-
ferential evolution: a practical approach to
global optimization. Springer-Verlag, Berlin
(2005).

[3] Tu, T.V., Sano, K., Genetic algorithm for
optimization in adaptive bus signal priority
control. An International Journal of Opti-
mization and Control: Theories and Appli-
cations (IJOCTA), 3(1), 35–43 (2012).

[4] Luenberger, D.G., Ye, Y., Linear and non-
linear programming. Springer, New York
(2008).

[5] Dennis, J.E., Schnabel, R.B., Numerical
methods for unconstrained optimization and
nonlinear equations. SIAM (1987).

[6] More, J.J., Thuente, D.J., Line search algo-
rithms with guaranteed sufficient decrease.
ACM Transactions on Mathematical Soft-
ware, 20(3), 286–307 (1994).

[7] Mohan, C., Shanker, K., A controlled ran-
dom search technique for global optimization
using quadratic approximation. Asia-Pacific
Journal of Operational Research, 11(1), 93–
101 (1994).

[8] Pant, M., Thangaraj, R., Singh, V.P., A new
differential evolution algorithm for solving
global optimization problems. International
Conference on Advanced Computer Control
(ICACC’09), 388-392 (2009)

Minimization over randomly selected lines 119

[9] Storn, R., Price, K., Differential evolution a
simple and efficient heuristic for global opti-
mization over continuous spaces. Journal of
Global Optimization, 11(4), 341-359 (1997).

[10] Montgomery, J., Chen, S., An analysis of
the operation of differential evolution at high
and low crossover rates. IEEE Congress on
Evolutionary Computation (CEC’2010), 1-8
(2010).

[11] Onwubolu, G., Davendra, D., Scheduling
flow shops using differential evolution algo-
rithm. European Journal of Operational Re-
search, 171(2), 674–692 (2006).

[12] Şahin, İ., Random Lines: a novel popula-
tion set-based evolutionary global optimiza-
tion algorithm. Genetic Programming vol.
6621, 97-107, Springer-Verlag, Berlin (2011).

[13] Zielinski, K., Weitkemper, P., Laur, R.,
Kammeyer, K.-D., Examination of stopping
criteria for differential evolution based on
a power allocation problem. 10th Interna-
tional Conference on Optimization of Elec-
trical and Electronic Equipment, Brasov, Ro-
mania (2006).

[14] Rahnamayan, S., Tizhoosh, H.R., Salama,
M.M.A., Opposition-based Differential Evo-
lution. IEEE Transactions on Evolutionary
Computation, 12(1), 64-79 (2008).

[15] More, J.J., Garbow, B.S., Hillstrom, K.E.,
Testing unconstrained optimization software.
Acm Transactions on Mathematical Soft-
ware, 7(1), 17-41 (1981).

[16] Aluffipentini, F., Parisi, V., Zirilli,
F., Global optimization and stochastic
differential-equations. Journal of Optimiza-
tion Theory and Applications, 47(1), 1-16
(1985).

[17] Ali, M.M., Khompatraporn, C., Zabinsky,
Z.B., A numerical evaluation of several sto-
chastic algorithms on selected continuous
global optimization test problems. Journal of
Global Optimization, 31(4), 635-672 (2005).

[18] Pierre, D.A., Optimization theory with ap-
plications. Courier Dover Publications, Mi-
neola(1987).

[19] Clerc, M., Kennedy, J., The particle swarm
- explosion, stability, and convergence in
a multidimensional complex space. IEEE
Transactions on Evolutionary Computation,
6(1), 58-73 (2002).

[20] Ali, M.M., Kaelo, P., Improved parti-
cle swarm algorithms for global optimiza-
tion. Applied Mathematics and Computation,
196(2), 578-593 (2008).

[21] Ali, M.M., Törn, A., Population set-based
global optimization algorithms: some mod-
ifications and numerical studies. Computers
and Operations Research, 31(10), 1703-1725
(2004).

[22] Yao, X., Liu, Y., Lin, G., Evolutionary pro-
gramming made faster. IEEE Transactions
on Evolutionary Computation, 3(2), 82 -102
(1999).

İsmet Şahin received the B.S. degree in elec-
trical and electronics engineering from Cukurova
University, Adana, Turkey, in 1996, the M.S. de-
gree in electrical and computer engineering from
the University of Florida, Gainesville, in 2000,
and the Ph.D. degree in electrical and computer
engineering from the University of Pittsburgh,
Pittsburgh, PA, in 2006. Between July 2003 and
July 2004, he was a Research Engineer in signal
processing for laser- and radar-based security sys-
tems at Robert Bosch Corporation Research and
Technology Center, North America, Pittsburgh,
PA. He joined the Communication Systems Divi-
sion, Compunetix, Inc., Pittsburgh, where he was
a Software Engineer until 2007. From 2007 to
2009, he was a Research Associate with the De-
partment of Biomedical Informatics, University
of Pittsburgh. He is currently a Research Scien-
tist at the Mathematical and Computational Sci-
ence Division of the National Institute of Standards

and Technology, Gaithersburg, MD, where he is
engaged in developing deterministic and stochas-
tic optimization algorithms for biomedical signal
and image processing problems.

