An International Journal of Optimization and Control: Theories & Applications
ISSN:2146-0957 eISSN:2146-5703

Vol.14, No.4, pp.322-335 (2024)

http://doi.org/10.11121 /ijocta.1639

RESEARCH ARTICLE

Witte’s conditions for uniqueness of solutions to a class of
Fractal-Fractional ordinary differential equations

Abdon Atangana ®°, Ilknur Koca <

@ Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences, University of the Free State,
Bloemfontein, 9301, South Africa

b Department of Medical Research, China Medical University Hospital, China Medical University, Taichung,
Taiwan

¢Department of Economics and Finance, Fethiye Business Faculty, Mugla Sitkv Kocman University, 48300 ,
Mugla, Tiirkiye

AtanganaA Qufs.ac.za, ilknurkoca@mu.edu.tr

ARTICLE INFO ABSTRACT

Article History: In this paper, Witte’s conditions for the uniqueness solution of nonlinear differ-
Received 1 July 2024 ential equations with integer and non-integer order derivatives are investigated.
Accepted 1 September 202/ We present a detailed analysis of the uniqueness solutions of four classes of
Awailable Online 9 October 202/ nonlinear differential equations with nonlocal operators. These classes include

classical and fractional ordinary differential equations in fractal calculus. For

Keywords: ] )
each case, theorems and lemmas and their proofs are presented in detail.

Fractal calculus
Witte’s conditions
Uniqueness
Nonlocal operators

AMS Classification 2010:
26A33: 3A12; 31EXX () I

1. Introduction unique solution. Several other researchers, like

Caratheordory, Nagumo, and others, have also
Nonlinear differential equations are powerful provided some important conditions [8,/9]. While
mathematical tools used to model real-world several works have been published for ordinary
problems arising in several fields of study [1,/2]. differential equations with integer-order deriva-
The analysis of their solutions is of great impor- tives, much attention has not been devoted to
tance, as they are for comparison with the col- classical and fractional nonlinear ordinary differ-
lected data [3]. It is worth noting that, most of ential equations in fractal calculus [10,[11]. Frac-
the time, obtaining their exact solutions is some- tional calculus and fractal calculus are intercon-
times impossible. Researchers have therefore de- nected fields, primarily through their shared focus
veloped different approaches to help guarantee the  on non-integer dimensions and scales. Fractional
existence and uniqueness of these solutions [4-7].  calculus extends the concept of differentiation
We note that several researchers have provided and integration to non-integer orders, allowing
different conditions in the case of uniqueness in  for more flexible mathematical modeling of com-
the last decades. For existence, many iterative plex systems. A key connection is that fractional
approaches have been suggested, for example, Pi- calculus provides the mathematical tools needed
card, Toneli, and others. For uniqueness, Witte to describe the dynamics of processes on fractal
provided several conditions that can be tested to  structures. For example, the study by Metzler
conclude that a given nonlinear ordinary differ- and Klafter [12] titled "The random walk’s guide
ential equation with a classical derivative has a
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to anomalous diffusion: a fractional dynamics ap-
proach” discusses how fractional calculus can be
applied to model diffusion processes on fractal me-
dia . Whereas these equations are suitable for the
depiction of several complex real-world problems
that cannot be modeled using classical ordinary
differential equations. In this paper, we shall con-
sider four classes of nonlinear ordinary differential
equations, including those with classical differen-
tiation in fractal calculus, those with power law,
exponential decay, and generalized Mittag-Leffler
kernels in fractal calculus. For each case, we will
find conditions of uniqueness based on the frame-
work of Witte [9].

2. Preliminaries

We shall provide some definitions that will be
used in this paper.

a@) _
s

f(t) — f(t)

, B >0, 1
M s B (1)
which the fractal derivative of the function f with
respect to a fractal measure ¢ with scaling indice
B [11]. We note that if f is differentiable then,

af@t) _ f'(t)

FTEERTEEE (2)

Fractal-fractional derivatives of the function f
with power law, exponential decay and Mittag-
Leffler kernel are given below respectively [10].

EFPDIPS() = s iy [ £ = 1),

to

t
d
0= ot f 0

EFMDPP () = s ok [ 1D Ea (25 = 1)) .

where (a, 5) € (0,1].
Their respective integrals are given as below:

t
s

FFP
to Jf‘ /Bf

)T 17571f(7)d7'
(6)
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t
EFEIRPH(E) = (1= )8t £(8) + a [+ p(r)dr

)
— )AL ®)

“rw ) ¢

to

BMDRF() = (1

)T 17'[3_1]“(7)d7'

We note that, when f = 1, we recover all the
fractional differential and integral operators.

3. The Witte’s uniqueness conditions
for classical fractal ordinary
differential equations

In this section, we are interested in the following
general fractal differential equation.

{ L DRy(t) =
y(to) = vo,

ft,y(t), t>to.

(9)

The aim is to establish uniqueness conditions
based on the Witte’s uniqueness.

Theorem 1. Let assume that f(t,y) is contin-
wous in St = {(t,y)| to <t <a, |y <oo} and
satisfies

7’) V(t,y), (tvy) € S+
|f(t7y) - f(t’y)‘ S h

i) (£, y)| < @(£)h(t) exp (/h ) inS.,.

where h(t) > 0 is continuous in [to,a] and p(t) is
continuous in [to,a] and p(ty) = 0.

@) ly—yl,  (10)

Then the considered equation has almost one so-
lution.

Proof. To proof the above, we shall first provide
the proof of the following Lemma. |

Lemma 1. Let Q(t) be a nonnegative continuous
function on [tg,a] and let

i) h(t) > 0 be continuous functions in [to,al,
it) There exists a function H(t) in [to,a] such
that H'(t) = h(t) for almost all t € [ty,a] and

hm H(t) exists, it can be finite,
st

t

iii) Q1) < /h(T)Q(T)dT, t € [t, al,
o(exp (t°H (t))) as t — tJ.

w) Qt) = Then

Q(t) =0.
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Proof. Let the mentioned conditions hold, then
t

U(t) = a/TO‘_lh(T)Q(T)dT.

to

(11)

Thank to the hypothesis of the Lemma W(t) exists
and is continuous on [tg,a]. Then

0 DE(t) = #% [a/ralh(f)g(f)m] ,
! (12)
_ ati_l ot th(0()]
= h(£)Qt) < h() T (D).
We define
F(t) = exp (—t*H(t)) T(t). (13)
DY (t) (14)
1 d | 1
- ataldt/F(T)dT = P,
!
T oatel
[ ‘P’(tc)ffp (—t*H(t))
% _ —\Il(t)( _Oittahg)<t) )exp(—taH(t)) ]
_ #exp(—taﬂ(t))
[ ()
at* THt) ] |,
L v [ T ]
< —ami xp(—tH (1))
()W (t)at*t ]
at® T H(t) ,
[“1’(“[ Centy )
U (t) exp(—t*H(t)) at®1h(t)
= ata 1 [ —at® T H(t) — t*h(t) ]
U(t) exp(—t* H(t o
< MO iy - one |
< —H(t)¥(t) exp(—t*H(t)),
< —H@)F(t) < 0.

We can say that YVt € [to,a], ¥(t)exp(—t*H(t))
is decreasing. We now choose € > 0 with ¢ small
enough

(t) exp(—t*H(t))
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< aexp(—taH(t))a/To‘*lh (1) exp(t*H(T))dT,

< €exp(—taH(t))a/T°‘h (1) exp(t*H(T))dT,

< gexp(—taH(w)a/( +a77:j‘}_11(2 (1) )

“H(T))dr,
=caexp(—t*H(t)) exp(t*H(t)),

= Ex.

x exp(T

hm exp(—t*H(t))¥(t) =0, (16)
t—std
thus
exp(—t“H(t))¥(t) <0 fort >0, (17)
this also implies that
¢
Oé/Ta_lh(T)Q(T)dT <0. (18)
to
Therefore we should have
Q(t) = 0. (19)
O

The new uniqueness criteria will be presented be-
low. This is more general that the previous con-
dition of the theorem.

Theorem 2. Let f(t,y) be continuous in S in
addition to the hypothesis in theorem 1, we have

[f(ty) = F(t,7)] = o(exp(t“H(t))),  (20)
ast — t§ uniformly with respect to y,7 € [—\, A
A > 0 arbitrary with h(t) and H(t) the same like

in Lemma 1. Then the considered equation has
almost one solution in [to, al.

Proof. Let y(t) and F(t) be two different solu-
tions of one equation

u(t) = ylto) +a [ 77 f(ry(r))dr
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t

a—1 a «
Sa / (T H(r) +1 h(T)) exp (T H (7)) dr, The conclusion is that the function

to exp (—Bt“) ®(t) is non increasing for almost
<cexp (t"H(t)). Vt € [to, a]. On the other hand we have that

From the Lemma, the result is obtained. O
Corollary 1. Let f satisfies the following con- exp (—BtO‘H(t)) D) (28)
ditions; V(t,7),(t,y) € S+, B € (1,2] and a € _ =
(0,1] : = exp (~BUH(®)) (G(t) — y(1)”,
i) (F(t.7) — F(t.) -9 < Znt) 3 — )7 — exp (<BtoH (1))
i) £(6.3) ~ £(t.9) = o (exp(t H (D). t ;
as t — ta‘ uniformly with respect to y,y € o1 B
[—0,8],0 > 0 arbitrary. Then the considered x a/T (f(.5) = f(r.y))dr
equation has almost one solution. to

Proof. Let 7 and y be different solutions in Sy. However by hypothesis (ii), we can find ¢ > 0
Let put ®(¢) = (7(t) — y(t))® then we have that,  small enough such that

— , _ X 2 E
- # (B -v®) @o -y, =° p(-Bt*H(t)) o

B (63(8) = f(t,y()) @) —y(6)" .

L | TG [T

(22) < exp (—mo‘H(t)) aPeP
By the hypothesis (i), we have that y (/t exp (TO‘BH(T)>/ dT) 7
Fpag(t) < Bh(t) (G(t) — y(t)?, (23 ‘o _
to Dt ®(1) _BB (t) (@) —y(t)) (23) < exp (—BtaH(t)> o7 exp (tO‘BH( )) |
= ath(t)@(t). o (ag)g’
Therefore
FDpa(t) < gh(t)tb(t)t. (24) and then
Note that lim exp (—Bt*H(t)) ®(t) = 0. (30)
Fog (ot exp (—BtoH(2))) %
, D/ (t) exp <_Bta H(t)> Therefore ®(¢) = 0 so we get
= a1 —pth(t Fpa )
T | va)| S E e (hem) 3(t) = y(0) (31)
f, Di@(t)
= exp (—BtaH(t)> o) %th(t) ) ] , which completes the proof. 4
+BH(t)

. We shall now evaluation the above condition
< exp (—Bt“h(t)) { 1 DF (1) } 7 in the case of the fractal fractional with power

—p ih(t)@(t) law.This will be acheived in the next section
<0.
(25) 4. The Witte’s uniqueness conditions
for Fractal-Fractional ordinary
Since differential equations with

ngf@(t) — Bih(t)cp(t) <0 (26) exponential kernel

Q

» _ We shall consider in this section, the following
ttha (exp (_maH (t)) q’(t)) <0. (27)  fractal-fractional differential equation
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fty(t),

if t > to,

E)FED?ﬁy(t) = (32)
if t = tg.

y(to) = yo,

that under the witte’s condition «,5 € (0,1].
The aim of this section is to show that under the
Witte’s condition equation has a unique solution
if such solution exists in [to, a] . We will start our
investigation on with the following lemma.

Lemma 2. Let f(t,y(t)), h(t) and H(t) satisfy

the properties presented before

i) (1) < (1 — a)ptP th(t)®(t) +
¢

aﬁ/Tﬁ_lh (1) ®(1)dr,

i) ®(t) = o (exp (H(t))) ast — t§, then ®(t) =0
in [to,al .

Proof. Let set
Q(t) = (1 — a)Bh(t)P1D(1)

t
+ Oéﬁ/T’B_lh (1)

(33)
O(7)dr.

From the hypothesis, we have that 2(¢) exists and
is continuous in [tg, a]. We recall that

REEDPP (FFEJeu()) = ut).  (34)

FFE Df"ﬁ

Thus applying ;| on both sides yields

PEED®PQ(t) = h(t)®(t) < h(H)Q(t).  (35)

Now, we shall find the sign of the

o E DR (0(t) exp (~H(2))] (36)

= T PR 900 exp(~H (D).

1
Bt’g 1 to Dt [Q( )exp(—H(t))] .
Since Q(tg) = 0, therefore, we have that

SR peq(t) =S DEQ(t). (37)
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Therefore
PEE DB (1) exp (—H(1))]

) L/ exp (£2(t— 7))
:W (3 dr,
o '(7) exp(—H(T)) }
{ h () Q(7) exp(—H(7))
:Bt;_l 7/exp - at—r)) ir.
X [ (1) = h (1) Q(7)] exp(—H(7))
<0

(38)

In reference [9] it was shown that under the con-
dition prescribed here

() —h()Q(t) <0, (39)

therefore

PEED®? lexp (—H(1) Qt)] < 0. (40)

Since by the hypothesis the integral is positive
therefore

o EDM exp (H(1)) Q)] <0, (41)

almost every where in [tg, a] .
exp (—H (1)) (1)
(1—a)Bh(t)P

t

—i—ﬁa/Tﬁ_lh (1) ®(1)dT

to

(t)th—1
= exp (—H(t))

For a sufficient small ¢, we choose € > 0 such that
in the view of (iv), we get

Q(t) exp (—H(t)) < exp (—H(t))
[ (1= Oé)tﬁh ()17 exp (H(t)) ¢

+ﬁas’/rﬂ_1h(7) exp (H(7))dr |’

exp (—H(t))

[ (1= ) Bh(t) (F0)" " exp (H(t)) ¢
+(£)" ! Bae' exp (H(1))

(1—a)Bh(t) ()" e + (%) ! Bac'.

IN

)

IN

Using the continuity of h (t) in [to, a] . Tt1 € [to, a]
such that V¢ € [to, a]

h(t1) > h(t), (42)
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therefore
exp (—H(t)) Q()

<pe' =He=¢
L
(43)
where

=< £ 14
ST A Ly TN YE S e S

Therefore
o(t) =0 (45)
O

Theorem 3. Let f(t,y) be continuous in S in
addition to Theorem 2 and Lemma 2 we have

Ve >0,
_ €
(1—a) Bh(t) (T)° " + (70)° " Ba

Then the initial value problem (32) has almost one
solution.

(46)

Proof. Let y(t) and y(t) be two different solu-
tions of our equation, then

()] = [5(t) = y(t)] < (1= )8 F(8,5(1) = f(t.y(t)]

+aB [T f(r () = S ()]

to

< (1 —a)Bt’h(t)® (1)
+ aﬁ/Tﬁflh (1) ®(7)dr,

< (1—a)Bh(t) (@)’ ' ' exp (H(1))
+ (]0)" ! Bae exp (H(t)),

—« 70)P 1 !
(M

< e’ exp (H(t)) = cexp (H(t)).
(47)

O

Theorem 4. Let f(t,y) satisfies all the condition
described in Theorem 3.

Proof. Let y(t) and 7(t) be two different solution
of equation (32). We set as before

V()= (7 -y)°. (48)
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We have that ¥(tp) = 0, thus

PEE DO w(t) (49)

1
o DR (),

1
RO = o

= ﬁtﬁ*l to

t
1 1 -«
= 7&55*1 T o a/\II’(T) exp (1 — a(t — 7')) dr,
to

1 1

X exp (1_0;(15 - T)) dr,

<Bs [f;FED?,,Bg _tFOFE Df"ﬁy} :
< Ba|f(t,y(t) — f(t,y(®))],
< BOn(t)¥(t),
here
—  B-1 . I
max_[g — y| , if oy —7 >0,
5 _ tE[to,a]

min [y — y|B_1 , if Y =7 <.
te(to,al

In the view of the first hypothesis. Thus

W D) < Av(e), (50)
almost every where in [tg, a] .
REEDM exp (—BH(1)) w(t)] (51)

t

1 d/ (_ e
(1—a)pth-1dt “P\T1-a

to

X exp (—BH(T)) U(r)dr,

=g e (1

to

X (\11(7') exp (—BH(T)))/ dr

_ Bt;llialll(to) exp (—BH(tO)) exp (1 _aat> .

t-)

But

U(tg) =0,

therefore
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EPE DS [exp (~BH(D)) w(1) (53)
1 t
= M)ﬁtﬁl/e"p (_1—a (t_T)>
x (exp (~BH(r)) ¥(r)) dr,
1 / a
ZMW/GXP(_l—a(t_T)>

|

In reference [9], it was shown that

V(e (<FH)) )
—BH(r) exp (~BH(r)) ¥(r)

W (t) exp (—BH(t)) —BH(t) exp (—BH(t)) U(t) < 0.
(54)
Therefore
RPEDPP [w(t)exp (—BH(t))] <0
BIEDR? [exp (—BH (1)) w(1)] (55)

1 _
= 5= CFR po [ exp (—BH t
1

TR o Df [exp(

1
,Btr@ 11—a

Therefore, we have

PEE pos [exp (—BH(t)) \Ix(t)] <0. (56

Following the routine presented earlier we shall
have for &’

B

(1= )87 (F(T() ~ £t ()
= exp (BH() +aB [T (f(r,5(r) - f(ry(r) dr ) ’
to

B

(1- f‘)mﬁ’la’ exp (H(t)) h(t) '\
+a[3/h(7)75*1€/0xp (H(7)) dr ) ’
to

B

(1-a)B (%)‘57: e'exp (H(t)) h(t)
+(F)P ! aﬂs//h(T) exp (H (7)) dr

B

_ (1= )B (lo) ™" & exp (H (1)) (1)
< exp (—/5H(t)) < + (@) : L aBe’ exp (H(t)) ) l’

_ (1—a)B (7)) " & exp (H(1)) h(t1)
< exp ‘BH("))< @) e exp (H(1) ) ’

(57)
‘We choose
, €
g =—, 58
. (58)
such that
exp (~BH()) w(t) < & (59)
Therefore
lim exp ( BH(t)) U(t) = 0. (60)
t—0+
So we conclude that
U(t)=0 (61)
= y(t) = y(t),
which concludes the proof. O

5. The Witte’s uniqueness conditions
for Fractal-Fractional ordinary
differential equations with
power-law kernel

In this section, we shall consider the following dif-
ferential equation

= f(tv y(t)),

if t > tg,

2
if t = ty. (62)

g)FP Df’ﬁy(t)
y(to) = o,

the solution

in S+ =

8 €

We aim to show that if
of the above equation exists
{(ty)to<t<a lyl<oo} a € (01,
(0, 1] then it is unique.
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Lemma 3. Let ®(t) be a non negative continuous
in (to,a] such that ®(ty) = 0. Let

i) h(t) > 0 be continuous function in (to, al,

it) We can find a function H(t) in (to,a] such
that H'(t) = h(t) for almost all t € (to,a] and
hm H(t) exists,

t—)t

t
i) () < (L/Tﬁ 1 )L h(r)®(7)dr,

to

Vt € (to,a] and

i) ®(t) = o(exp(H(t))) ast — tJ. Then

d(t) =0, (63)
in (to,al.
Proof. Let

//“ 7L B(r)@(r)dr. (64)
The existence and the continuty of the func-
tion (¢) is assumed since the hypothesis of the
Lemma. Therefore we have that

PEPDOPQ(t) = h(t)®(t) < h(t)®().  (65)

We note that

g)FPDta,ﬂQ(t)
t
Ffa) bEP ppf lJ [ = e ey
B d 1
T (o) BtA-1dtT (1 —a)

)

to 0

0 repg [Rege (- hmem))

ﬁtﬁ 1 to
BtPLh(t)D(t)
=g
= h(t)D(t).
(66)
We recall that Q(tp) = 0, then
ELDEQ(t) =5 DEQ(t). (67)

X (/751 (t—7)"" [/lﬁ1 (r—0*" h(l)(b(l)dl} dT) ’
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BFP D [exp(—H(£)Q(#)]
t; 1 to "D [exp(—H (£))92(t)]

mé L e pp (- HB)QA),
e Y@epHE) T,
/ =17 | oAy |

h(T)Q(7)] dr

"B

,Btﬂ r (1

= %m/ (t—7)%exp(—H()) [V(7) —

(68)
We have due to reference [9] that
(1) — h(1)Q7) < 0. (69)
Therefore
PEP D3P [exp(—H(1)Q(t)] < 0. (70)

‘We can now have for a small ¢

exp(—H (t))$2(t)

D]

exp(—H(1))8
=7 T

)L h(r)® (1) dr,

= exp(—

/ B (t — 1)® h(7)®(r)dr,

 EHOI [y

B I'(a)
(71)
By hypothesis (iv), we have
exp(—H (7)) Ba’te ' (@)
exp(~H(1)61) < “EL T —cexp (H(T) x ﬁam> ,
<e.
(72)
lim exp(—H(t))2(t) = 0. (73)
t—0t
This leads to
exp(—H(D)Q(H) <0, ¥t > 1y, (74)
which implies
/ = T e <0, (75)
which is a contradiction therefore
o(t) =0. (76)
O
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Theorem 5. Let f be continuous in
St = {t,y)|to<t<a, |yl <oo} such that
V(t, y)’ (tay) € S—‘r

Nfty) = f&)] < ht)ly — 71,

it)f(t,y) — f(t,9) = o(exp(H(t))) .

as t — tg uniformly with respect to y,7 € [—6, 6],
d > 0 arbitrary, where h(t) = H'(t) are the same

as in above. Then the considered equation has al-
most one solution.

Proof. Let y(t) and y(t) be two different solu-
tions, we have that

90 =01 < g [ =0 | LR
B [ s o
gwto/w(t )" h(r)ly —gldr
ﬁ t
gr(a)tZTﬁ Yt —7)h(r) |y —7ldr
(77)

In the view of (ii), we have

t

=(+) B+a
70~ 00| < & 5 / o 2h (7) exp(H (7))dr,
0
< eexp(H(t)).
(78)
The result of the previous lemma leads to
y(t) = y(t). (79)
[l

Theorem 6. Let f be continuous in S, =
{ty)| to<t<a, |y| <oo} suchthat B € (1,2],
Oé,ﬂ € (07 1] ,V(t,y), (tvg) € S+7 we have

i) (ft7) — fty) @—y) <h®t) T-y)°,
it) f(t,9) — f(t,y) = o (h(t) exp (H(t)))
uniformly with respect to y,y € [—6,0], 6 > 0
arbitrary then

y(t) = y(t). (80)

Proof. Let 7 and y be two solutions, we put

®(t) = (5(t) — y(1))° . We have that at ¢ = to,
®(tp) = 0 initial condition then we will have that

CDfo(t) = {LDRo(t). (81)

However,

A. Atangana, 1. Koca / IJOCTA,
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f;FPD?ﬁ(I)(t)
1 RL na 1 C nao
= W to Mt (t> ﬂt5 1 tth (I’( )

t
1 1 —a gy
= BT (1 a)/(t —7)" %' (7)dr,
to

=gy ¢ Po-v v e

to
t
it [B@) @9 (=) dr
1

[ 0
pEo-t i ’

e / By -y (t—7) " dr
< BA (FFPDaﬂ/ f;FP Df"ﬂy),
< BAf(t 7)) — Fty(@)],
< BAK() (7(t) — y(t)" .
(82)
here
max [y, if ¥ 7 >0,
A: tE[to,
min [y — y\ﬁ Loir o -y <o.

te[th ]

By the hypothesis (i), thus

LD () < BARD(),  (83)
< BAR(t)®(t)
LI DY o(t) — BAR(H)O(E) < 0. (84)
FEP o [oxp( 5H(t))<1>(t)]
= it BDp e FH () 0)]
- ﬁt§ + 67 [exp(—FHB)3()] .
ﬁfﬂ T 17a/ ~ (exp(- H(T))<I>(T)),dr,

to

S B e e -
7ﬁtﬁ—1r(1_a)/(t ) [ﬂ(yy)'(J y)ﬁlH(T)}L

0
} dr,

(85)
for almost all ¢t € [0,a]. This shows that
exp(—FH (t))®(t) is non increasing for a small ¢.

I T T D () (r)
= G a7 {w(y—y)'@—y)“Hm

0

SO’
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In the view of the second hypothesis, we will have
that

(- f@ r ;)ﬂf ) &7 exp(BH(1)) exp(~BH(?)),
= 85.
(87)
Therefore
exp(—BH(t))®(t) < €, (88)
Jim exp(—FH(t))®(t) = 0.
Therefore
®(t) =0, (89)
= g(t) = y(t) in [to, a].
O

6. The Witte’s uniqueness conditions
for Fractal-Fractional ordinary
differential equations with the
Mittag Leffler kernel

In this section, we will consider the following
fractal-fractional differential equation

y(t) =

f(tay(t))’ if £ > tO,

FFMD a,B
t
{0 it =g 0

y(to) = yo,

Assuming the existence of the solution y(t), we
shall show that y(¢) is unique.

Lemma 4. Let ®(t) be a nonnegative continuous
in [to,a] and

i) Let h(t) > 0 be a continuous function in (to,al
such that 1 — zh(t1) > 0,

0o = (- ashoe) +

o / 7971 (¢ = 1) () (7)dr,

iti) and /t (t — 1) h(7)dr, exists Then
B(t) = 0. (o1)

in [to,a].

= (1 - a)t?16h(t) Y

Q(t)

Proof. Let ®(t) and h(t) satisfy the condition of
t)o(t) + (T)®(7)dr.

the theorem, then, we set
a) /Tﬁ Lt —
(92)

We have from the fundamental theorem of fractal-
fractional calculus that

FFM pyo. (FFMsz,Bf(t)) = f(t).

to

(93)
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Therefore
FEMDEOQ(E) =FIM D (FFMIR (h(6)(1))) = h(t) (),
(94)
which produces
FEM DOBQ(t) < h(t)QU(t). (95)
Then, we obtain €(t) as
Qt) < (1= a)Bt" " h(1)(t)
t
CYB B a—1
+F<a)t{¢ Lt — 1) h(r)Q(r)dr,
< (1-a)B(t)" " h(t)Q)
t
+F0‘i)t/rﬁl<t—7)a " h(r)Q(r)dr,
t
aﬁ B a—1
) < oy (1zh(t1))/7 (t =) h(r)Q(r)dr
(96)
We put
S 2 (97)

- T(a)(1—zh(t))
By the Gronwall inequality

Q(t <0exp</'g1 alh()d),

(98)

_ A FFM By >
OeXP((l—Zh(tl)) to Jt ( ) )
= 0.

= (1=)8 ()"

fore

, which is contraction. There-

Qt)=0=&(t) =0, (99)
in [to, al. O
Lemma 5. Let ®(t), h(t) and H(t) be the same
like before and ®(ty) = 0.

i) (t) =o (exp (thH(t )) ast— t§ then
d(t) =

Proof. Let ®(t) and h(t) satisfy the condition
above, then

0, Vt € [to, al. (100)
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exists

PEM DOBQ(t) < h(1)Q(2). (101)

FFMDa B (Q(t)exp (—H(t)))

to

1 d [
T (I—a)pth ! E/E“ (71 -
(102)

Since @ (t9) = 0, we will have €2 (o) therefore,

PEM DB (Q(t) exp (—H(t)))

- ﬁ% Ea <_ - T)a> Q(r) exp (~H(7)) dr,

ltijﬁ () [ e )

#1-P /(r)
- wp) ( (= esn (HED | i o
(103)
whereas from [9], we have that
Q(1) — h(r)Q(7) <0. (104)

Therefore since E,, (—

2 (t— T)a> > 0, we con-
cluded that

PEM DB (Q(t) exp (—H (1)) < 0. (105)
exp (—t*H(t)) (1)
E @) BtP L h(t)D(t)
— exp (—8
= oxp (—t"H(1)) (—ﬂ/ 7L R(r)®(r)dr

= exp (—tﬁH( ))( - )575/3 "h(t)®(t)

N afexp <ftf3H(t)> /tTB—l (

I (o) t—7)% h(r)®(7)dr,

< exp (—tﬂH(t)) (1— a)BtPh(t)d(t)
af exp (—tﬂH(t)
()

+ /Tﬁ (t— T)a71 h(T)®(7)dr,

<exp (~t7H(1)) (1 - )Bt°h()D(1)

exp (—tﬁH(t)> afe | a1 | Br1H(T)
+ (@) /(t—T) ! { rBh(T) ]

X exp (—TﬁH(T)) dr. 06)

In the view (i)

© (=) ) exp (- H(r)) dr

h(r)r) exp (—H(r)) } ar,
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<exp (—t7H (1)) (1 - a)'Bt°R(t) exp (H (1))

Off/a) exp (tﬁH( )) exp (—tﬁH(t)) )

o (1 —a)Ba®h (t1) )
< ( +czﬂ(a) s

_ c ( (1 —«)Ba*h (t1) >
= o afBa® s
( (1 —a)Ba*h (t1) + F’?i) ) T
<e.
(107)
Therefore
lim exp( tﬁH(t)) Q(t) = 0. (108)
t—td
Thus
exp (—t7H(1)) Q(t) <0 for t > to,  (109)
which implies
(1- )5tﬁ 'h(t)D(t) (110)
af B—1(y _ _ya—1
+ F(Q)/T (t — 1)L h(r)®(r)dr,
<0.
contradiction, thus
O(t) = 0. (111)
O

Theorem 7. Let f(t,y(t)) be as presented before
and exp (thH(t)) as t — t§ uniformly with re-
spect to y, y € [—0,0], 6 > 0 arbitrary h(t) and
H(t) are the same as previously. Then equation
(92) has a unique solution.

Proof. Let y(t) and 7(t) be solutions of equation

(92).
ly(t) = ()] < (1 —a)Bt” | f (£, y(1))

+%/T Lt —

0

< (L= a)Bt" 1 f (¢, (1))

—f(ty(®)]
)7 (ry(m) = f (r,3(7))| dr,
— f(ty())]

B[ sy e }
Fr )T D R - Tl

to

< (L= a)BtP M f (ty(t) — f (7))
+I‘(Bat/T/3 1 (t—71)*h(r)|y — 7| dr.

(112)
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In the view of (i), we get

ly(t) —*( )| < (1 —a)Bt"  h(t) |y (1)

-

_(1—a) B () [y(2)

—7(t)|
) (T y(7)
—g(t)]

t
+ s / 7 (t =) (o) y(r) = 5(7) dr,
< (1= a)ph(t)t” exp (HH (1))
t
0458’
F (Oé)to/ T) exp 5H(T)) dr.
(113)
ly(H) = 7()] < (1 = a)Be'h(t)a’ exp (P H (1))
aﬂg / )+ B8~ YH(r )) exp (TBH(T)) dr,
((1 — )Be'h(t)d” aff;“;) exp (PH(D)).
((1 — a)Be'h(ty)d” + “1? ‘Ej) exp (P H (1)),
((1 —a)Bh(t)a” + T4 )) exp (tﬁH(t)) ’

B ((1 — ) Bh(t1)a’ + a’?a(;)
< eexp (tﬂH(t)> .

(114)

From the above Lemma
y(t) —g(t) = 0. (115)
O

Corollary 2. Let the condition in above theorem
hold, then

i) (f(ty)— F£D) (w—7) < ht) (y—7)°,
V(tg),( )GS-i-;/BE(a ]
ii) h(t1) =tg(1%>;)h()

1-B(1—a)8 ()" A >0,

FFM Jta,ﬁ h

iii) 7, (t) exists.

Proof. Let y(t) and 7(t) be two solutions of equa-
tion (92) then, let set Q (to) = 0 then we get

—y(7)| dr,
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WMD) = i D),
t
tﬁ 1 ].—Oé / a( )a)ﬁld77

- gt (nfa“-ﬂ“)

to

x[Bly-9) (v—9)]ar

(116)
Let m = min [y —g/°t, M =
te(to,]
max |y(t) —y(t)| . We define
t€(to,]
[m, if ¥Y-7 <0,
A_{ M, if ¢y -7y >0. (117)
Therefore
EPV D) < iﬁtﬁf 1 / Ba (~ 2 =) -7 ar
< BA (FFMDaﬂ (t) g)F]\J Df’ﬁy(t»,
<PA(f(ty) - F(1.7),
< BAK(t) (y - 7)° .
(118)
R Dp(t) = BABLT, (119)
< BAR(BA(2),
ABRDOQ(t) < BtP L AR(4)Q(t) .
Q(t) < B(1 — a)Bt? L AR(1)Q(2) (120)

) AR(T)Q(T)dr,

055/51

<B(1—a)B(f)" " AR(t)Ut)
Mg [ 4,

(t — 7)1 h(1)Q(7)dr.

If we take as

_ AB
BT T T S
Q(t)glfl?j) Pt — 1) A(r)Q(r)dr

By the Gronwall inequality we set
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Q(t) < oexp (AT h())

Q(t) < 0.

(123)

Therefore we have (t) < 0 which is a contraction
therefore

Q(t) =0=y(t) =7y(t), Vt € [to,a].  (124)

O

7. Conclusion

Witte provided a set of conditions under which
a given nonlinear ordinary differential equation
admits unique solutions. This was established
when the differential operator was in integer or-
der. Based on the framework of Witte, we have
presented a detailed analysis of the uniqueness
of nonlinear ordinary differential equations with
fractal-fractional derivatives.
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