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 This study is about multi-stage manufacturing processes and their control by 

statistical process control modeling. There are two kinds of dependence structures 

in a multi-stage manufacturing process: one is the dependence between the stages 

of the process, and the other is the dependence between the concerned quality 

characteristics. This study employs state-space models to demonstrate the 

dependency structure between the process stages and uses the Kalman filter 

method to estimate the states of the processes. In this setup, copula modeling is 

proposed to determine the dependence structure between the quality characteristics 

of interest. A simulation study is conducted to assess the model's accuracy.  As a 

result, it was found that the model gives highly accurate predictions according to 

the mean absolute percentage error (MAPE) criteria (<10%). 
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1. Introduction 

Today, production and service processes generally 

consist of many serial or parallel stages in which 

products are completed by passing from one to the 

other. In a multi-stage manufacturing process, it is not 

clear from which stage and which variables 

characterizing the process arise the variability in 

quality characteristics. The key to reducing quality 

variability in a product is understanding how,  much of 

this variability occurs at each stage of the process and 

how much is transmitted to other stages. 

The most important problem in the multi-stage 

manufacturing process is how to define the process in 

the context of interactions within and between stages 

and time dynamics. In past research, multistage 

processes have been described with statistical models 

such as the linear regression model. Conversely, for 

more effective monitoring and control of the process, 

engineering knowledge must also be combined with 

statistics in modeling and analysis of the multi-stage 

process. In this context; Many articles can be found in 

the sources that describe the multi-stage manufacturing 

process in a linear state-space model structure based on 

production engineering knowledge. A complex system, 

such as a multistage manufacturing process, may have 

many inputs and outputs. These inputs and outputs can 

be complexly interrelated. The hierarchical structure of 

the data obtained can be explained by multi-level 

dynamic models. An example of this is a two-level 

linear state-space model. 

In this study, in addition to a dynamic modeling 

approach such as the state-space model of the 

dependency between stages in multi-stage 

manufacturing processes, it is proposed to use copula 

modeling to reveal the internal dependencies of the 

quality characteristics of interest at each stage. In order 

to present the practical implications of the proposed 

model, the process was simulated and the applicability 

of the model was discussed. 

The following sections of the study are organized as 

follows: In the second section, studies on statistical 

process control (SPC) methods used for modeling 

multi-stage manufacturing processes and monitoring 

these processes will be discussed. In the third section, 

modeling of multi-stage manufacturing processes with 

state-space models will be explained. Additionally, this 

chapter will include the proposal of the Kalman filter 

method for the statistical estimation of the state 

variables of the process equations put forward by state-

space models. In the fourth chapter, the statistical 

dependence of quality characteristics and the 

explanation of dependence with copula functions will 

be highlighted, and multi-stage manufacturing process 

modeling under dependence will be presented. Multi-

stage manufacturing processes under dependency The 

example  and  process  simulation  of  SPC  approaches  

http://www.ams.org/msc/msc2010.html


Modeling the dependency structure between quality characteristics in multi-stage manufacturing processes…405 

will be presented in the fifth chapter. In the sixth 

chapter, the results of the study and some 

determinations about future studies as extensions of 

these will be stated. 

2. Literature review 

In order to identify out-of-control situations in multi-

stage manufacturing processes, SPC methods have 

been applied to the quality measurements of the product 

in the final stage of the process. Generally, Shewart, 

CUSUM, EWMA control charts for univariate quality 

measurements of the final product; It has been 

suggested to use Hotelling's 𝑇2 control chart for 

multivariate quality measurements [1]. Since these 

control charts were applied to a single stage of the 

process, they were insufficient to determine the stage 

that was the source of variability. In another study, 

quality measurements obtained from each stage of the 

process were evaluated separately [2]. In this study, 

where simultaneous confidence intervals were 

established for the average of each of the quality 

variables, it was examined whether the quality 

measurements of interest were within the confidence 

intervals in terms of the defined quality levels, and it 

was stated that the explanatory power of the method 

decreased as the size of the problem increased. 

Statistical process control tools used to monitor multi-

stage manufacturing processes have a wide place in the 

literature. These tools can be examined under three 

headings: multivariate control charts, control charts 

based on regression modeling, and methods based on 

engineering-based models. 

In many production processes, it may be necessary to 

simultaneously monitor and control one or more 

interrelated quality characteristics. Independent 

examination of quality characteristics causes loss of 

information to be obtained from the process. The 

concept of multivariate quality control originated in 

Hotelling's work in 1947 [3]. In this study, he applied 

his proposed method to bombardment viewfinder data 

used in World War II. The most well-known 

multivariate process monitoring and control method 

used to monitor the mean vector of the process is 

Hotelling's 𝑇2 control chart, which is similar to the 

univariate Shewhart's �̅� chart. Applied to multi-stage 

manufacturing processes, Hotelling's 𝑇2 chart indicates 

when the entire process is out of control, but does not 

indicate which stage is out of control. Alternatively, 

quality metrics at each stage can be tracked with 𝑇2 

cards. In this case, the effect of the quality output of the 

previous stage on the quality measurements at a certain 

stage will be ignored. As a result, it is difficult to 

interpret an out-of-control situation in a multi-stage 

manufacturing process with a 𝑇2 chart [1]. Following 

this pioneering work by Hotelling, control methods for 

many related variables have been proposed [4]. 

Nowadays, the issue of multivariate quality control (or 

process monitoring) has maintained its importance as 

many quality characteristics of products manufactured 

with automatic inspection methods can be measured at 

the same time. For example; Chemical and 

semiconductor manufacturers try to keep the process 

under control by constantly updating their databases for 

hundreds of important variables in their manufacturing 

processes. 

It was thought that quality measurements in multi-stage 

manufacturing processes are affected by the output of 

the previous stage and the regression analysis technique 

was introduced [5]. This method is based on 

establishing univariate control cards for the residuals 

obtained from the multivariate regression line 

established on other variables for each quality variable 

[6]. Regression models can give misleading results 

when quality measurements from different stages are 

strongly correlated with each other. This problem in 

regression analysis can be partially reduced by the 

cause-selection method and is effective in identifying 

out-of-control stages [7]. A compilation of cause-

selection method studies was compiled by Wade and 

Woodall [8]. Nowadays, the use and applications of 

cause-selection schemes for multi-stage processes are 

also found in Shu and Tsung's article [9]. 

The hierarchical structure of data obtained from the 

multistage manufacturing process suggests a two-level 

model: At the first level, quality measurements are 

fitted to the system input and quality information. At 

the second level, the change in quality measurements is 

modeled as a function of measurements obtained from 

earlier stages of the process. An example of this 

situation is the state-space model. 

Quality measurements for the 𝑘th stage of a production 

process consisting of 𝑁 stages are formulated as a linear 

state-space model as in Eq. (1) and Eq. (2) [10]. 

𝑥𝑘 = 𝐴𝑘−1𝑥𝑘−1 + 𝑣𝑘                           (1) 

𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝑤𝑘       {𝑘} ⊂ {1,2, … , 𝑁}           (2) 

In Eq. (1), 𝑥𝑘 shows unobservable product quality 

information such as dimensional deviations of products 

at the 𝑘th stage. 𝑣𝑘 indicates the cause of variability and 

unmodelable errors (process noise). 𝐴𝑘−1𝑥𝑘−1 shows 

the transformation of quality information from the (𝑘 −
1)th stage to the 𝑘th stage. In Eq. (2), 𝑤𝑘  is the 

measurement error of the product, and 𝐶𝑘 is the matrix 

used to relate 𝑥𝑘 with quality measurements (𝑦𝑘). 

𝐴𝑘−1 and 𝐶𝑘 are constant matrices obtained from 

engineering knowledge, laws of physics and 

process/product design information and known at the 

kth stage of the process. For univariate cases, 

𝑣𝑘~𝑁(0, 𝜎𝑣𝑘
2 ) and 𝑤𝑘~𝑁(0, 𝜎𝑤𝑘

2 ) with its variance 

depending on the stage index 𝑘 and the initial state 

𝑥0~𝑁(𝑎0, 𝜏2).  Various methods have been researched 

to monitor whether the process is out of control, and 

fixture errors, machine errors and thermal errors in the 

process are seen as process out of control or process 

errors. 

A multistage manufacturing process can have many 

inputs and outputs. These inputs and outputs can be 
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intricately related to each other. There are many articles 

explaining multi-stage manufacturing processes with 

state-space models based on process management 

expertise. Lawless et al. [11] and Agrawal et al. [12] 

revealed quality variability in multi-stage 

manufacturing processes with AR(1) type models in the 

form of state-space models. Part assembly process [12] 

and sheet metal assembly [13] are examples of 

modeling proposals in the form of state-space model. 

Detailed descriptions of state-space models can be 

found in [10] and [14]. There are many studies in the 

literature on error detection, error prevention and 

corrective methods in multi-stage manufacturing 

operations. Tsung et al.'s study compiled past studies 

on multi-stage manufacturing and service operations 

and provided ideas for future research [15]. 

Today, modeling for monitoring and control of multi-

stage manufacturing processes, which have become 

more complex with developing technology, is a 

complex issue that still maintains its importance. State-

space models are a modeling method that has a wide 

place in the literature and includes the physics rules 

surrounding engineering and production structures 

suitable for the structure of multi-stage manufacturing 

processes. In a dynamic system represented by a state-

space model, the state of the system can be predicted 

from the input and output information together with the 

previous information of the model. Estimation of the 

state of the system from a series of noisy measurements 

obtained from a dynamic system can be made with the 

Kalman filter.  

In this study, it is suggested to model the dependency 

structure between quality characteristics with copula 

and combine it with Kalman filter. Some studies in 

which copulas, Kalman filter and/or state space models 

are used together are given in Table 1. 

 

Table 1. Some selected studies on copulas, Kalman filter and state space models. 

Authors Methods/Models Examples/Application Area 

Lindsey [16]. Kalman filter and copulas The application to autoimmunity in multiple 

sclerosis data 

Junker, Szimayer and 

Wagner [17 

Kalman filter based on copula functions Nonlinear cross-sectional dependence in the 

term structure of US-Treasury yields and points 

out risk management implications 

Hafner and Manner [18] A multivariate stochastic volatility models 

with Gaussian copula 

The application to two bivariate stock index 

series 

Goto [19] State space model to describe the target 

system’s behaviour 

A simulation study conducted to show the 

effectiveness of the developed controller 

Creal and Tsay [20]  Gaussian, Student’s t, grouped Student’s t, 

and generalized hyperbolic copulas with 

time-varying correlations matrices 

Modeling an unbalanced, 200-dimensional 

panel consisting of credit default swaps and 

equities for 100 US corporations 

Alpay and Hayat [21] Copula and Data Envolopment Analysis 

(DEA) 

The application to simulated and real hospital 

data 

Zhang and Choudhry 

[22] 

Four generalized autoregressive conditional 

heteroscedasticity (GARCH) models and 

the Kalman filter method 

Empirically forecasting the daily betas of a few 

European banks during the pre-global financial 

crisis period and the crisis period 

Fernández, García and  

González-López [23] 

Copula and the multivariate Markov chain Spike prediction in neuronal data 

Smith and 

Maneesoonthorn [24] 

Construction of copulas from the inversion 

of nonlinear state space models 

Forecasting of quarterly U.S. broad inflation and 

electricity inflation 

Wang, Meng, Liui Fu 

and Cau [25] 

The Unscented Kalman Filter (UKF), 

copula and the worst case analysis 

A two-stage dynamic attack strategy using 

global network information 

Xu, Liang, Li and Wang 

[26] 

Characterization of the dependence among 

all components by a copula function 

Investigation of the optimal condition-based 

maintenance policy under periodic inspection 

for a K-out-of-N: G system 

Kreuzer, Dalla Valle and 

Czado [27] 

Non-linear non-Gaussian state space model Estimation of airborne pollutant concentrations 

Ly, Sriboonchitta, Tang 

and Wong [28]
 

A hybrid of ARMA-GARCH, static and 

dynamic copulas and dynamic state space 

models
 

Investigation of dependence and integration 

among the European electricity markets
 

Wang, Xu, Trajcevski, 

Zhang, Zhong and Zhou 

[29]
 

A non-linear neural state space model based 

on copula-augmented mechanism
 

Electricity forecasting
 

Kreuzer, Dalla Valle and 

Czado [30] 

Multivariate nonlinear non-Gaussian state 

space models 

The application to atmospheric pollutant 

measurement data 
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The rest of the study is organized as follows. In the third 

section of the study, state-space models will be 

discussed. In the fourth section, the copulas proposed 

to model the dependency structure between quality 

characteristics will be explained in detail. Application 

of the proposed approach by a simulation study is given 

in the fifth section. The last section includes the 

conclusions of the study, and the future studies.   

3. Multi-stage manufacturing processes and state-

space models 

Dynamic systems, such as multistage manufacturing 

processes, can be more generally represented in the 

form of state-space models by the equations shown in 

Eq. (3) and Eq. (4). 

𝑥𝑘 = 𝐴𝑘−1𝑥𝑘−1 + 𝐵𝑘𝑢𝑘 + 𝐷𝑘𝜀𝑘                   (3) 

𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝐻𝑘𝜂𝑘                               (4) 

Similar to Eq. (1) and Eq. (2), 𝑥𝑘 is the state and 𝑦𝑘  is 

the measurement or observation vectors (𝑘 = 1, … , 𝑁). 

The vectors 𝜀𝑘 and 𝜂𝑘 express the noise in the state and 

the observations, and the vector 𝑢𝑘 represents the 

effects of managerial inputs at the 𝑘th stage in the 

process in Eq. (3) and Eq. (4). 

Estimation of the state vector 𝑥𝑘 , 𝑘 = 1, … , 𝑁 in state-

space models and other related analyzes can be done 

within the framework of three main approaches [31]. 

These are Bayesian, Fisher and unknown-bounded 

approaches. In the Bayesian approach, the error terms 

𝜀𝑘 and 𝜂𝑘 in the equations are stochastic, and the initial 

state vector 𝑥0 is a random variable. In the Fisher 

approach, the measurement equation term 𝜂𝑘 has a 

stochastic feature, 𝜀𝑘 can be stochastic or completely 

unknown, and 𝑥0 can be random. Within the framework 

of the unknown – bounded approach, 𝜀𝑘, 𝜂𝑘 and 𝑥0 are 

unknown but are limited from above to the values of 

the ellipsoids expressing the variance-covariance 

quantities [32]. 

When 𝐴𝑘−1, 𝐵𝑘 and 𝐶𝑘 matrices are accepted as known 

matrices in state-space models, the model estimation 

problem is solved by using the observation values 

𝑦1, 𝑦2, … , 𝑦𝑘1
 obtained up to time 𝑘1 and estimating 𝑥𝑘2

 

at time 𝑘2. When 𝑘1 = 𝑘2, the estimation problem 

becomes a filtering process, for which Kalman filter 

(KF) or weighted least squares (WLS) methods can  be 

used. Estimation equations that can be applied within 

the framework of the Bayesian model approach are 

known as Kalman filters in the literature [33]. 

The Bayesian model approach is the most widely used 

state-space modeling approach and can offer flexible 

perspectives on the dependence and independence of 

the vectors 𝜀𝑘, 𝜂𝑘 and 𝑥0 within and among themselves 

in the time dimension. In this sense, the issues of 

determining the prior and posterior probability 

distributions for the random variables in the state-space 

model and the expected value and covariance functions 

are needed in estimation process. 

Control effects that can be applied in a dynamic 

stochastic process are represented by the sequence {𝑢𝑘} 

in state-space models. While control effects, state 

vectors should be a function of 𝑥𝑘 's, in the absence of a 

complete and direct observation of the situations, 

measurement or observation values must be considered 

as a function of 𝑦𝑘 's and determined by the opinion of 

system experts; 𝑢𝑘 = 𝜔0 (𝑦0 , 𝑦1, … , 𝑦𝑘). In the 

literature, it is also recommended to impose a constraint 

such as |𝑢𝑘 | ≤ 1 for 𝑢𝑘 's [34]. 

The Kalman filter and its calculation equations are 

explained in detail in the next section. In the weighted 

least squares method, the aim is to estimate the state 

vector with the deviation of 𝑥𝑘, which minimizes the 

quantity in Eq. (5), where the covariance matrix of the 

variable 𝜂𝑘 is 𝑅𝑘 > 0. 

𝐽(𝑥𝑘) = (𝑦𝑘 − 𝐶𝑘𝑥𝑘)′𝑅𝑘
−1(𝑦𝑘 − 𝐶𝑘𝑥𝑘)          (5) 

In Eq. (5), the 𝑅𝑘
−1 matrix is a positive definite matrix 

and must be determined in the context of the inputs, 

states and outputs of the dynamic system of interest. 

For 𝑥𝑘   estimation that gives the smallest value of 

𝐽(𝑥𝑘). The solution in Eq. (6) is found for the 𝑥𝑘 

estimation that gives the smallest value of 𝐽(𝑥𝑘). 

�̂�𝑘 = (𝐶𝑘𝑅𝑘
−1𝐶𝑘)−1𝐶𝑘𝑅𝑘

−1𝑦𝑘                    (6) 

Estimation of 𝑥𝑘 in the context of the weighted least 

squares method for the state-space model in Eq. (5) and 

Eq. (6); 𝑃0 is the covariance matrix for the initial state 

vector 𝑥0, and 𝑄𝑘 is the covariance matrix for the vector 

𝜀𝑘, and Equation 7 is obtained by reaching its minimum 

value under the  𝑥𝑘 = 𝐴𝑘−1𝑥𝑘−1 + 𝐵𝑘𝑢𝑘 + 𝐷𝑘𝑒𝑘 

constraint. 

𝐽(𝑥𝑘 , 𝜀0, 𝜀1, … , 𝜀𝑘−1)

= ∑(𝑦𝑘 − 𝐶𝑘𝑥𝑘)′𝑅𝑘
−1(𝑦𝑘 − 𝐶𝑘𝑥𝑘)

𝑁

𝑘=1

+ ∑ 𝜀𝑘𝑄𝑘
−1𝜀𝑘 + 𝑥0

′ 𝑃0
−1𝑥0

𝑛−1

𝑘=0

          (7) 

In Eq. (7), 𝑅𝑘, 𝑄𝑘 and 𝑃0 matrices are positive definite 

and determined based on expert knowledge about the 

dynamic system of interest [10]. 

3.1. State estimation with filtering: Kalman filter 

The state of the system may not be directly measurable. 

In a dynamic system represented by a state-space 

model, the state of the system can be estimated by using 

the model's information obtained at previous times and 

its output information. Kalman filter, which was first 

introduced by Kalman in 1960, is an effective analysis 

algorithm that estimates the state of the system from a 

series of measurements obtained from a dynamic 

system that may contain error (noise), and updates the 

estimate as observations are made [35]. The Kalman 

filter combines measurement data, a priori information 

about the system, and indirectly measuring state values 

to make the desired predictions by minimizing the error 
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statistically. Therefore, it gives better results than most 

other filters for statistical estimation purposes. Within 

the framework of the Bayesian approach, by 

conditioning the real data information provided by 

measuring devices, the spread of conditional 

probability densities for the features to be estimated can 

be filtered. Kalman filter helps the purpose of 

predictive analysis of a system that can be expressed 

with a linear model, where measurement errors are 

white noise and normally distributed, by providing 

conditional probability distribution [36]. 

For the dynamic and stochastic multi-stage production 

system represented by the state-space model equations 

Eq. (3) and Eq. (4), a series of prediction and filtering 

processes are required in line with the estimation of the 

state vector 𝑥𝑘 at stage 𝑘. The difference equations 

needed for this purpose within the scope of the 

Bayesian approach are known as Kalman or Kalman-

Bucy equations. There are various approaches and 

generalizations in determining the equations in 

question, and it is possible to consider equivalent 

criteria that form the basis for all of them. Minimizing 

the expected value of prediction error squares is one of 

these criteria [37]. 

 

3.1.1. Minimization of expected value of squared 

error criteria method 

In order to make state estimation with the Kalman filter, 

explanations about the variables and coefficients in the 

state-space model equations Eq. (3) and Eq. (4) are 

given below: 

𝑥𝑘 ∈ 𝑅𝑛: System state vector. 

𝑦𝑘 ∈ 𝑅𝑚: System observation vector. 

𝐴𝑘: 𝑛 × 𝑛 dimensional system transition matrix. 

𝐵𝑘: 𝑛 × 𝑛 dimensional system input matrix. 

𝐶𝑘: 𝑚 × 𝑛 dimensional observation transition matrix. 

𝑢𝑘: Vector expressing the effect of managerial inputs at 

time (stage) 𝑘. 

𝐷𝑘: 𝑛 × 𝑛 dimensional system noise matrix. 

𝐻𝑘: 𝑚 × 𝑛 dimensional observation noise matrix. 

It is assumed that the matrices 𝐴𝑘, 𝐵𝑘 , 𝐶𝑘, 𝐷𝑘  and 𝐻𝑘 are 

known at all times 𝑘 = 0,1,2, …. The zero-mean white 

noise processes 𝜀𝑘 ∈ 𝑅𝑛 and 𝜂𝑘 ∈ 𝑅𝑚 are assumed to 

satisfy the following assumptions for each 𝑘, 𝑗 value in 

Eqs. (8)-(17). 

𝐸[𝜀𝑘] = 0                                 (8) 

𝐸[𝜂𝑘] = 0                                 (9) 

𝐸[𝜀𝑘𝜀𝑗
′] = 𝑄𝑘𝛿𝑘𝑗                         (10) 

𝐸[𝜂𝑘𝜂𝑗
′ ] = 𝑅𝑘𝛿𝑘𝑗                        (11) 

𝛿𝑘𝑗 = {
1,      𝑘 = 𝑗
0,      𝑘 ≠ 𝑗

                       (12) 

𝐸[𝜀𝑘𝜂𝑗
′ ] = 0                            (13) 

𝐸[𝑥0] = �̅�0                            (14) 

𝐸[(𝑥0 − �̅�0)(𝑥0 − �̅�0)′] = 𝑃0        (15) 

𝐸[𝑥0𝜀𝑗
′] = 0                               (16) 

𝐸[𝑥0𝜂𝑗
′ ] = 0                              (17) 

Table 2. Discrete time Kalman filter equations based on 

minimization of mean squared errors [38]. 

System dynamic model: 

𝑥𝑘 = 𝐴𝑘−1𝑥𝑘−1 + 𝐵𝑘𝑢𝑘 + 𝜀𝑘 ,  𝜀𝑘~𝑁(0, 𝑄𝑘) 

Measurement (observation) model: 

𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝜂𝑘,   𝜂𝑘~𝑁(0, 𝑅𝑘) 

Starting conditions: 

𝑥0~𝑁(�̅�0, 𝑃0),   �̂�0|−1 = �̅�0,     𝑃0|−1 = 𝑃0 

Independence conditions: 

𝐸[𝜀𝑘𝜂𝑗
′ ] = 0,    𝐸[𝑥0𝜀𝑗

′] = 0,    

𝐸[𝑥0𝜂𝑗
′ ] = 0,   ∀𝑘, 𝑗 

Estimation of prediction stage: 

State estimation: 

�̂�𝑘|𝑘−1 = 𝐴𝑘−1�̂�𝑘−1|𝑘−1 + 𝐵𝑘𝑢𝑘 

Measurement condition: 

�̂�𝑘|𝑘−1 = 𝐶𝑘�̂�𝑘|𝑘−1 

= 𝐶𝑘[𝐴𝑘−1�̂�𝑘−1|𝑘−1 + 𝐵𝑘𝑢𝑘]
 

Errors of predition stage: 

State error: 

𝑥𝑘
∗ = 𝑥𝑘 − �̂�𝑘|𝑘−1 

Measurement error: 

 𝑤𝑘 = 𝑦𝑘 − �̂�𝑘|𝑘−1 = 𝐶𝑘(𝑥𝑘 − �̂�𝑘|𝑘−1) + 𝐻𝑘𝜂𝑘 

Covariance matrix of prediction stage: 

𝑃𝑘(𝑤) = 𝐸[𝑤𝑘𝑤𝑘
′ ] 

= 𝐶𝑘𝑃𝑘|𝑘−1𝐶𝑘
′ + 𝐻𝑘𝑅𝑘𝐻𝑘

′  

Update of error covariance for prediction stage: 

For state: 

𝑃𝑘|𝑘−1 = 𝐴𝑘−1𝑃𝑘−1|𝑘−1𝐴𝑘−1
′ + 𝐷𝑘𝑄𝑘𝐷𝑘

′  

For measurement: 

𝑃𝑘(𝑦) = 𝐶𝑘[𝐴𝑘−1𝑃𝑘−1𝐴𝑘−1
′ + 𝐷𝑘𝑄𝑘𝐷𝑘

′ ]𝐶𝑘
′

+ 𝐻𝑘𝑅𝑘𝐻𝑘 
′    

Observational update of the state estimate: 

�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐵𝑘𝑢𝑘

+ 𝑃𝑘|𝑘−1𝐶𝑘𝑃𝑘
−1(𝑤)[𝑦𝑘 − �̂�𝑘|𝑘−1] 

        =   �̂�𝑘|𝑘−1 + 𝐾𝑘{𝑦𝑘 − 𝐶𝑘�̂�𝑘|𝑘−1}
 

Update of error covariance for filtering stage: 

𝑃𝑘|𝑘 = [𝐼 − 𝐾𝑘𝐶𝑘]𝑃𝑘|𝑘−1
 

Kalman gain matrix: 

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐶𝑘
′ 𝑃𝑘

−1(𝑤)
 

 

In addition to all given assumptions, it is assumed that 

the matrices 𝑄𝑘 and 𝑅𝑘 are known. It is aimed to obtain 

�̂�𝑘|𝑚 by using observations {𝑦1, 𝑦2, … , 𝑦𝑚} for the best 
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estimation of the 𝑥𝑘 vector. In this direction, It is 

possible to use the covariance matrix (𝑃𝑘|𝑚) of the 

estimation error (𝑥𝑘 − �̂�𝑘|𝑚). When 𝑘 = 𝑚, the 

estimation is called as filtering. Considering that the 

observations are not error-free, the assumption of 𝑅𝑘 >
0 will be a realistic and necessary assumption. Let the 

vector 𝑌𝑘 = [𝑦1, … , 𝑦𝑘]′ represent the observations 

obtained until time (stage) 𝑘. If 𝜗𝑘|𝑚 is the estimation 

error of �̂�𝑘|𝑚 using 𝑌𝑘, the covariance matrix of this 

error is expressed as 𝑃𝑘|𝑚 = 𝐸[𝜗𝑘|𝑚𝜗𝑘|𝑚
′ ], with 

𝐸[�̂�𝑘|𝑚] = 𝐸(𝑥𝑘). The estimation of vector 𝑥𝑘 is done 

in two stages with various calculation steps. In Table 2, 

discrete time Kalman filter equations are summarized 

according to the method of minimizing the expected 

value of error squares by showing the filter system 

relationship. 

On the other hand, 𝜂𝑘 in the system equation Eq. (4) 

may become unobtainable. The solution to this problem 

requires adding additional state equations to the system 

equation. Bryson and Johanson proposed the first 

general solution to the problem in question [39]. To 

solve the problem, Brown and Hwang suggest 

removing exactly known state variables from the 

system equations and estimating the remaining ones by 

filtering [34]. This recommendation requires the 

separation of system state variables from other exactly 

known system variables by linear transformation. 

Simon summarized adequate explanations and methods 

of Kalman filter application approaches by considering 

the dependence as linear dependence      and correlation 

for the cases where the random vectors 𝜂𝑘 and 𝜀𝑘 are 

dependent within and between themselves [40]. 

4. Modeling multi-stage manufacturing processes 

under the dependency between quality 

characteristics 

In this section, a method is proposed by including 

copula functions in the approach of modeling and 

evaluating multi-stage manufacturing processes with 

state-space models under dependency. It has been 

suggested to use copula modeling to reveal the internal 

dependencies of the quality features within the state 

vector at each stage. With copula models, the stochastic 

relationship between quality characteristics can be 

determined by revealing the dependency structure 

without the need for common distributions of quality 

characteristics. In this context; Statistical properties 

such as marginal distributions, covariance, conditional 

probability distributions (and therefore regression 

function determination) of quality features that are 

random variables can be expressed. 

4.1. Copula functions 

Copula functions are statistical tools used to model 

dependency. Copulas are functions that combine 

multivariate distributions with their univariate marginal 

distributions. Let 𝐹 be the m-dimensional cumulative 

distribution function and 𝐹1, 𝐹2, … , 𝐹𝑚 be the 

cumulative distribution functions of one-dimensional 

marginals. In this case, the 𝑚-dimensional copula 

function is defined as in Eq. (18). 

𝐹(𝑦1, 𝑦2 , … , 𝑦𝑚)
= 𝐶(𝐹1(𝑦1), 𝐹2(𝑦2), … , 𝐹𝑚(𝑦𝑚); 𝜃)                          (18) 

𝜃 in Eq. (18) is called the dependency parameter and 

the marginal distributions of each of the quality 

characteristics express the relationship. The most basic 

theoretical determination about copula functions is put 

forward by the Scalar theorem. 

Theorem 1. (Sklar's Theorem) The 𝑚-dimensional 

copula is a function 𝐶 defined from the 𝑚-dimensional 

interval [0,1]𝑚 to the unit interval [0,1] and satisfies 

the following conditions [41]. 

• 𝐶(1, … ,1, 𝑎𝑛 , 1, … ,1) = 𝑎𝑛 , ∀𝑛 ≤
𝑚  𝑎𝑛𝑑   𝑎𝑛 ∈ [0,1]. 

• If 𝑎𝑛 = 0 for any 𝑛 ≤ 𝑚 , 𝐶(𝑎1, … , 𝑎𝑚) = 0. 

• 𝐶 is 𝑚-increasing. 

In other words, the 𝑚-copula is an 𝑚-dimensional 

distribution function with m univariate marginals, each 

of which is uniformly distributed in the range (0,1). 

There are many copula functions belonging to different 

copula families in the literature. When its application 

areas are investigated, it is seen that it has widespread 

use in finance, actuarial, time series and risk analysis. 

In this study, the focus is on the Gaussian (normal) 

copula, which belongs to the elliptic copula family and 

has many useful features. 

Definition 1. (Gaussian Copula) Consider random 

variables 𝑍1, 𝑍2, … , 𝑍𝑘 with correlation coefficients 

𝜌𝑖𝑗 = 𝜌(𝑍𝑖 , 𝑍𝑗) with multivariate normal probability 

distribution. Let the joint cumulative distribution 

function of the random variables 𝑍1, 𝑍2, … , 𝑍𝑘 be 

𝛷𝐺  (𝑧1, 𝑧2, … , 𝑧𝑘). In this case, the multivariate 

Gaussian (Normal) copula is defined in Eq. (19) [42]. 

(𝑢1, … , 𝑢𝑘) = Φ𝐺(Φ−1(𝑢1), … , Φ−1(𝑢𝑘))        (19) 

 

The two-variable Gaussian (Normal) copula is in the 

form of Eq. (20). 

𝐶(𝑢1, 𝑢2; 𝜃) = Φ𝐺(Φ−1(𝑢1), Φ−1(𝑢2); 𝜃)

= ∫ ∫
1

2𝜋(1 − 𝜃2)1/2

Φ−1(𝑢2)

−∞

Φ−1(𝑢1)

−∞

× {
−(𝑠2 − 2𝜃𝑠𝑡 + 𝑡2)

2(1 − 𝜃2)
} 𝑑𝑠𝑑𝑡   (20) 

In Eq. (20), Φ denotes the cumulative distribution 

function for the standard normal random variable and 

𝛷𝐺  (𝑢1, 𝑢2) denotes the standard bivariate normal 

distribution with the correlation parameter 𝜃, which 

takes values in the range of (−1,1). This copula 

function was proposed by Lee in 1983 [43]. The density 

function of the two-variable Gaussian copula is also in 

the form in Eq. (21). 
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𝑐(𝑢1, 𝑢2; 𝜃) =
1

√1 − 𝜃2
exp [

−(𝑢1
2 − 2𝜃𝑢1𝑢2 + 𝑢2

2

2(1 − 𝜃2)
] 

× exp (
𝑢1

2 + 𝑢2
2

2
)                             (21) 

According to the scalar theorem, the bivariate 

probability distribution of the random vector 𝑋 =
(𝑋1, 𝑋2)′ can be determined by the non-normal (any 

distribution) marginal distributions of the vector and 

the Gaussian copula [44]. 

In order to determine the probability distribution of a 

random vector 𝑋 = (𝑋1, 𝑋2)′, it is necessary to 

determine the marginal distribution of each 𝑋𝑗 and find 

the dependency structure between 𝑋𝑗. In order to 

determine the dependency structure between random 

variables, it is necessary to mention the measures and 

some special dependency structures included in the 

copula functions. There is a relationship between 

copula functions expressing dependence and 

dependence measurements, especially for two-variable 

cases. Dependency can be measured by many methods. 

The Pearson correlation coefficient is one of them; it is 

sensitive to outliers and does not change under strictly 

increasing linear transformations. The expression of the 

Pearson correlation coefficient in terms of copulas is 

shown in Eq. (22) [45]. 

𝜌𝑃(𝑋, 𝑌)

=
1

𝜎𝑋𝜎𝑌

∫ ∫[𝐶(𝑢1, 𝑢2)

1

0

1

0

− 𝑢1𝑢2]𝑑𝐹𝑋
−1(𝑢1)𝑑𝐹𝑌

−1(𝑢2),          𝑢𝑖 ∈ [0,1]        (22) 

4.2. Integration of state-space model with copula 

modeling 

In this section, the state vector of quality characteristics 

under dependency is estimated by combining the state-

space model, Kalman filtering and copula functions for 

multi-stage manufacturing processes. Therefore, a 

unique approach has been introduced to monitor quality 

in a multi-stage manufacturing process. 

4.2.1. Prediction error 

Considering the general state-space model 

representation of a multi-stage manufacturing process 

with Eq. (3) and Eq. (4), the Kalman filter method for 

estimating the state vector 𝑥𝑘 is introduced in Section 

3.1. In the prediction phase of the estimation, it was 

seen that the uncertainty in the state vector  �̂�𝑘|𝑘−1  is a 

function of the estimation of �̂�𝑘−1|𝑘−1 and the  

covariance 𝑄𝑘 of 𝜀𝑘. In the next step, the prediction 

error components for vector 𝑥𝑘 are; The statistical 

inference prediction error for 𝑥𝑘 is 𝑥𝑘 − �̂�𝑘|𝑘−1 and the 

prediction error for the observation vector 𝑦𝑘  is 𝜂𝑘. 

Therefore, as expressed in Table 2, the conditional 

variance of the prediction error given in Eq. (23) should 

be evaluated as a function of the uncertainties or errors 

related to �̂�𝑘|𝑘−1 and 𝑅𝑘. 

 

𝑃𝑘(𝑤) = 𝐶𝑘𝑃𝑘|𝑘−1𝐶𝑘
′ + 𝐻𝑘𝑅𝑘𝐻𝑘

′               (23) 

According to the information obtained up to stage or 

time 𝑘 − 1, based on the conditional probability 

distribution of 𝑥𝑘 to 𝑦𝑘 − �̂�𝑘|𝑘−1, the final estimation 

�̂�𝑘|𝑘 and its covariance 𝑃𝑘|𝑘−1 are obtained. Assuming 

that the joint probability distribution 𝑋 = 𝑥𝑘 and 𝑌 =
𝑦𝑘 − �̂�𝑘|𝑘−1 is a normal distribution given in Eq. (24), 

the conditional probability distribution 𝑋 given that 𝑌 

is  𝑁(𝜇𝑋|𝑦 , Σ𝑋𝑋|𝑦) with parameters 𝜇𝑋|𝑦 = 𝜇𝑋 +

Σ𝑋𝑌Σ𝑌𝑌
−1(𝑌 − 𝜇𝑌) and Σ𝑋𝑋|𝑦 = Σ𝑋𝑋 − Σ𝑋𝑌Σ𝑌𝑌

−1Σ𝑌𝑋 . 

[(
𝜇𝑋

𝜇𝑌
) , (

Σ𝑋𝑋 Σ𝑋𝑌

Σ𝑌𝑋 Σ𝑌𝑌
)]                   (24) 

In Eq. (24), 𝜇𝑋 = �̂�𝑘|𝑘−1, Σ𝑋𝑋 = 𝑃𝑘|𝑘−1, Σ𝑋𝑌 =

𝑃𝑘|𝑘−1𝐶𝑘
′  and Σ𝑌𝑌 = 𝑃𝑘(𝑤) (as in Eq. (23)) are some 

definitions. It is seen that by using these definitions, the 

expressions �̂�𝑘|𝑘 ve 𝑃𝑘|𝑘 which are the final estimates 

in the second stage of the Kalman filter, will be reached 

(see Table 2). The importance of the conditional 

variance 𝑃𝑘(𝑤) of the prediction error in the estimation 

of 𝑥𝑘 can be revealed from another perspective. For 

example; assuming that 𝑥0, 𝜀𝑘 and 𝜂𝑘 are random 

variables whose joint distribution is the normal 

distribution, the probability distribution of the random 

vector 𝑦𝑘  conditional on the information 
{𝑦1, 𝑦2, … , 𝑦𝑘−1} is normal distribution 

𝑁[𝑦𝑘|𝑘−1, 𝑃𝑘(𝑤)], the estimates of 𝑥𝑘 depend on the 

parameters of the distribution, conditional expected 

value and conditional variance-covariance 𝑦𝑘|𝑘−1 and 

𝑃𝑘(𝑤), respectively. The estimation of the model 

parameters of interest can be achieved by maximizing 

the function given in Eq. (25), which expresses the log-

likelihood in the context of all observation values. 

 𝐿𝐶
(𝑘)(𝑤ℎ𝑜𝑙𝑒) = lnℒ 

= −
1

2
∑ ln[2𝜋|𝑃𝑘(𝑤)|]

𝑘

−
1

2
∑ 𝑤𝑘

′ [𝑃𝑘(𝑤)]−1𝑤𝑘

𝑘

= ∑ 𝐿𝐶
(𝑘)

𝑁

𝑘=1

                                                                       (25) 

In the filtering stage, equations that express the 

estimates �̂�𝑘|𝑘 and 𝑃𝑘|𝑘 emerge. This was mentioned in 

Section 3.1, where the error quantities 𝑦𝑘 − �̂�𝑘|𝑘−1 =

𝑤𝑘, and the variance expression of these error 

quantities 𝑃𝑘(𝑤) are highlighted and discussed in state 

vector estimation. It has been emphasized more clearly 

that it constitutes the necessary essential element. 

Maximazing the likelihood function specified in Eq. 

(25) is equivalent to minimizing the quantity in Eq. 

(26), especially under the assumption of a normal 

distribution in general. 

𝐽 = 𝐸[𝑦𝑘 − 𝐶𝑘�̂�𝑘|𝑘−1][𝑦𝑘 − 𝐶𝑘�̂�𝑘|𝑘−1]
′
         (26) 

The assumptions and definitions for an illustrative 

example of this when the state vector 𝑥𝑘 is a two-

element random vector with two quality characteristics 

are as follows: 
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• 𝑥𝑘 is a 2×1 dimensional state vector and 𝑦𝑘  is a 2×1 

dimensional measurement vector. 

• The quality characteristics in the measurement vector 

have marginal distributions 𝑦𝑘1~𝐹𝑘1(. ) and 

𝑦𝑘2~𝐹𝑘2(. ), respectively, and it is assumed that the 

internal dependency structure between them is 

modeled with an appropriate copula. The cumulative 

joint probability distribution of random variables 𝑦𝑘1 

and 𝑦𝑘2 can be determined through copula functions 

as 𝐹𝑘12(𝑦𝑘1 , 𝑦𝑘2). 

• 𝐸(𝑦𝑘𝑖) = 𝜇𝑘𝑖 ,        𝑉𝑎𝑟(𝑦𝑘1) = 𝜎𝑘𝑖
2  ,      𝐸(𝑦𝑘𝑖

2 ) =
𝜎𝑘𝑖

2 + 𝜇𝑘𝑖
2  ,    𝑘 = 1,2, … , 𝑁;   𝑖 = 1,2. 

• 𝐶𝑜𝑣(𝑦𝑘1, 𝑦𝑘2) = 𝜎𝑘12,      𝐸(𝑦𝑘1𝑦𝑘2) = 𝜎𝑘12 +

𝜇𝑘1𝜇𝑘2,      𝑘 = 1,2, … , 𝑁. 

• It is assumed that the 2 × 2 dimensional matrices  

𝐴𝑘, 𝐵𝑘  and 𝐶𝑘 are known. 

• 𝑦𝑘 = [𝑦𝑘1
𝑦𝑘2

],         �̂�𝑘|𝑘−1 = [𝑥𝑘1
𝑥𝑘2

],        �̂�𝑘−1|𝑘−1 =

[
𝑥(𝑘−1)1

𝑥(𝑘−1)2
] ,         𝑢𝑘 = [𝑢𝑘1

𝑢𝑘2
]      𝑘 = 1,2, … , 𝑁. 

• 𝐵𝑘 = [
𝑏11

(𝑘)
𝑏12

(𝑘)

𝑏21
(𝑘)

𝑏22
(𝑘)

],      𝐴𝑘−1 =

[
𝑎11

(𝑘−1)
𝑎12

(𝑘−1)

𝑎21
(𝑘−1)

𝑎22
(𝑘−1)

],      𝐶𝑘 = [
𝑐11

(𝑘)
𝑐12

(𝑘)

𝑐21
(𝑘)

𝑐22
(𝑘)

] ,    𝑘 =

1,2, … , 𝑁. 

If Eq. (26) is rewritten according to the definitions, the 

matrix in Eq. (27) is obtained. 

𝐽 = 𝐸[𝑦𝑘 − 𝐶𝑘�̂�𝑘|𝑘−1][𝑦𝑘 − 𝐶𝑘�̂�𝑘|𝑘−1]
′

= 𝐸 [
𝑁 𝐿
𝐿 𝑀

]                                 (27) 

The expansion of the matrix elements in Eq. (27) is 

given in Eqs. (28)-(30). 

𝑁 = (𝑦𝑘1 − 𝑐11
(𝑘)

�̂�𝑘1 − 𝑐12
(𝑘)

�̂�𝑘2)
2

               (28) 

𝑀 = (𝑦𝑘2 − 𝑐21
(𝑘)

�̂�𝑘1 − 𝑐22
(𝑘)

�̂�𝑘2)
2

               (29) 

                 𝐿 = (𝑦𝑘1 − 𝑐11
(𝑘)

�̂�𝑘1 − 𝑐12
(𝑘)

�̂�𝑘2) 

× (𝑦𝑘2 − 𝑐21
(𝑘)

�̂�𝑘1 − 𝑐22
(𝑘)

�̂�𝑘2)            (30) 

When the elements of matrix 𝐽 are considered 

separately, the expected values in Eqs. (31)-(33) are 

obtained. 

𝐸(𝑁) = 𝜎𝑘1
2 + 𝜇𝑘1

2 − 2(𝑐11
(𝑘)

�̂�𝑘1 + 𝑐12
(𝑘)

�̂�𝑘2)𝜇𝑘1

+ (𝑐11
(𝑘)

�̂�𝑘1 + 𝑐12
(𝑘)

�̂�𝑘2)
2

               (31) 

𝐸(𝑀) = 𝜎𝑘2
2 + 𝜇𝑘2

2 − 2(𝑐21
(𝑘)

�̂�𝑘1 + 𝑐22
(𝑘)

�̂�𝑘2)𝜇𝑘1

+ (𝑐21
(𝑘)

�̂�𝑘1 + 𝑐22
(𝑘)

�̂�𝑘2)
2

               (32) 

𝐸(𝐿) = 𝜎𝑘12 + 𝜇𝑘1𝜇𝑘2 − (𝑐21
(𝑘)

�̂�𝑘1 + 𝑐22
(𝑘)

�̂�𝑘2)𝜇𝑘1

− (𝑐11
(𝑘)

�̂�𝑘1 + 𝑐12
(𝑘)

�̂�𝑘2)𝜇𝑘2

+ (𝑐11
(𝑘)

�̂�𝑘1 + 𝑐12
(𝑘)

�̂�𝑘2) 

× (𝑐21
(𝑘)

�̂�𝑘1 + 𝑐22
(𝑘)

�̂�𝑘2)                 (33) 

If the system transition matrix 𝐶𝑘 is optimized 

(minimum), the partial derivatives of the expected 

values according to the elements of the 𝐶𝑘 matrix are 

equal to zero. Then, the values in Eq. (34) and Eq. (35) 

for  𝑐11
(𝑘)

and  𝑐12
(𝑘)

 are obtained. 

𝑐11
(𝑘)

=
𝜇𝑘1 − 𝑐12

(𝑘)
�̂�𝑘2

�̂�𝑘1

                    (34) 

𝑐12
(𝑘)

=
𝜇𝑘1 − 𝑐11

(𝑘)
�̂�𝑘1

�̂�𝑘2

                     (35) 

It is necessary to test that the expressions in Eq. (34) 

and Eq. (35) are the values that minimize 𝐸(𝑁). The 

values found for this are the values that make the 

second derivatives of 𝐸(𝑁) with respect to  𝑐11
(𝑘)

 and  

𝑐12
(𝑘)

 greater than zero, (𝜕2𝐸(𝑁) 𝜕(𝑐11
(𝑘)

)
2

⁄ = 2�̂�𝑘1
2 > 0 

and 𝜕2𝐸(𝑁) 𝜕(𝑐12
(𝑘)

)
2

⁄ = 2�̂�𝑘2
2 > 0, will be the values 

that minimize 𝐸(𝑁). Similarly, if the partial derivatives 

according to 𝑐21
(𝑘)

 and  𝑐22
(𝑘)

  in 𝐸(𝑀) are taken and set 

equal to zero, the expressions in Eq. (36) and Eq. (37) 

are obtained. 

𝑐21
(𝑘)

=
𝜇𝑘2 − 𝑐22

(𝑘)
�̂�𝑘2

�̂�𝑘1

                       (36) 

𝑐22
(𝑘)

=
𝜇𝑘2 − 𝑐21

(𝑘)
�̂�𝑘1

�̂�𝑘2

                       (37) 

Since, 𝜕2𝐸(𝑀) 𝜕(𝑐21
(𝑘)

)
2

⁄ = 2�̂�𝑘1
2 > 0 and 

𝜕2𝐸(𝑀) 𝜕(𝑐22
(𝑘)

)
2

⁄ = 2�̂�𝑘2
2 > 0, the values in Eq. (36) 

and Eq. (37) are the values that minimize 𝐸(𝑀). If these 

values are substituted in 𝐸(𝐿), the result will be as in 

Eq. (38) for k=1,2,…,N. 

𝐸(𝐿) = 𝐸(𝑌𝑘1𝑌𝑘2) − 𝜇𝑘1𝜇𝑘2 = 𝐶𝑜𝑣(𝑌𝑘1, 𝑌𝑘2)

= 𝜎𝑘12,          𝑘 = 1, … , 𝑁            (38) 

In conclusion, the dependency between quality 

characteristics at any stage 𝑘 is a phenomenon that 

affects the quality values of the production process. In 

the derivation made above, it is seen that the variance 

and covariance values directly affect the values 

symbolizing the quality status of the system, under the 

assumptions about the moments of the 𝑌 variables, 

which express the observable values of the 𝑋 variables, 

which are the quality characteristics. Considering that 

variance and covariance values are quantities that 

determine correlation values; The conclusion is that the 

dependence, which can be expressed in general and 

specifically in the context of Gaussian copulas, is 

effective in the Kalman filter state estimation 

equations. 
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To state this more clearly, let us consider the Pearson 

correlation measure 𝜌𝑃 = (𝑦𝑘1, 𝑦𝑘2) =
𝜎𝑘12(𝜎𝑘1𝜎𝑘2)−1 in the context of observations for a 

two-element state vector. Pearson correlation measure 

can be expressed as a function of the copula function 

𝐶(. , . ) and the marginal distributions 𝐹1 and 𝐹2, as 

shown in Eq. (22), in the form in Eq. (39). 

𝜌𝑃(𝑦𝑘1, 𝑦𝑘2) = (𝜎𝑘1𝜎𝑘2)−1 ∫ ∫ [𝐶(𝑢1, 𝑢2)
1

0

1

0

− 𝑢1𝑢2] 𝑑𝐹1
−1 (𝑢1)𝐹2

−1(𝑢2),  

𝑢𝑖 ∈ [0,1], 𝑖 = 1,2       (39) 

By expressing the covariance 𝜎𝑘12 given in Eq. (38) in 

terms of copula, using Eq. (22), the adequacy of 

combining copula functions in the estimation of state-

space models through the Kalman filter is demonstrated 

with Eq. (40). 

𝜎𝑘12 = (𝜎𝑘1𝜎𝑘2)𝜌𝑃(𝑦𝑘1, 𝑦𝑘2) 

= ∫ ∫ [𝐶(𝑢1, 𝑢2) − 𝑢1𝑢2]
1

0

𝑑𝐹1
−1

1

0

(𝑢1)𝐹2
−1(𝑢2)   (40) 

4.2.2. Copula likelihood functions 

Considering the copula functions and Sklar's Theorem, 

the joint probability distribution function for the 

elements of the observation vector 𝑦𝑘 , which takes 

continuous values, will be in the form in Eq. (41) with 

the expression of the copula function. 

𝐹𝑘12(𝑦𝑘1, 𝑦𝑘2; 𝛾, 𝜃) 

= 𝐶(𝐹𝑘1(𝑦𝑘1; 𝛾), 𝐹𝑘2(𝑦𝑘2, 𝛾); 𝜃)      (41) 

In Eq. (41), the vector γ represents the probability 

distribution parameters except the dependence 

parameter 𝜃 between 𝑦𝑘1 and 𝑦𝑘2. It is not necessary 

for 𝜃 parameter to express only correlation. If the 

distribution function in Eq. (41) is differentiated 

according to (𝑦𝑘1, 𝑦𝑘2), the joint probability density 

function in Eq. (42) is obtained 𝑘 = 1,2, … , 𝑁. 

𝑓𝑘12(𝑦𝑘1, 𝑦𝑘2; 𝛾, 𝜃) = 𝑐(𝐹𝑘1(𝑦𝑘1; 𝛾1), 𝐹𝑘2(𝑦𝑘2; 𝛾2); 𝜃) 

× 𝑓𝑘1(𝑦𝑘1; 𝛾1)𝑓𝑘2(𝑦𝑘2; 𝛾2)           (42) 

𝑐(. , . ; 𝜃) in Eq. (42) is the copula density function 

corresponding to 𝐶(. , . ; 𝜃). Assuming that there are 𝑛 

observations that can be expressed as 
(𝑦𝑘11, … , 𝑦𝑘1𝑛) and (𝑦𝑘21, … , 𝑦𝑘2𝑛) for each of the 𝑦𝑘  

vector elements 𝑦𝑘1 and 𝑦𝑘2 at any stage or time 𝑘, the 

copula log-likelihood function, For k =1,2,…,N, the 

expression in Eq. (43) is obtained. 

ℒ𝑐
(𝑘)

= ∑ ln 𝑓𝑘12(𝑦1𝑘 , 𝑦2𝑘; 𝛾, 𝜃)

𝑛

𝑖=1

 

= ∑ ln 𝑐(𝐹𝑘1(𝑦𝑘1; 𝛾1), 𝐹𝑘2(𝑦𝑘2; 𝛾2); 𝜃)

𝑛

𝑖=1

                   

+ ∑ ln 𝑓𝑘1(𝑦𝑘1; 𝛾1)

𝑛

𝑖=1

+ ∑ ln 𝑓𝑘2(𝑦2; 𝛾2)

𝑛

𝑖=1

      (43) 

The difference between the expression in Eq. (43) and 

the ordinary log-likelihood function is that the sum of 

the log copula density functions is included in the 

equation. In the observation vector given in Eq. (3) 

where 𝐻𝑘 = 𝐼𝑘,  𝜂𝑘1 =  𝑦𝑘1 − 𝑐11
(𝑘)

𝑥𝑘1 − 𝑐12
(𝑘)

𝑥𝑘2 and  

𝜂𝑘2 =  𝑦𝑘2 − 𝑐21
(𝑘)

𝑥𝑘1 − 𝑐22
(𝑘)

𝑥𝑘2 are defined as in the 

covariance matrix 𝑅𝑘 in Eq. (44) for 𝑦𝑘 = (𝑦𝑘1, 𝑦𝑘2)′ 
with 𝜂𝑘 = (𝜂𝑘1, 𝜂𝑘2)′~𝑁(0, 𝑅𝑘), 𝑘 = 1,2, … , 𝑁.  

𝑅𝑘 = [
𝑉𝑎𝑟(𝜂𝑘1) 𝐶𝑜𝑣(𝜂𝑘1, 𝜂𝑘2)

𝐶𝑜𝑣(𝜂𝑘1, 𝜂𝑘2) 𝑉𝑎𝑟(𝜂𝑘2)
] 

= [
𝜎𝜂𝑘1

2 𝜌𝑘𝜎𝜂𝑘1
𝜎𝜂𝑘2

𝜌𝑘𝜎𝜂𝑘1
𝜎𝜂𝑘2

𝜎𝜂𝑘2
2 ]               (44) 

When the marginal density functions and joint 

probability density functions are given in Eq. (45), Eq. 

(46) and Eq. (47), respectively, the corresponding 

Gaussian (normal) copula density function expression 

can be calculated only with the help of the marginal 

distribution functions as in Eq. (48). 

𝑓𝑘1(𝑦𝑘1; 𝑥𝑘1, 𝑥𝑘2, 𝑐11
(𝑘)

, 𝑐12
(𝑘)

)

=
1

√2𝜋𝜎𝜂𝑘1
2

 exp {−
(𝑦𝑘1 − 𝑐11

(𝑘)
𝑥𝑘1 − 𝑐12

(𝑘)
𝑥𝑘2)

2

2𝜎𝜂𝑘1
2

} (45) 

𝑓𝑘2(𝑦𝑘2; 𝑥𝑘1, 𝑥𝑘2, 𝑐21
(𝑘)

, 𝑐22
(𝑘)

)

=
1

√2𝜋𝜎𝜂𝑘2
2

 exp {−
(𝑦𝑘2 − 𝑐21

(𝑘)
𝑥𝑘1 − 𝑐22

(𝑘)
𝑥𝑘2)

2

2𝜎𝜂𝑘2
2

} (46) 

𝑓𝑘12(𝑦𝑘; 𝑥𝑘 , 𝐶𝑘, 𝑅𝑘) =
1

2𝜋√|𝑅𝑘|
 

 × exp {−
1

2
(𝑦𝑘 − 𝐶𝑘𝑥𝑘)′𝑅𝑘

−1(𝑦𝑘 − 𝐶𝑘𝑥𝑘)}           (47) 

 

𝑐(𝐹𝑘1(𝑦𝑘1; 𝑥𝑘1, 𝛾1𝑘), 𝐹𝑘2(𝑦𝑘2; 𝑥𝑘2, 𝛾2𝑘); 𝜃) 

=
1

𝜎𝜂𝑘1
2 𝜎𝜂𝑘2

2 − 𝜌𝑘
2 exp {−

(𝜂𝑘1
2 − 2𝜌𝑘𝜂𝑘1𝜂𝑘2 + 𝜂𝑘2

2 )

2(1 − 𝜌𝑘
2)

} 

× exp (
𝜂𝑘1

2 + 𝜂𝑘2
2

2
)                                                     (48) 

As seen from the copula log-likelihood function 

obtained in Eq. (43),  the value size of the copula log-

likelihood function is determined by the dependency 

parameter values when other parameters are given. 

Under normal distribution, the dependence parameter 𝜃 

is the parameter expressed in terms of moment factors 

and corresponding to the Pearson correlation. 

4.2.3. Copula functions and Kalman filter 

In order to define the stochastic dependency structure 

between the quality characteristics of a product in 

multi-stage manufacturing processes with copula 

functions, it is sufficient to know the marginal 

probability distributions of the characteristics. By 
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analyzing the representation of multi-stage 

manufacturing processes with the state-space models 

approach under dependency, it is possible to make 

Kalman filter estimations better trackable and 

interpretable on the basis of copula likelihood 

functions. To better express this, it would be useful to 

express the combination of Kalman filter estimation 

steps with copula functions, as shown in Table A1 in 

Appendix. 

For the explicit expression of the copula log-likelihood 

functions 𝐿𝑐(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) and 𝐿𝑐(𝑤ℎ𝑜𝑙𝑒) in Table A1, 

it is necessary to know or predict the likelihood 

distribution models for the state-space model state 

vector 𝑥𝑘 and therefore the observation vector 𝑦𝑘 . In 

the predictions made for the Kalman filter method  

state-space model, normal distribution is assumed for 

the relevant model variables, and it is stated by many 

researchers that the predictions are efficient under these 

conditions [42]. 

For this reason, it is necessary to determine copula 

density functions and copula log-likelihood functions 

under certain distributions by using Eq. (43) to express 

the 𝐿𝑐(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) and 𝐿𝑐(𝑤ℎ𝑜𝑙𝑒) functions in Table 

A1. 

For example; when the joint probability distribution of 

𝑥0, 𝑒𝑘 and 𝜂𝑘 is a normal distribution, the 

𝐿𝑐(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) and 𝐿𝑐(𝑤ℎ𝑜𝑙𝑒) functions for the 𝑦𝑘  

observation vector will be as in Eq. (49) and Eq. (50). 

𝐿𝑐(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) = ∑ ln 𝑓𝑘12(𝑦1𝑘 , 𝑦2𝑘; 𝛾, 𝜃)

𝑛

𝑖=1

= ∑ ln 𝑐(𝐹𝑘1(𝑦𝑘1; 𝛾1), 𝐹𝑘2(𝑦𝑘2; 𝛾2); 𝜃)

𝑛

𝑖=1

+ ∑ ln 𝑓𝑘1(𝑦𝑘1; 𝛾1)

𝑛

𝑖=1

+ ∑ ln 𝑓𝑘2(𝑦2; 𝛾2)

𝑛

𝑖=1

               (49) 

   𝐿𝑐(𝑤ℎ𝑜𝑙𝑒) = ∑ 𝐿𝑐(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)

𝑁

𝑖=1

                        (50) 

The copula density function in Eq. (49) is defined in 

Eq. (48). On the other hand, 𝛾1 and 𝛾2 in the 

expressions 𝑓𝑘1(𝑦𝑘1; 𝛾1) and 𝑓𝑘2(𝑦𝑘2; 𝛾2) defined in 

Eq. (45) and Eq. (46) show the distribution parameters. 

It has been stated in the previous sections that in 

determining the 𝑥𝑘 and 𝑃𝑘|𝑘 expressions in the filtering 

stage of the Kalman filter equations, the likelihood 

function should be maximized or, equivalently, the sum 

of squares of the errors 𝑤𝑘 = 𝑦𝑘 − �̂�𝑘|𝑘−1  should be 

minimized. .In this regard, copula log-likelihood 

functions must be determined to write the 

𝐿𝑐(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) and 𝐿𝑐(𝑤ℎ𝑜𝑙𝑒) expressions shown in 

Table A1, the joint probability function of the random 

variables 𝑥𝑘 and 𝑤𝑘 = 𝑦𝑘 − �̂�𝑘|𝑘−1  with normal 

distribution and the copula function were used. 

Let 𝑦𝑘 = (𝑦𝑘1, 𝑦𝑘2)′ be the values observed about the 

quality characteristics of the production process at the 

𝑘th stage of the multi-stage manufacturing process. In 

the case of the existence of an observation set of size 𝑛, 

considering the equations 𝑥𝑘|𝑘−1, 𝑃𝑘|𝑘−1, 𝐸(𝑤𝑘𝑤𝑘
′ ) =

𝑃𝑘(𝑤) in Table A1, the probability density functions 

and the copula density function are given in Eqs.(51)-

(54) where 𝑤𝑘𝑖 = 𝑦𝑘𝑖 − 𝑦𝑘|𝑘−1
(𝑖)

, 𝑖 = 1,2. 

𝑓𝑘1(𝑤𝑘1; 𝑥𝑘1, 𝛾1)

=
1

√2𝜋𝜎𝑘1
2

exp {−
(𝑦𝑘1 − 𝑦𝑘|𝑘−1

(1)
)

2

2𝜎𝑤𝑘1
2

},                      (51) 

𝑓𝑘2(𝑤𝑘2; 𝑥𝑘2, 𝛾2)

=
1

√2𝜋𝜎𝑘2
2

exp {−
(𝑦𝑘2 − 𝑦𝑘|𝑘−1

(2)
)

2

2𝜎𝑤𝑘2
2

},                      (52) 

𝑓𝑘12(𝑤𝑘1, 𝑤𝑘2; 𝑥𝑘1, 𝑥𝑘2, 𝛾1, 𝛾2, 𝜃)

=
1

2𝜋√|𝑃𝑘(𝑤)|
exp {−

1

2
(𝑦𝑘 − 𝑦𝑘|𝑘−1)

′
𝑃𝑘(𝑤)(𝑦𝑘

− 𝑦𝑘|𝑘−1)},                                                                     (53) 

𝑐(𝐹𝑘1(𝑤𝑘1; 𝑥𝑘1, 𝛾1), 𝐹𝑘2(𝑤𝑘2; 𝑥𝑘2, 𝛾2); 𝜃)

=
1

𝜎𝑤𝑘1
2 𝜎𝑤𝑘2

2 − 𝜌𝑘
2 exp {−

(𝑤𝑘1
2 − 2𝜌𝑘𝑤𝑘1𝑤𝑘2 + 𝑤𝑘2

2 )

2(1 − 𝜌𝑘
2)

} 

× exp (
𝑤𝑘1

2 + 𝑤𝑘2
2

2
)                              (54) 

𝑦𝑘|𝑘−1
(𝑖)

, 𝑖 = 1,2 in Eq. (51) and Eq. (52) shows the 

prediction made for the ith element of vector 𝑦𝑘  based 

on the values observed until the kth stage. 𝑃𝑘(𝑤) in Eq. 

(53) shows the error covariance matrix in the Kalman 

filter prediction stage and is in the form in Eq. (55). 𝜌𝑘, 

which shows the correlation between 𝑤𝑘1 and 𝑤𝑘2 in 

the sense of Pearson correlation, is a copula correlation 

parameter for 𝑦𝑘1 and 𝑦𝑘2 since 𝑤𝑘 = 𝑦𝑘 − �̂�𝑘|𝑘−1 and 

𝑦𝑘|𝑘−1  are calculated values. 

𝑃𝑘(𝑤) = [
𝜎𝑤𝑘1

2 𝜎𝑤𝑘1
𝜎𝑤𝑘2

𝜌𝑘

𝜎𝑤𝑘1
𝜎𝑤𝑘2

𝜌𝑘 𝜎𝑤𝑘2
2 ]                    (55) 

Then, the copula log-likelihood function derived by the 

log-likelihood expression in Eq. (43) is given Eq. (56). 

𝐿𝑐(𝑤𝑘|𝑦1, … , 𝑦𝑘−1)

= ∑ ln 𝑐(𝐹𝑘1(𝑤𝑘1𝑗 ; 𝑥𝑘1, 𝛾1), 𝐹𝑘2(𝑤𝑘2𝑗; 𝑥𝑘2, 𝛾2); 𝜃)

𝑛

𝑗=1

+ ∑ ln 𝑓𝑘1(𝑤𝑘1𝑗 ; 𝑥𝑘1, 𝛾1)

𝑛

𝑗=1

+ ∑ ln 𝑓𝑘2(𝑤𝑘2𝑗 ; 𝑥𝑘2, 𝛾2)

𝑛

𝑗=1

                                        (56) 

As seen in Eq. (56), when the copula density function 

dependence parameter is different from zero, the copula 

log-likelihood function creates an increasing or 
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decreasing effect on its value. The equations 𝑥𝑘|𝑘 and 

𝑃𝑘|𝑘, which are the expressions of the Kalman filter 

filtering stage estimates, emerge as a result of the 

optimization of the copula log-likelihood functions 

according to 𝑤𝑘1 and 𝑤𝑘2 are obtained by using 

maximum likelihood (MLE) or minimization of the 

mean squared error (MMSE) approaches, effective 

estimates for 𝑥𝑘 are obtained. When the marginal 

probability distributions of observation vectors 𝑦𝑘 and 

error vectors 𝑤𝑘 are distributions other than the normal 

distribution, the effectiveness of Kalman filter 

estimations may decrease. 

5. Application of the proposed approach 

In this section, a multi-stage manufacturing process is 

simulated with the modeling method presented and the 

results are discussed. The production process in the 

simulation study is based on assumption. Assume that 

parts are processed in the wood workshop of a factory. 

The wooden pieces, which are processed through a 

three-stage manufacturing process, are expected to 

weigh 150 grams (g) and be 30 centimeters (cm) long 

at the end of the production process. When unprocessed 

wood pieces arrive at the factory, they are weighed and 

their lengths are measured in the input quality control 

department. Based on past measurements, it will be 

assumed that the lengths of untreated wood pieces have 

a normal distribution with a mean of 32 cm and a 

standard deviation of 0.5 cm. Similarly, the weights of 

the raw parts will be assumed to have a normal 

distribution with a mean of 152g and a standard 

deviation of 1.1g. It will be assumed that the parts 

entering the processing process are cut in the first stage, 

sanded in the second stage and polished in the last 

stage. Fig.(1) shows a representative version of this 

process. 

 

 

 

 

 

 

 

Figure 1. Three-stage processing scheme 

The wooden parts, first checked in the input quality 

control department, are cut to the desired size during 

the cutting stage. After the parts are sanded, they move 

on to the polishing stage. Then, the products are left to 

dry to take their final form. It is assumed that the parts 

are weighed at the end of each stage and their length 

measured. Under these assumptions, the state equation 

will be as in Eq. (57), and the output (measurement) 

equation will be as in Eq. (58) where 𝐷𝑘 = 𝐼𝑘 and 𝐻𝑘 =
𝐼𝑘. 

𝑥𝑘 = 𝐴𝑘−1𝑥𝑘−1 + 𝐵𝑘𝑢𝑘 + 𝜀𝑘, 𝑘 = 1,2,3     (57) 

𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝜂𝑘  , 𝑘 = 1,2,3           (58) 

In a multi-stage processing process revealed by the 

linear state-space model, 𝑥𝑘 is the directly 

unobservable quality characteristic of the product being 

inspected. 𝑥𝑘 is a vector that contains all the 

information about the current state of the process at the 

𝑘th stage. In this simulation study, the state vector 𝑥𝑘 

consists of two quality characteristics: 𝑥𝑘1 represents 

the actual value of the part size at the 𝑘th stage; 𝑥𝑘2 

shows the actual value of the part weight at the 𝑘th 

stage. The vectors 𝑥𝑘 = [𝑥𝑘1 𝑥𝑘2]′, 𝑘 = 1,2,3 in size 

(2×1) are known positive definite matrices that show 

the deviation during the transition from the 𝑘th stage to 

the (𝑘 + 1)th stage of the process given as  
𝐴0 = [−0.645   0.343 ; −3.165   1.660],  

𝐴1 = [−0.639   0.329; −3.170   1.670] and  
𝐴2 = [−0.761   0.352; −3.660   1.730]  

with MATLAB notation.  
 
𝐵𝑘 is defined as the input matrix at the 𝑘th stage and 

𝑢𝑘 = [𝑢1
(𝑘)

𝑢2
(𝑘)]

′
, 𝑘 = 1,2,3 is defined as a (2 × 1) 

dimensional vector showing the contribution of the 𝑘th 

stage in the state equation. Here 𝑢𝑖
(𝑘)

, 𝑖 = 1,2;  𝑘 =

1,2,3 is the contribution of the 𝑘th stage to the 𝑖th 

quality characteristic. This contribution is provided by 

the multiplication of the known matrix 𝐵𝑘 and the 

vector 𝑢𝑘. In this application, 𝐵1𝑢1 = [−0.01 −
0.025]′, 𝐵2 𝑢2 = [−0.01 − 0.01]′ and 𝐵3𝑢3 =
[0.01  0.01]′. Let the unobservable process noise be 

defined as 𝜀𝑘 = [𝑒1
(𝑘)

𝑒2
(𝑘)]

′
, 𝑘 = 1,2,3. In the 

simulation study, it is assumed that 𝑒𝑖
(𝑘)

~𝑁(𝜇 =

0, 𝜎2), 𝑖 = 1,2; 𝑘 = 1,2,3. It is also assumed that the 

measurements can be taken from every stage. In this 

case, the measurement vector 𝑌_𝑘 = [𝑦𝑘1 𝑦𝑘2]′ , 𝑘 =
1,2,3 can be observed for every value of the phase 

index 𝑘. Let the 𝐶𝑘 matrices, which provide the 

transition between the actual values of the quality 

characteristics and the measurement values, be 

determined as 𝐶1 = [1.30  − 0.01; 0.01  0.99], 𝐶2 =
[1.01  − 0.01; 0.01  0.99], and 𝐶3 = [1.01  −
0.001; 0.01  0.99].  

The elements of the vector 𝜂𝑘 = [𝜉1
(𝑘)

𝜉2
(𝑘)

]
′
, 𝑘 = 1,2,3, 

which show the measurement error are distributed 

normally given as 𝜉𝑖
(𝑘)

~𝑁(𝜇 = 0 , 𝜎2), 𝑖 = 1,2; 𝑘 =
1,2,3. In this study, different correlation coefficient 

values (0.99, 0.90, 0.70, 0.50, 0.30 and 0.1) were tested 

for 0.1, 0.5 and 1 values of the 𝜎2 parameter, which 

indicates the noise level. Additionally, it is assumed 

that the dependency structure between the length and 

the weight measurement values can be determined with 

the Gaussian copula. 

In this case, the Kalman filter equations in Table 2 will 

be taken into consideration for the observed values of 

quality characteristics 𝑦𝑘 = (𝑦𝑘1, 𝑦𝑘2)′ in the 𝑘th stage 

of the multi-stage manufacturing process. Pearson 

correlation (𝜌) between 𝑤𝑘1 and 𝑤𝑘2 is a copula 

correlation parameter for 𝑦𝑘1 and 𝑦𝑘2 since 𝑤𝑘 = 𝑦𝑘 −
�̂�𝑘|𝑘−1 and 𝑦𝑘|𝑘−1 are calculated values. The values of 

𝑢2 𝜀1 𝑢1 

Cutting Sanding Polishing 
  

𝜂1 

𝑦3 

  

𝜂2 

𝜀3 𝜀2 𝑢3 

𝑥2 𝑥0 𝑥1 𝑥3 

𝑦1 𝑦2 

𝜂3 
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the Gaussian copula dependence parameter which 

models the dependency structure between 𝑦𝑘1 and 𝑦𝑘2 

are calculated for each stage by a MATLAB code. As 

previously shown in Eq. (22) and Eq. (23), by 

expressing the 𝜎𝑘12 covariance in terms of copula, the 

adequacy of combining copula functions in the 

estimation of state-space models through the Kalman 

filter was demonstrated. The obtained Gaussian copula 

dependence parameter values were used instead of 𝜌𝑘 

in the matrix given in Eq. (55). The prediction stage 

covariance matrix 𝑃𝑘(𝑤) is included in the Kalman 

gain matrix as in 𝐾𝑘 = 𝑃𝑘|𝑘−1𝐶𝑘
′ 𝑃𝑘

−1(𝑤). As a result, 

the Kalman filter equations and copula functions have 

been integrated. 

Assume that 100 wooden parts go through this 

machining process under the defined conditions. Due to 

the structure of the multi-stage manufacturing process, 

the output of the previous stage will be the input for any 

stage. For example, the outputs from the cutting stage 

will be the input for the sanding stage. The outputs 

obtained in the sanding stage will be the input for the 

polishing stage (see in Figure 1). 

Table 3. MAPE values (%) for the simulation study 

  Cutting Sanding Polishing 

𝜌 𝜎2 L W L W L W 

0.99 0.1 4.95 9.28 0.85 0.84 8.85 1.07 

0.99 0.5 4.80 9.27 2.26 1.14 8.91 1.62 

0.99 1.0 5.03 9.25 2.57 1.28 8.49 1.96 

0.90 0.1 4.97 9.27 1.21 0.93 8.51 1.11 

0.90 0.5 4.92 9.24 2.06 1.17 8.93 1.66 

0.90 1.0 4.64 9.27 3.55 1.68 7.90 2.05 

0.70 0.1 4.95 9.26 1.12 0.89 8.64 1.08 

0.70 0.5 4.87 9.26 2.09 1.15 8.51 1.77 

0.70 1.0 4.74 9.26 3.09 1.37 8.52 2.02 

0.50 0.1 4.96 9.25 1.02 0.88 8.76 1.28 

0.50 0.5 4.84 9.26 2.23 1.14 8.64 1.44 

0.50 1.0 4.75 9.30 2.48 1.18 9.05 2.06 

0.30 0.1 4.90 9.27 1.01 0.90 8.71 1.15 

0.30 0.5 4.99 9.25 2.18 1.19 8.78 1.55 

0.30 1.0 4.91 9.29 4.02 2.11 8.94 3.04 

0.10 0.1 4.88 9.24 1.29 0.95 8.76 1.09 

0.10 0.5 4.97 9.26 2.32 1.21 8.50 1.96 

0.10 1.0 4.95 9.23 2.90 1.19 8.81 1.71 

 

A MATLAB code was written to obtain simulation 

values for the quality characteristics, weight (W) and 

length (L), for each production stage under the 

assumptions. The mean absolute percentage error 

(MAPE) criterion was used to measure the performance 

of the Kalman filter model under the copula 

dependency. Table 3 displays the MAPE values that are 

obtained for various noise levels (𝜎2) and correlation 

coefficients (𝜌). Since every MAPE value is less than 

10%, it is evident that the proposed model, which 

provides remarkably accurate predictions, allows for 

the examination of the dependencies between quality 

characteristics at every stage [46]. 

6. Conclusions 

In this study, the state-space model established for the 

dependency between the stages in the multi-stage 

manufacturing process is integrated with the copula 

modeling used to reveal the internal dependency 

structure between the quality characteristics in a stage. 

The importance of the conditional variance of the 

prediction error in the Kalman filter equations in the 

estimation of 𝑥𝑘 has been revealed and it has been 

emphasized that it constitutes the main element that 

needs to be addressed. In the application part of the 

study, first, the dependency structure between the 

quality variables of interest in a hypothetical 

production process was expressed with copulas, system 

state predictions were made with the Kalman filter, and 

evaluated under the mean absolute percentage error 

(MAPE) criterion. The resulting model has shown that 

it is a model that allows examining the dependency 

between quality characteristics at every stage and gives 

extremely accurate predictions. 

The original contribution of this study to the theory, 

method and practice on the subject is as follows: The 

Kalman filter estimation method, based on state-space 

models of multi-stage manufacturing processes, has 

been presented in a broad perspective, with a solution 

algorithm proposed and subject-specific comments. In 

order to take into account the statistical dependence 

between the quality characteristics of interest at any 

stage of the process, the dependence was expressed 

with copula functions and integrated with the Kalman 

filter method. 

The innovations and improvements that the specified 

original contributions brought to the modeling and 

analysis of multi-stage manufacturing processes are as 

follows: The fact that quality characteristics are 

essentially interdependent is reflected in the models 

and internalized in the analyses. Model components, 

structure and calculation steps that are dependent on 

modeling and analysis are clearly stated. The internal 

dependency structure that can exist between the quality 

characteristics of interest at any production stage is 

integrated with the dependency structure between the 

stages. 

In order to further the results put forward in the study, 

future studies that are deemed useful are as follows: 

Prediction methods for various copulas that can be used 

in modeling the internal dependency between the 

quality characteristics of interest at any stage of multi-

stage manufacturing process structures can be 

investigated and implemented. State-space modeling 

generalizations involving dependency can be made 

with multivariate copula models for more than two 

quality characteristics. In the presence of models 
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containing noise terms and observation errors with 

distributions other than normal distribution, the 

robustness of Kalman filter estimates can be addressed. 
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Appendix 

Table A1. Kalman filter and copula functions [47] 

Stages Related Equations 

Initial: 

𝑥0, 𝑃0 
 

Prediction stage: 

�̂�𝑘|𝑘−1 

𝑃𝑘(𝑦) 

𝑤𝑘 = 𝑦𝑘 − �̂�𝑘|𝑘−1 

𝑃𝑘(𝑤) = 𝐸(𝑤𝑘𝑤𝑘
′ ) 

 

(Table 2)   �̂�𝑘|𝑘−1 = 𝐴𝑘−1�̂�𝑘−1|𝑘−1 + 𝐵𝑘𝑢𝑘 

(Table 2) 𝑃𝑘(𝑦) = 𝐶𝑘[𝐴𝑘−1𝑃𝑘−1|𝑘−1𝐴𝑘−1
′ + 𝐷𝑘𝑄𝑘𝐷𝑘

′ ]𝐶𝑘
′ + 𝐻𝑘𝑅𝑘𝐻𝑘

′                 

(Table 2)   𝑤𝑘 = 𝐶𝑘(𝑥𝑘 − �̂�𝑘|𝑘−1) + 𝐻𝑘𝜂𝑘 

(Table 2) 𝑃𝑘(𝑤) = 𝐶𝑘𝑃𝑘|𝑘−1𝐶𝑘
′ + 𝐻𝑘𝑅𝑘𝐻𝑘

′  

Estimation prediction stage – 

copula likelihood function 

𝐿𝑐(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) 

General: Eq. (43) 

                  ℒ𝑐
(𝑘)

= ∑ ln 𝑓𝑘12(𝑦1𝑘 , 𝑦2𝑘; 𝛾, 𝜃)

𝑛

𝑖=1

= ∑ ln 𝑐(𝐹𝑘1(𝑦𝑘1; 𝛾1), 𝐹𝑘2(𝑦𝑘2; 𝛾2); 𝜃)

𝑛

𝑖=1

+ ∑ ln 𝑓𝑘1(𝑦𝑘1; 𝛾1)

𝑛

𝑖=1

+ ∑ ln 𝑓𝑘2(𝑦2; 𝛾2)

𝑛

𝑖=1

 

Specific:  
Copula likelihood function for �̂�𝑘|𝑘−1 and 𝑤𝑘 

Estimation-filtering stage 

�̂�𝑘|𝑘 

𝑃𝑘|𝑘 

 

 

(Table 2)   �̂�𝑘|𝑘 =   �̂�𝑘|𝑘−1 + 𝐾𝑘{𝑦𝑘 − 𝐶𝑘�̂�𝑘|𝑘−1}    

(Table 2)    𝑃𝑘|𝑘 = [𝐼 − 𝐾𝑘𝐶𝑘]𝑃𝑘|𝑘−1 

Copula likelihood function for 

all process stages 

𝐿𝑐(𝑤ℎ𝑜𝑙𝑒) 

 

 

Generalization of Eq. (43) 
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