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This study is about multi-stage manufacturing processes and their control by
statistical process control modeling. There are two kinds of dependence structures
in a multi-stage manufacturing process: one is the dependence between the stages
of the process, and the other is the dependence between the concerned quality
characteristics. This study employs state-space models to demonstrate the
dependency structure between the process stages and uses the Kalman filter
method to estimate the states of the processes. In this setup, copula modeling is
proposed to determine the dependence structure between the quality characteristics
of interest. A simulation study is conducted to assess the model's accuracy. As a
result, it was found that the model gives highly accurate predictions according to
the mean absolute percentage error (MAPE) criteria (<10%).
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1. Introduction

Today, production and service processes generally
consist of many serial or parallel stages in which
products are completed by passing from one to the
other. In a multi-stage manufacturing process, it is not
clear from which stage and which variables
characterizing the process arise the variability in
quality characteristics. The key to reducing quality
variability in a product is understanding how, much of
this variability occurs at each stage of the process and
how much is transmitted to other stages.

The most important problem in the multi-stage
manufacturing process is how to define the process in
the context of interactions within and between stages
and time dynamics. In past research, multistage
processes have been described with statistical models
such as the linear regression model. Conversely, for
more effective monitoring and control of the process,
engineering knowledge must also be combined with
statistics in modeling and analysis of the multi-stage
process. In this context; Many articles can be found in
the sources that describe the multi-stage manufacturing
process in a linear state-space model structure based on
production engineering knowledge. A complex system,
such as a multistage manufacturing process, may have
many inputs and outputs. These inputs and outputs can
be complexly interrelated. The hierarchical structure of
the data obtained can be explained by multi-level
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dynamic models. An example of this is a two-level
linear state-space model.

In this study, in addition to a dynamic modeling
approach such as the state-space model of the
dependency  between  stages in  multi-stage
manufacturing processes, it is proposed to use copula
modeling to reveal the internal dependencies of the
quality characteristics of interest at each stage. In order
to present the practical implications of the proposed
model, the process was simulated and the applicability
of the model was discussed.

The following sections of the study are organized as
follows: In the second section, studies on statistical
process control (SPC) methods used for modeling
multi-stage manufacturing processes and monitoring
these processes will be discussed. In the third section,
modeling of multi-stage manufacturing processes with
state-space models will be explained. Additionally, this
chapter will include the proposal of the Kalman filter
method for the statistical estimation of the state
variables of the process equations put forward by state-
space models. In the fourth chapter, the statistical
dependence of quality characteristics and the
explanation of dependence with copula functions will
be highlighted, and multi-stage manufacturing process
modeling under dependence will be presented. Multi-
stage manufacturing processes under dependency The
example and process simulation of SPC approaches
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will be presented in the fifth chapter. In the sixth
chapter, the results of the study and some
determinations about future studies as extensions of
these will be stated.

2. Literature review

In order to identify out-of-control situations in multi-
stage manufacturing processes, SPC methods have
been applied to the quality measurements of the product
in the final stage of the process. Generally, Shewart,
CUSUM, EWMA control charts for univariate quality
measurements of the final product; It has been
suggested to use Hotelling's T2 control chart for
multivariate quality measurements [1]. Since these
control charts were applied to a single stage of the
process, they were insufficient to determine the stage
that was the source of variability. In another study,
quality measurements obtained from each stage of the
process were evaluated separately [2]. In this study,
where simultaneous confidence intervals were
established for the average of each of the quality
variables, it was examined whether the quality
measurements of interest were within the confidence
intervals in terms of the defined quality levels, and it
was stated that the explanatory power of the method
decreased as the size of the problem increased.

Statistical process control tools used to monitor multi-
stage manufacturing processes have a wide place in the
literature. These tools can be examined under three
headings: multivariate control charts, control charts
based on regression modeling, and methods based on
engineering-based models.

In many production processes, it may be necessary to
simultaneously monitor and control one or more
interrelated quality  characteristics.  Independent
examination of quality characteristics causes loss of
information to be obtained from the process. The
concept of multivariate quality control originated in
Hotelling's work in 1947 [3]. In this study, he applied
his proposed method to bombardment viewfinder data
used in World War Il. The most well-known
multivariate process monitoring and control method
used to monitor the mean vector of the process is
Hotelling's T2 control chart, which is similar to the
univariate Shewhart's x chart. Applied to multi-stage
manufacturing processes, Hotelling's T2 chart indicates
when the entire process is out of control, but does not
indicate which stage is out of control. Alternatively,
quality metrics at each stage can be tracked with T2
cards. In this case, the effect of the quality output of the
previous stage on the quality measurements at a certain
stage will be ignored. As a result, it is difficult to
interpret an out-of-control situation in a multi-stage
manufacturing process with a T2 chart [1]. Following
this pioneering work by Hotelling, control methods for
many related variables have been proposed [4].
Nowadays, the issue of multivariate quality control (or
process monitoring) has maintained its importance as
many quality characteristics of products manufactured

with automatic inspection methods can be measured at
the same time. For example; Chemical and
semiconductor manufacturers try to keep the process
under control by constantly updating their databases for
hundreds of important variables in their manufacturing
processes.

It was thought that quality measurements in multi-stage
manufacturing processes are affected by the output of
the previous stage and the regression analysis technique
was introduced [5]. This method is based on
establishing univariate control cards for the residuals
obtained from the multivariate regression line
established on other variables for each quality variable
[6]. Regression models can give misleading results
when quality measurements from different stages are
strongly correlated with each other. This problem in
regression analysis can be partially reduced by the
cause-selection method and is effective in identifying
out-of-control stages [7]. A compilation of cause-
selection method studies was compiled by Wade and
Woodall [8]. Nowadays, the use and applications of
cause-selection schemes for multi-stage processes are
also found in Shu and Tsung's article [9].

The hierarchical structure of data obtained from the
multistage manufacturing process suggests a two-level
model: At the first level, quality measurements are
fitted to the system input and quality information. At
the second level, the change in quality measurements is
modeled as a function of measurements obtained from
earlier stages of the process. An example of this
situation is the state-space model.

Quality measurements for the kth stage of a production
process consisting of N stages are formulated as a linear
state-space model as in Eq. (1) and Eq. (2) [10].

X = Ap_1 X1 + Vg €]
c{i2.. N @)

In Eq. (1), x, shows unobservable product quality
information such as dimensional deviations of products
at the kth stage. v, indicates the cause of variability and
unmodelable errors (process noise). Aj_1Xx,_1 Shows
the transformation of quality information from the (k —
1)th stage to the kth stage. In Eqg. (2), wyis the
measurement error of the product, and C;, is the matrix
used to relate x; with quality measurements (y;).

A,_, and C, are constant matrices obtained from
engineering knowledge, laws of physics and
process/product design information and known at the
kth stage of the process. For univariate cases,
ve~N(0,0Z ) and w,~N(0,02,) Wwith its variance
depending on the stage index k and the initial state
xo~N(agy, 7%). Various methods have been researched
to monitor whether the process is out of control, and
fixture errors, machine errors and thermal errors in the
process are seen as process out of control or process
errors.

Vi = CeXy + wy

A multistage manufacturing process can have many
inputs and outputs. These inputs and outputs can be
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intricately related to each other. There are many articles
explaining multi-stage manufacturing processes with
state-space models based on process management
expertise. Lawless et al. [11] and Agrawal et al. [12]
revealed quality variability in  multi-stage
manufacturing processes with AR(1) type models in the
form of state-space models. Part assembly process [12]
and sheet metal assembly [13] are examples of
modeling proposals in the form of state-space model.
Detailed descriptions of state-space models can be
found in [10] and [14]. There are many studies in the
literature on error detection, error prevention and
corrective methods in multi-stage manufacturing
operations. Tsung et al.'s study compiled past studies
on multi-stage manufacturing and service operations
and provided ideas for future research [15].

Today, modeling for monitoring and control of multi-
stage manufacturing processes, which have become
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more complex with developing technology, is a
complex issue that still maintains its importance. State-
space models are a modeling method that has a wide
place in the literature and includes the physics rules
surrounding engineering and production structures
suitable for the structure of multi-stage manufacturing
processes. In a dynamic system represented by a state-
space model, the state of the system can be predicted
from the input and output information together with the
previous information of the model. Estimation of the
state of the system from a series of noisy measurements
obtained from a dynamic system can be made with the
Kalman filter.

In this study, it is suggested to model the dependency
structure between quality characteristics with copula
and combine it with Kalman filter. Some studies in
which copulas, Kalman filter and/or state space models
are used together are given in Table 1.

Table 1. Some selected studies on copulas, Kalman filter and state space models.

Authors

Methods/Models

Examples/Application Area

Lindsey [16].

Junker, Szimayer and
Wagner [17

Hafner and Manner [18]
Goto [19]

Creal and Tsay [20]

Alpay and Hayat [21]

Zhang and Choudhry
[22]

Fernandez, Garcia and
Gonzalez-Lopez [23]
Smith and
Maneesoonthorn [24]
Wang, Meng, Liui Fu
and Cau [25]

Xu, Liang, Li and Wang
[26]

Kreuzer, Dalla Valle and
Czado [27]

Ly, Sriboonchitta, Tang
and Wong [28]

Wang, Xu, Trajcevski,
Zhang, Zhong and Zhou
[29]

Kreuzer, Dalla Valle and
Czado [30]

Kalman filter and copulas

Kalman filter based on copula functions

A multivariate stochastic volatility models
with Gaussian copula

State space model to describe the target
system’s behaviour

Gaussian, Student’s t, grouped Student’s t,
and generalized hyperbolic copulas with
time-varying correlations matrices

Copula and Data Envolopment Analysis
(DEA)

Four generalized autoregressive conditional
heteroscedasticity (GARCH) models and
the Kalman filter method

Copula and the multivariate Markov chain

Construction of copulas from the inversion
of nonlinear state space models

The Unscented Kalman  Filter (UKF),
copula and the worst case analysis

Characterization of the dependence among
all components by a copula function

Non-linear non-Gaussian state space model

A hybrid of ARMA-GARCH, static and
dynamic copulas and dynamic state space
models

A non-linear neural state space model based
on copula-augmented mechanism

Multivariate nonlinear non-Gaussian state
space models

The application to autoimmunity in multiple
sclerosis data

Nonlinear cross-sectional dependence in the
term structure of US-Treasury yields and points
out risk management implications

The application to two bivariate stock index
series

A simulation study conducted to show the
effectiveness of the developed controller
Modeling an unbalanced, 200-dimensional
panel consisting of credit default swaps and
equities for 100 US corporations

The application to simulated and real hospital
data

Empirically forecasting the daily betas of a few
European banks during the pre-global financial
crisis period and the crisis period

Spike prediction in neuronal data

Forecasting of quarterly U.S. broad inflation and
electricity inflation

A two-stage dynamic attack strategy using
global network information

Investigation of the optimal condition-based
maintenance policy under periodic inspection
for a K-out-of-N: G system

Estimation of airborne pollutant concentrations

Investigation of dependence and integration
among the European electricity markets

Electricity forecasting

The application
measurement data

to atmospheric pollutant
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The rest of the study is organized as follows. In the third
section of the study, state-space models will be
discussed. In the fourth section, the copulas proposed
to model the dependency structure between quality
characteristics will be explained in detail. Application
of the proposed approach by a simulation study is given
in the fifth section. The last section includes the
conclusions of the study, and the future studies.

3. Multi-stage manufacturing processes and state-
space models

Dynamic systems, such as multistage manufacturing
processes, can be more generally represented in the
form of state-space models by the equations shown in
Eqg. (3) and Eq. (4).

X = Ag_1Xg—1 + Bruy + Dygg 3)

Vi = Ciexy + Hemye €©))

Similar to Eq. (1) and Eq. (2), x;, is the state and y, is
the measurement or observation vectors (k = 1, ..., N).
The vectors g, and n, express the noise in the state and
the observations, and the vector u, represents the
effects of managerial inputs at the kth stage in the
process in Eqg. (3) and Eq. (4).

Estimation of the state vector x;,k = 1, ..., N in state-
space models and other related analyzes can be done
within the framework of three main approaches [31].
These are Bayesian, Fisher and unknown-bounded
approaches. In the Bayesian approach, the error terms
&, and n;, in the equations are stochastic, and the initial
state vector x, is a random variable. In the Fisher
approach, the measurement equation term 7, has a
stochastic feature, g, can be stochastic or completely
unknown, and x, can be random. Within the framework
of the unknown — bounded approach, ¢, n, and x, are
unknown but are limited from above to the values of
the ellipsoids expressing the variance-covariance
quantities [32].

When 4, _;, By and C,, matrices are accepted as known
matrices in state-space models, the model estimation
problem is solved by using the observation values
Y1, Y2» s Yk, Obtained up to time k, and estimating x;.,
at time k,. When k, = k,, the estimation problem
becomes a filtering process, for which Kalman filter
(KF) or weighted least squares (WLS) methods can be
used. Estimation equations that can be applied within
the framework of the Bayesian model approach are
known as Kalman filters in the literature [33].

The Bayesian model approach is the most widely used
state-space modeling approach and can offer flexible
perspectives on the dependence and independence of
the vectors g, n,, and x, within and among themselves
in the time dimension. In this sense, the issues of
determining the prior and posterior probability
distributions for the random variables in the state-space
model and the expected value and covariance functions
are needed in estimation process.

Control effects that can be applied in a dynamic
stochastic process are represented by the sequence {u, }
in state-space models. While control effects, state
vectors should be a function of x;'s, in the absence of a
complete and direct observation of the situations,
measurement or observation values must be considered
as a function of y,'s and determined by the opinion of
system experts; u, = wg Vo, Y1, -, Vi) In the
literature, it is also recommended to impose a constraint
such as |uy | < 1 for w,'s [34].

The Kalman filter and its calculation equations are
explained in detail in the next section. In the weighted
least squares method, the aim is to estimate the state
vector with the deviation of x;, which minimizes the
quantity in Eq. (5), where the covariance matrix of the
variable i, is R, > 0.

J(x) = ke = Cexi)' R (ke — Ciexye) (5)

In Eqg. (5), the R;;* matrix is a positive definite matrix
and must be determined in the context of the inputs,
states and outputs of the dynamic system of interest.
For x; estimation that gives the smallest value of
J(x). The solution in Eq. (6) is found for the x;
estimation that gives the smallest value of J(x;,).

2 = (CkR ' C) T CRM (6)
Estimation of x;, in the context of the weighted least
squares method for the state-space model in Eq. (5) and
Eq. (6); P, is the covariance matrix for the initial state
vector x,, and Q is the covariance matrix for the vector
&, and Equation 7 is obtained by reaching its minimum
value under the  x; = Ap_1x,_1 + Byuy + Dyey
constraint.

](xk' €0, €15 ey Sk—l)

N
= Z(}’k — Cexi)' R (Vi — Crexy)
=1

n-1
+ ) Qi tex + x0Py 'xg @)
k=0

In Eq. (7), Ry, @, and P, matrices are positive definite
and determined based on expert knowledge about the
dynamic system of interest [10].

3.1. State estimation with filtering: Kalman filter

The state of the system may not be directly measurable.
In a dynamic system represented by a state-space
model, the state of the system can be estimated by using
the model's information obtained at previous times and
its output information. Kalman filter, which was first
introduced by Kalman in 1960, is an effective analysis
algorithm that estimates the state of the system from a
series of measurements obtained from a dynamic
system that may contain error (noise), and updates the
estimate as observations are made [35]. The Kalman
filter combines measurement data, a priori information
about the system, and indirectly measuring state values
to make the desired predictions by minimizing the error
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statistically. Therefore, it gives better results than most
other filters for statistical estimation purposes. Within
the framework of the Bayesian approach, by
conditioning the real data information provided by
measuring devices, the spread of conditional
probability densities for the features to be estimated can
be filtered. Kalman filter helps the purpose of
predictive analysis of a system that can be expressed
with a linear model, where measurement errors are
white noise and normally distributed, by providing
conditional probability distribution [36].

For the dynamic and stochastic multi-stage production
system represented by the state-space model equations
Eq. (3) and Eq. (4), a series of prediction and filtering
processes are required in line with the estimation of the
state vector x, at stage k. The difference equations
needed for this purpose within the scope of the
Bayesian approach are known as Kalman or Kalman-
Bucy equations. There are various approaches and
generalizations in determining the equations in
question, and it is possible to consider equivalent
criteria that form the basis for all of them. Minimizing
the expected value of prediction error squares is one of
these criteria [37].

3.1.1. Minimization of expected value of squared
error criteria method

In order to make state estimation with the Kalman filter,
explanations about the variables and coefficients in the
state-space model equations Eq. (3) and Eq. (4) are
given below:

X, € R™: System state vector.

¥, € R™: System observation vector.

A,:n x n dimensional system transition matrix.

By.: n x n dimensional system input matrix.

C,.:m x n dimensional observation transition matrix.
u,: Vector expressing the effect of managerial inputs at
time (stage) k.

Dy: n X n dimensional system noise matrix.

H,: m x n dimensional observation noise matrix.

It is assumed that the matrices Ay, By, Cy, Dy, and Hy, are
known at all times k = 0,1,2, .... The zero-mean white
noise processes &, € R™ and n,, € R™ are assumed to
satisfy the following assumptions for each k, j value in
Egs. (8)-(17).

E[Sk] =0 (8)
E[n]=0 €©))
E[exg]] = Qiby; (10)
E[’?k’?}] = Rk5kj (11)
, k=j
wefy i3 @
Elenj] =0 (13)
E[x,] = %, (14)
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E[(xo — %) (xo — %0)'] = Py (15)
E[x,g] =0 (16)
E[xonj] =0 (17)

Table 2. Discrete time Kalman filter equations based on
minimization of mean squared errors [38].

System dynamic model:
X = Ap-1Xk-1 + Brug + &, &~N(0, Q)

Measurement (observation) model:
Vi = Cexye + M, Mme~N(0, Ry)

Starting conditions:

Xo~N (%o, Po), J?o|—1 =Xy, Po-1=F

Independence conditions:
E[en)] =0, E[xeg] =0,
E[xonj] =0, Vk,j

Estimation of prediction stage:
State estimation:

Ripk-1 = Ax-1Xk—1jk—1 + Brux
Measurement condition:

k-1 = CreXpepre—1

= Cie[Ak—1®i—1j-1 + Bry |

Errors of predition stage:
State error:

X = X — 5C\k|k—1
Measurement error:

Wi = Vi — Jijk—1 = Ck(xk - ’?k|k—1) + Hiny

Covariance matrix of prediction stage:
P (w) = E[wewy]
= CyPji-1Cr + Hi R Hy,

Update of error covariance for prediction stage:
For state:

Pyjk—1 = Ag—1Px—1ji-14k-1 + D Qi Dy,

For measurement:

P (y) = Cy[Ag-1Pr—1A}—1 + Dy QD 1Cy,
+ HkRkH,’(

Observational update of the state estimate:
Ripie = Xpe—1 + Br
+ Prejie—1 Ci P * W) [yie — Diejie-1]
= Rppe-1 + Kelve — CeXiere-1}
Update of error covariance for filtering stage:
Pklk =[I - Kka]Pklk—l
Kalman gain matrix:
Ky = Pje—1Ci Pt (w)

In addition to all given assumptions, it is assumed that
the matrices Q, and R, are known. It is aimed to obtain
Xy im DY Using observations {y,, ¥, ..., ¥, } for the best
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estimation of the x; vector. In this direction, It is
possible to use the covariance matrix (Py;,) of the
estimation error (x; — X;,). When k =m, the
estimation is called as filtering. Considering that the
observations are not error-free, the assumption of R, >
0 will be a realistic and necessary assumption. Let the
vector Y, = [y4,...,Vx]  represent the observations
obtained until time (stage) k. If 9y, is the estimation
error of %, using Y, the covariance matrix of this
error is expressed as Pyn = E[OxjmUkm], With
E[&xjm] = E(xx). The estimation of vector x; is done
in two stages with various calculation steps. In Table 2,
discrete time Kalman filter equations are summarized
according to the method of minimizing the expected
value of error squares by showing the filter system
relationship.

On the other hand, 7, in the system equation Eq. (4)
may become unobtainable. The solution to this problem
requires adding additional state equations to the system
equation. Bryson and Johanson proposed the first
general solution to the problem in question [39]. To
solve the problem, Brown and Hwang suggest
removing exactly known state variables from the
system equations and estimating the remaining ones by
filtering [34]. This recommendation requires the
separation of system state variables from other exactly
known system variables by linear transformation.
Simon summarized adequate explanations and methods
of Kalman filter application approaches by considering
the dependence as linear dependence  and correlation
for the cases where the random vectors n; and g, are
dependent within and between themselves [40].

4. Modeling multi-stage manufacturing processes
under the dependency between quality
characteristics

In this section, a method is proposed by including
copula functions in the approach of modeling and
evaluating multi-stage manufacturing processes with
state-space models under dependency. It has been
suggested to use copula modeling to reveal the internal
dependencies of the quality features within the state
vector at each stage. With copula models, the stochastic
relationship between quality characteristics can be
determined by revealing the dependency structure
without the need for common distributions of quality
characteristics. In this context; Statistical properties
such as marginal distributions, covariance, conditional
probability distributions (and therefore regression
function determination) of quality features that are
random variables can be expressed.

4.1. Copula functions

Copula functions are statistical tools used to model
dependency. Copulas are functions that combine
multivariate distributions with their univariate marginal
distributions. Let F be the m-dimensional cumulative
distribution  function and F,,F,,..,E, be the

cumulative distribution functions of one-dimensional
marginals. In this case, the m-dimensional copula
function is defined as in Eq. (18).

F1, 2, Ym)

= C(F,(0n), F2(32), s Fn(¥m); 0) (18)
0 in Eq. (18) is called the dependency parameter and
the marginal distributions of each of the quality
characteristics express the relationship. The most basic
theoretical determination about copula functions is put
forward by the Scalar theorem.

Theorem 1. (Sklar's Theorem) The m-dimensional
copula is a function C defined from the m-dimensional
interval [0,1]™ to the unit interval [0,1] and satisfies
the following conditions [41].

o ((1,..1,a,1,..,1)=a,,vn <
m and a, € [0,1].
o |Ifa,=0foranyn<m,C(ay,..,a,) =0.
e ( is m-increasing.
In other words, the m-copula is an m-dimensional

distribution function with m univariate marginals, each
of which is uniformly distributed in the range (0,1).

There are many copula functions belonging to different
copula families in the literature. When its application
areas are investigated, it is seen that it has widespread
use in finance, actuarial, time series and risk analysis.
In this study, the focus is on the Gaussian (normal)
copula, which belongs to the elliptic copula family and
has many useful features.

Definition 1. (Gaussian Copula) Consider random
variables Z,,Z,, ..., Z, with correlation coefficients
pij = p(Z;, Z;) with multivariate normal probability
distribution. Let the joint cumulative distribution
function of the random variables Z,,Z,,...,Z, be
D (24,24, .,2x). In this case, the multivariate
Gaussian (Normal) copula is defined in Eq. (19) [42].

Uy, s ug) = P (@71 (wy), oo, P71 (wy)) (19)

The two-variable Gaussian (Normal) copula is in the
form of Eq. (20).

C(uhuzi 0) = ¢G(q)_1(u1); q)_l(uz)i 0)

@7 (uy) @71 (uyp)
- [ | s
B 2m(1 — 62)1/2

—(s? — 26st + t?)
{ 2(1-62)

}dsdt (20)

In Eg. (20), ® denotes the cumulative distribution
function for the standard normal random variable and
®; (uq,u,) denotes the standard bivariate normal
distribution with the correlation parameter 8, which
takes values in the range of (—1,1). This copula
function was proposed by Lee in 1983 [43]. The density
function of the two-variable Gaussian copula is also in
the form in Eq. (21).
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—(u? - 20u u, + u?
c(uuy 11y 0) = (ui 1Uz z]

1
¢—1-ezexp[ 2(1-62)

u? + ul
xexp( L 5 2)

According to the scalar theorem, the bivariate
probability distribution of the random vector X =
(X1, X,)" can be determined by the non-normal (any
distribution) marginal distributions of the vector and
the Gaussian copula [44].

In order to determine the probability distribution of a
random vector X = (X;,X;)’, it is necessary to
determine the marginal distribution of each X; and find
the dependency structure between X;. In order to
determine the dependency structure between random
variables, it is necessary to mention the measures and
some special dependency structures included in the
copula functions. There is a relationship between
copula functions expressing dependence and
dependence measurements, especially for two-variable
cases. Dependency can be measured by many methods.
The Pearson correlation coefficient is one of them; it is
sensitive to outliers and does not change under strictly
increasing linear transformations. The expression of the
Pearson correlation coefficient in terms of copulas is
shown in Eq. (22) [45].

pp(X, Y)

O-XO-Yff[C(UI’uZ)

00
- u1u2]dF)_( (u1)dF;1(u2);

(2D

u; € [0,1] (22)
4.2. Integration of state-space model with copula
modeling

In this section, the state vector of quality characteristics
under dependency is estimated by combining the state-
space model, Kalman filtering and copula functions for
multi-stage manufacturing processes. Therefore, a
unique approach has been introduced to monitor quality
in a multi-stage manufacturing process.

4.2.1. Prediction error

Considering  the general state-space  model
representation of a multi-stage manufacturing process
with Eqg. (3) and Eq. (4), the Kalman filter method for
estimating the state vector x;, is introduced in Section
3.1. In the prediction phase of the estimation, it was
seen that the uncertainty in the state vector %, _; isa
function of the estimation of %,_,_, and the
covariance Q, of g,. In the next step, the prediction
error components for vector x; are; The statistical
inference prediction error for x; is x; — Xy ,—, and the
prediction error for the observation vector y, is ny.
Therefore, as expressed in Table 2, the conditional
variance of the prediction error given in Eq. (23) should
be evaluated as a function of the uncertainties or errors
related to £y, and Ry,.
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P (w) (23)

According to the information obtained up to stage or
time k— 1, based on the conditional probability
distribution of x; to yx — Jxk—1, the final estimation
Xk and its covariance Py x—, are obtained. Assuming
that the joint probability distribution X = x;, and Y =
Yk — Jkjk—1 is a normal distribution given in Eq. (24),
the conditional probability distribution X given that Y
is  N(uxpy Zxxjy) With parameters py, = px +
ZxyZyy (Y — piy) and Zyy), = Zyy — ZxyZyy Zyx.
(26 )
HUy/’\Eyx Zyy

In Eq. (24), px = Zpp-1 Zxx = Pepe-1 Zxy =
Pyk-1Cr and Zyy = P (w) (as in Eq. (23)) are some
definitions. It is seen that by using these definitions, the
expressions Xy, Ve Py Which are the final estimates
in the second stage of the Kalman filter, will be reached
(see Table 2). The importance of the conditional
variance P, (w) of the prediction error in the estimation
of x;, can be revealed from another perspective. For
example; assuming that x,,&, and n, are random
variables whose joint distribution is the normal
distribution, the probability distribution of the random
vector y, conditional on the information
1 Yas s Vi—1} is normal distribution
N[ykjk-1, P«(W)], the estimates of x;, depend on the
parameters of the distribution, conditional expected
value and conditional variance-covariance yj -, and
P, (w), respectively. The estimation of the model
parameters of interest can be achieved by maximizing
the function given in Eq. (25), which expresses the log-
likelihood in the context of all observation values.

L(k) (whole) = InL
——Zln[2n|Pk(w)| Zwk [Pe(w)]”

= CiPrji-1Cr + Hi R Hy,

(24)

N

= Z L%

k=1

(25)

In the filtering stage, equations that express the
estimates Xy, and Py, emerge. This was mentioned in
Section 3.1, where the error quantities y, — Jx k-1 =
wy, and the variance expression of these error
quantities P, (w) are highlighted and discussed in state
vector estimation. It has been emphasized more clearly
that it constitutes the necessary essential element.
Maximazing the likelihood function specified in Eq.
(25) is equivalent to minimizing the quantity in Eq.
(26), especially under the assumption of a normal
distribution in general.

] = E[)’k - Ck£k|k—1][yk - Ckfk|k—1], (26)

The assumptions and definitions for an illustrative
example of this when the state vector x; is a two-
element random vector with two quality characteristics
are as follows:
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e X, is a 2x1 dimensional state vector and y,, is a 2x1
dimensional measurement vector.

¢ The quality characteristics in the measurement vector
have marginal distributions y,;~F,,(.) and
Viea~Fy2 (L), respectively, and it is assumed that the
internal dependency structure between them is
modeled with an appropriate copula. The cumulative
joint probability distribution of random variables y;,
and y,, can be determined through copula functions

as Fi12 (Viers Yi2)-

e EWi) = iy Var(yy) = oy,
of +uk, k=12,.,N; i=12

® Cov(Yk1,Yk2) = Ok1zr  EVk1Vk2) = Op1z +
Hr1lUk2, k= 1,2, ,N
e [t is assumed that the 2 x 2 dimensional matrices

E(yi) =

Ay, By and Cj, are known.

oy, = [Ykl]’

Yk2
[f(k—1)1]
Rr-1)2)’
) )
biy’ by
(k) (k)
byi” by,
(k-1) (k-1) ®) *)
[au a; ] C, = [Cn C12 ] k =

(k-1) (k-1) ®) *)
az1 az2 C21° C2

J?k1]
)

Xklk-1 = [,?kz Xk-1lk-1 =

we=["] k=12..N

Uk2

.Bk:[ ]’ Ak—1=

12,..,N.
If Eq. (26) is rewritten according to the definitions, the
matrix in Eq. (27) is obtained.
] = E[J’k - Ckfklk—l][yk - Ckfk|k—1]

N L
L M 27

The expansion of the matrix elements in Eq. (27) is
given in Egs. (28)-(30).

=E[

N = (}’k1 - C1(l1()’?k1 - C1(l2()7?k2)2 (28)
M = (J’kz - Cz(li)fla - Cég)sz)z (29)
L= ()’k1 - Cflf)fla - 51(’2()9@(2)

X (Ykz - Cz(li)fla - ng)sz) (30)

When the elements of matrix / are considered
separately, the expected values in Eqgs. (31)-(33) are
obtained.

a

k )
E(N) = of; + uiy — 2(51(1)xk1 + Ciz)ka)/‘kl

k) s \2
+ (cl(l)xk1 + cl(z)xkz) (31D
k) o k)
EM) = of, + ug; — 2(C§1)xk1 + Cz(z)xkz)ﬂla
k) s \2
+ (cz(l)xk1 + cz(z)xkz) (32)

k)~ k) ~
E(L) = Ok12 + Mi1biz — (Cél)xm + Céz)xkz)ﬂkl
k)~ k) ~
- (C£1)xk1 + Ciz)xkz)/«‘kz
k)~ k) ~
+ (C1(1)xk1 + cfz)xkz)
k) & k) ~
X (cgl)xk1 + céz)xkz) (33)
If the system transition matrix C, is optimized
(minimum), the partial derivatives of the expected
values according to the elements of the €, matrix are
equal to zero. Then, the values in Eqg. (34) and Eqg. (35)

for c®and ¢! are obtained.

HUir — C(k)sz
_ 12 (34)
Xk1

(G
€11 =
(k) ~
®) _ Hr1 = C11 Xk
C12° =

py (35)
Xk2
It is necessary to test that the expressions in Eq. (34)
and Eq. (35) are the values that minimize E(N). The
values found for this are the values that make the

second derivatives of E(N) with respect to cl(’f) and

2
¢ greater than zero, (02E(N)/3(c¥)" = 222, > 0

2
and 92E(N)/9(c%))” = 282, > 0, will be the values
that minimize E (N). Similarly, if the partial derivatives

according to ¢{ and ¢*) in E(M) are taken and set
equal to zero, the expressions in Eq. (36) and Eq. (37)
are obtained.

K) &
Uiz — Cpp" X2

k
xkl

(36)

&) »
k) HMk2 = €1 Xk
=k 217 (37)

~

Xk2
2
Since, 2E(M)/0(cS¥)” = 282, > 0 and

62E(M)/a(c§’§) g 2%2, > 0, the values in Eq. (36)
and Eq. (37) are the values that minimize E (M). If these
values are substituted in E (L), the result will be as in
Eq. (38) for k=1,2,....N.

E(L) = E(Ye1Yi2) — tkaltiz = Cov(Yyq, Yi2)

= O-k12' k = 1, ...,N (38)

In conclusion, the dependency between quality
characteristics at any stage k is a phenomenon that
affects the quality values of the production process. In
the derivation made above, it is seen that the variance
and covariance values directly affect the values
symbolizing the quality status of the system, under the
assumptions about the moments of the Y variables,
which express the observable values of the X variables,
which are the quality characteristics. Considering that
variance and covariance values are quantities that
determine correlation values; The conclusion is that the
dependence, which can be expressed in general and
specifically in the context of Gaussian copulas, is
effective in the Kalman filter state estimation
equations.
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To state this more clearly, let us consider the Pearson
correlation measure 0 = Vkr, Viz) =
012 (0k1042) ™1 in the context of observations for a
two-element state vector. Pearson correlation measure
can be expressed as a function of the copula function
C(.,.) and the marginal distributions F; and F,, as
shown in Eq. (22), in the form in Eq. (39).

1 1
Pr V1, Yi2) = (Jk10kz)_1f f [C(uq,up)
0 Jo

—uyup] dFT T (uy)Fy H(uyp),

wef01], i=12 (39

By expressing the covariance a4, given in Eq. (38) in
terms of copula, using Eg. (22), the adequacy of
combining copula functions in the estimation of state-
space models through the Kalman filter is demonstrated
with Eq. (40).

Ok12 = (0%10k2)Pp Vic1s Vie2)
1,1

= [ 16 - wwl a7 @F ) @0)
0 Jo

4.2.2. Copula likelihood functions

Considering the copula functions and Sklar's Theorem,
the joint probability distribution function for the
elements of the observation vector y,, which takes
continuous values, will be in the form in Eq. (41) with
the expression of the copula function.

Fr12(Vk1s Yi2: v, 6)
= C(Fe1 Vk13 V) FiaVi2s v): 0) - (41)

In Eg. (41), the vector y represents the probability
distribution parameters except the dependence
parameter 6 between y,, and y,,. It is not necessary
for 6 parameter to express only correlation. If the
distribution function in Eq. (41) is differentiated
according to (yx1, ¥x2), the joint probability density
function in Eq. (42) is obtained k = 1,2, ..., N.

friz k1 Y2 V5 0) = c(Frea Viers ¥1)s Fro (Vk23 72D 6)

X fe1 ks Y1) fie Viezs v2) (42)

c(.,.;8) in Eq. (42) is the copula density function
corresponding to C(.,.; 8). Assuming that there are n
observations that can be  expressed as
(Vk11s > Yi1n) aNd (Vka1, -, Viz2n) fOr each of the y,
vector elements y,; and y,, at any stage or time k, the
copula log-likelihood function, For k =1,2,...,N, the
expression in Eq. (43) is obtained.

n
Lgk) = Z In fi12 D1 Yars v, 0)

i=1

n
= Z In c(Fiey Vi1; ¥1)r Freo (Vi3 v2)5 6)

=1

+Zlnfk1(Yk1iV1) +Zlnfk2()’22)/2) (43)
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The difference between the expression in Eq. (43) and
the ordinary log-likelihood function is that the sum of
the log copula density functions is included in the
equation. In the observation vector given in Eq. (3)
where H, = I, Ng1 = Vi1 — cl(li)xk1 — cfg)xkz and
M2 = Yz — %1 — ¥y, are defined as in the
covariance matrix R in Eq. (44) for y, = (Y1, Vi2)'
with n, = Mk M) ~N(O,Ry), k= 1,2,...,N.

:[ Var(my,) Cov(nkl,nkz)]
T lCovmn i) Var(m)

2
_ [ O pko_’l}naﬂkz]
- 2

Pk

Gﬁkl a’lkz

44
Uﬂkz ( )
When the marginal density functions and joint
probability density functions are given in Eq. (45), Eq.
(46) and Eq. (47), respectively, the corresponding
Gaussian (normal) copula density function expression
can be calculated only with the help of the marginal
distribution functions as in Eq. (48).

. (F) (k)
fkl(yklt XK1, Xk2, €115 C12

3 ®, 2
_ 1 exp (ykl —Cy1 Xg1 — Cqp xk2)
FE— — >
20-77k1

2
/27w,7k1
) (k)

fr2 (}’kzi XK1, Xk2, €215 Cop

(45)

3 ", \?
1 — Co1' X1 — Coy X
_ exp{— ()’kz 212;; 22 k2) (46)
’27-[0-2 Nk2
Nk2
fer2 O T G Ri) = ——
k12Vks X by R ) = —F——
270/ | Ryc|
1
X exp {—E Ok — Cexi)' R " e — Ckxk)} (47)
C(Fir k1 Xiers Yaids Fez Vkzs Xk, Vi )3 0)
_ 1 exp {_ (&1 — 2picMia iz + niz)}
O-V?klo-f?kz - P;% 2(1 - pl%)
2 2
+
X exp <77k1 - Ukz) (48)

As seen from the copula log-likelihood function
obtained in Eq. (43), the value size of the copula log-
likelihood function is determined by the dependency
parameter values when other parameters are given.
Under normal distribution, the dependence parameter 6
is the parameter expressed in terms of moment factors
and corresponding to the Pearson correlation.

4.2.3. Copula functions and Kalman filter

In order to define the stochastic dependency structure
between the quality characteristics of a product in
multi-stage manufacturing processes with copula
functions, it is sufficient to know the marginal
probability distributions of the characteristics. By
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analyzing the representation of  multi-stage
manufacturing processes with the state-space models
approach under dependency, it is possible to make
Kalman filter estimations better trackable and
interpretable on the basis of copula likelihood
functions. To better express this, it would be useful to
express the combination of Kalman filter estimation
steps with copula functions, as shown in Table Al in
Appendix.

For the explicit expression of the copula log-likelihood
functions L. (prediction) and L.(whole) in Table A1,
it is necessary to know or predict the likelihood
distribution models for the state-space model state
vector x;, and therefore the observation vector y,. In
the predictions made for the Kalman filter method
state-space model, normal distribution is assumed for
the relevant model variables, and it is stated by many
researchers that the predictions are efficient under these
conditions [42].

For this reason, it is necessary to determine copula
density functions and copula log-likelihood functions
under certain distributions by using Eq. (43) to express
the L.(prediction) and L.(whole) functions in Table
Al.

For example; when the joint probability distribution of
X9, €, and m, is a normal distribution, the
L.(prediction) and L.(whole) functions for the y;
observation vector will be as in Eq. (49) and Eq. (50).

n
Lc(prediction) = Z In fi12Viks Yars v, 6)

i=1

n
= Z In c(Fies Wk1; ¥1)s Fro Vi3 v2)5 6)

i=1
D M fa i) + ) folniv)  (49)

i=1

N
L.(whole) = Z L.(prediction) (50)

i=1

The copula density function in Eq. (49) is defined in
Eqg. (48). On the other hand, y; and y, in the
expressions fi; (Ve1;¥1) and fiz(Viz; v2) defined in
Eq. (45) and Eq. (46) show the distribution parameters.
It has been stated in the previous sections that in
determining the x; and Py, expressions in the filtering
stage of the Kalman filter equations, the likelihood
function should be maximized or, equivalently, the sum
of squares of the errors wy, =y, — Py k—1 should be
minimized. .In this regard, copula log-likelihood
functions must be determined to write the
L.(prediction) and L.(whole) expressions shown in
Table Al, the joint probability function of the random
variables x;, and wy =y, — Jyk-1 With normal
distribution and the copula function were used.

Let yi = (Vk1, Vi2)' be the values observed about the
quality characteristics of the production process at the

kth stage of the multi-stage manufacturing process. In
the case of the existence of an observation set of size n,
considering the equations xyx—_1, Pxjk—1, E(Wewy) =
P, (w) in Table Al, the probability density functions
and the copula density function are given in Egs.(51)-

(54) where wy; = yy,; — ylgf,)(_l, i=1,2.

frer Wkt Xkt ¥1)

2
1 (i1 = Vs
= eXp - 2 ] (51)
\2ma} 204,
fro(Wi2; Xie2, ¥2)
2
1 iz = Yipes
= eXp - 2 ] (52)
\2maZ, 204,

frerz(Wir, Wiez; Xkt Xiezs V1, V2, 0)

1 1 /
= mexp {_E (Vk = Yipre-1) Pew) (v

_yk|k—1)}:

€(Fia Wiet; Xkt ¥1)» Fia Wiz X2, ¥2)3 0)
_ 1 ox {_ Wiy = 2pWi1 Wiz + WI%Z)}
0%, 0%, — Pi 21 -pp)

<WI§1 + Wlfz)
X exp -

(53)

(54)

y,fif(_l,i =1,2 in Eq. (51) and Eq. (52) shows the
prediction made for the ith element of vector y, based
on the values observed until the kth stage. P, (w) in Eq.
(53) shows the error covariance matrix in the Kalman
filter prediction stage and is in the form in Eq. (55). py.,
which shows the correlation between wy, and wy, in
the sense of Pearson correlation, is a copula correlation
parameter for y,, and yy, since wy = yx — Py k-1 and
Ykik—1 are calculated values.
2

0,
P,(w) = [ Vka
Owjer Owyer P

0, 0,
Wk;Zszpk (55)
Wk2

Then, the copula log-likelihood function derived by the

log-likelihood expression in Eq. (43) is given Eq. (56).

Lc(\glfklyl, w1 Yk—-1)

= Z In C(Fk1(Wk1ji X1 Y1)' F, (szji X2, Vz); 9)
jr——ll
+

J

n
+ Z lnsz(szj; Xk2, Yz)
j=1

lnfkl(wklj; XK1 Y1)
1

(56)

As seen in Eq. (56), when the copula density function
dependence parameter is different from zero, the copula
log-likelihood function creates an increasing or
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decreasing effect on its value. The equations x;,, and
Py, which are the expressions of the Kalman filter
filtering stage estimates, emerge as a result of the
optimization of the copula log-likelihood functions
according to wy; and wy, are obtained by using
maximum likelihood (MLE) or minimization of the
mean squared error (MMSE) approaches, effective
estimates for x, are obtained. When the marginal
probability distributions of observation vectors y, and
error vectors w;, are distributions other than the normal
distribution, the effectiveness of Kalman filter
estimations may decrease.

5. Application of the proposed approach

In this section, a multi-stage manufacturing process is
simulated with the modeling method presented and the
results are discussed. The production process in the
simulation study is based on assumption. Assume that
parts are processed in the wood workshop of a factory.
The wooden pieces, which are processed through a
three-stage manufacturing process, are expected to
weigh 150 grams (g) and be 30 centimeters (cm) long
at the end of the production process. When unprocessed
wood pieces arrive at the factory, they are weighed and
their lengths are measured in the input quality control
department. Based on past measurements, it will be
assumed that the lengths of untreated wood pieces have
a normal distribution with a mean of 32 cm and a
standard deviation of 0.5 cm. Similarly, the weights of
the raw parts will be assumed to have a normal
distribution with a mean of 152g and a standard
deviation of 1.1g. It will be assumed that the parts
entering the processing process are cut in the first stage,
sanded in the second stage and polished in the last
stage. Fig.(1) shows a representative version of this

process.
N V2 V3
11— 7724’% 7734’%

Xo X, X, %3
—»| Cutting »| Sanding »! Polishing —»
T 11T 11
w g U & U; &

Figure 1. Three-stage processing scheme

The wooden parts, first checked in the input quality
control department, are cut to the desired size during
the cutting stage. After the parts are sanded, they move
on to the polishing stage. Then, the products are left to
dry to take their final form. It is assumed that the parts
are weighed at the end of each stage and their length
measured. Under these assumptions, the state equation
will be as in Eq. (57), and the output (measurement)
equation will be as in Eq. (58) where D, = I, and H, =
L.

X = Ak_lxk_l + Bkuk + Ek» k = 1,2,3 (57)
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Vi = CpXpe + 1 k=123 (58)
In a multi-stage processing process revealed by the
linear state-space model, x;, is the directly
unobservable quality characteristic of the product being
inspected. x;, is a vector that contains all the
information about the current state of the process at the
kth stage. In this simulation study, the state vector x;
consists of two quality characteristics: x,, represents
the actual value of the part size at the kth stage; xy,
shows the actual value of the part weight at the kth
stage. The vectors x;, = [Xk1  Xkz2]', k = 1,2,3 in size
(2x1) are known positive definite matrices that show
the deviation during the transition from the kth stage to
the (k + 1)th stage of the process given as
Ay =[—0.645 0.343; —3.165 1.660],
A, =[-0.639 0.329; —3.170 1.670]and
A, = [-0.761 0.352; —3.660 1.730]
with MATLAB notation.

By, is defined as the input matrix at the kth stage and
we = [u®  wP], k=123 is defined as a (2 x 1)
dimensional vector showing the contribution of the kth
stage in the state equation. Here ug"),i =12; k=
1,2,3 is the contribution of the kth stage to the ith
quality characteristic. This contribution is provided by
the multiplication of the known matrix B, and the
vector u,. In this application, Bju; =[-0.01 —
0.025]', B, u, =[-0.01 —0.01]" and Bsuz =
[0.01 0.01]'. Let the unobservable process noise be
defined as & =[e® o], k=123 In the
simulation study, it is assumed that e,-(k)~N(M=
0,0%),i=1,2;k =1,2,3. It is also assumed that the
measurements can be taken from every stage. In this
case, the measurement vector Y_k = [Vk1  Yk2]',k =
1,2,3 can be observed for every value of the phase
index k. Let the C, matrices, which provide the
transition between the actual values of the quality
characteristics and the measurement values, be
determined as C; =[1.30 —0.01;0.01 0.99],C, =
[1.01 —0.01;0.01 0.99], and C;=[1.01 —
0.001;0.01 0.99].

The elements of the vector n, = [¢X¢%] &k = 1,23,
which show the measurement error are distributed
normally given as Ei(")~N(u =0,0%),i=12k=
1,2,3. In this study, different correlation coefficient
values (0.99, 0.90, 0.70, 0.50, 0.30 and 0.1) were tested
for 0.1, 0.5 and 1 values of the o parameter, which
indicates the noise level. Additionally, it is assumed
that the dependency structure between the length and
the weight measurement values can be determined with
the Gaussian copula.

In this case, the Kalman filter equations in Table 2 will
be taken into consideration for the observed values of
quality characteristics v, = (Vxq1, Vi2)' in the kth stage
of the multi-stage manufacturing process. Pearson
correlation (p) between w,,; and wy, is a copula
correlation parameter for y,, and y,, since w, = y; —
Jkjk-1 and ¥ -1 are calculated values. The values of
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the Gaussian copula dependence parameter which
models the dependency structure between y,; and y;,
are calculated for each stage by a MATLAB code. As
previously shown in Eg. (22) and Egq. (23), by
expressing the oy, covariance in terms of copula, the
adequacy of combining copula functions in the
estimation of state-space models through the Kalman
filter was demonstrated. The obtained Gaussian copula
dependence parameter values were used instead of p,
in the matrix given in Eq. (55). The prediction stage
covariance matrix P,(w) is included in the Kalman
gain matrix as in K, = Pk|k_1C,;Pk‘1(w). As a result,
the Kalman filter equations and copula functions have
been integrated.
Assume that 100 wooden parts go through this
machining process under the defined conditions. Due to
the structure of the multi-stage manufacturing process,
the output of the previous stage will be the input for any
stage. For example, the outputs from the cutting stage
will be the input for the sanding stage. The outputs
obtained in the sanding stage will be the input for the
polishing stage (see in Figure 1).
Table 3. MAPE values (%) for the simulation study
Cutting Sanding Polishing
p ¢ L W L W L W
0.99 0.1 495 928 085 0.84 885 1.07
0.99 05 480 9.27 226 1.14 891 1.62
0.99 1.0 503 9.25 257 128 849 196
0.90 0.1 497 927 121 093 851 111
0.90 05 492 924 206 1.17 893 166
0.90 1.0 464 9.27 355 168 7.90 205
0.70 0.1 495 9.26 112 0.89 8.64 1.08
0.70 05 487 926 209 115 851 177
0.70 1.0 474 926 3.09 137 852 202
050 0.1 496 9.25 1.02 0.88 8.76 1.28
050 05 484 926 223 114 864 144
0.50 1.0 475 9.30 248 1.18 9.05 2.06
0.30 0.1 490 9.27 101 090 871 115
0.30 05 499 925 218 119 8.78 155
0.30 1.0 491 929 4.02 211 894 3.04
0.10 0.1 488 9.24 129 095 8.76 1.09
0.10 05 497 926 232 121 850 196

0.10 1.0 495 923 29 119 881 171

A MATLAB code was written to obtain simulation
values for the quality characteristics, weight (W) and
length (L), for each production stage under the
assumptions. The mean absolute percentage error
(MAPE) criterion was used to measure the performance
of the Kalman filter model under the copula
dependency. Table 3 displays the MAPE values that are
obtained for various noise levels (62) and correlation

coefficients (p). Since every MAPE value is less than
10%, it is evident that the proposed model, which
provides remarkably accurate predictions, allows for
the examination of the dependencies between quality
characteristics at every stage [46].

6. Conclusions

In this study, the state-space model established for the
dependency between the stages in the multi-stage
manufacturing process is integrated with the copula
modeling used to reveal the internal dependency
structure between the quality characteristics in a stage.
The importance of the conditional variance of the
prediction error in the Kalman filter equations in the
estimation of x;, has been revealed and it has been
emphasized that it constitutes the main element that
needs to be addressed. In the application part of the
study, first, the dependency structure between the
quality variables of interest in a hypothetical
production process was expressed with copulas, system
state predictions were made with the Kalman filter, and
evaluated under the mean absolute percentage error
(MAPE) criterion. The resulting model has shown that
it is a model that allows examining the dependency
between quality characteristics at every stage and gives
extremely accurate predictions.

The original contribution of this study to the theory,
method and practice on the subject is as follows: The
Kalman filter estimation method, based on state-space
models of multi-stage manufacturing processes, has
been presented in a broad perspective, with a solution
algorithm proposed and subject-specific comments. In
order to take into account the statistical dependence
between the quality characteristics of interest at any
stage of the process, the dependence was expressed
with copula functions and integrated with the Kalman
filter method.

The innovations and improvements that the specified
original contributions brought to the modeling and
analysis of multi-stage manufacturing processes are as
follows: The fact that quality characteristics are
essentially interdependent is reflected in the models
and internalized in the analyses. Model components,
structure and calculation steps that are dependent on
modeling and analysis are clearly stated. The internal
dependency structure that can exist between the quality
characteristics of interest at any production stage is
integrated with the dependency structure between the
stages.

In order to further the results put forward in the study,
future studies that are deemed useful are as follows:
Prediction methods for various copulas that can be used
in modeling the internal dependency between the
quality characteristics of interest at any stage of multi-
stage manufacturing process structures can be
investigated and implemented. State-space modeling
generalizations involving dependency can be made
with multivariate copula models for more than two
quality characteristics. In the presence of models



416

P. Toktas, O.L. Gebizlioglu | IJOCTA, Vol.14, No.4, pp.404-418 (2024)

containing noise terms and observation errors with

distributions other than normal

distribution, the

robustness of Kalman filter estimates can be addressed.
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Appendix
Table Al. Kalman filter and copula functions [47]
Stages Related Equations
Initial:
X0, Po
Prediction stage:
Riejie—1 (Table 2) Xy k-1 = Ag—1Xk—1jk-1 + Bruy
P (y) (Table 2) P,(y) = Ck[Ak—1PR—1|k—1A;<—1 + Dy Qi Dy |Ci + Hy R Hy,
Wi = Vi = Vijk-1 (Table 2) wy, = Cp(x; — a?k|k_1) + Hyny
P (w) = E(wwy) (Table 2) P,(W) = CyPyjk-1Cy + Hi Ry Hy,

Estimation prediction stage — General: Eq. (43)
copula likelihood function

n
L.(prediction) L¥ = Z In fi1o(V1ks Yai; v, 0)

i=1

n
= Z In c(Fiy k13 V1)) Fro (V23 v2)5 6)

151 n
£ 10 fi Qs 1) + ) 10 fia (v 72)
i=1 i=1

Copula likelihood function for £ ,_; and wy

Estimation-filtering stage

ﬁk k ~ ~ ~
| (Table 2) Ry = Rie—1 + KielVie — CRucppe—1}

P
Kl (Table 2) Py = [I = KiCye]Pii—1

Copula likelihood function for
all process stages

Lc(whole) Generalization of Eq. (43)
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