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Abstract. A global solution strategy for multilevel optimization problems with special non-convexity
formulation in the objectives of the inner level problems is presented based on branch-and-bound and
multi-parametric programming approach. An algorithm to such problems is proposed by convexifying
the inner level problem while the variables from upper level problems are considered as parameters.
The resulting convex parametric under-estimator problem is solved using multi-parametric program-
ming approach. A branch-and-bound procedure is employed until a pre-specified positive tolerance is
satisfied. Moreover, a ϵ−convergence proof is given for the algorithm.
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1. Introduction

In many real-world problems decisions have been
made in a hierarchical order where individual de-
cision makers have no direct control upon the
decisions of the others, but their actions affect
all other decision makers. Further, higher lev-
els (or leaders) of the hierarchy have the power
to strongly influence the performance and strate-
gies of the decision makers at lower levels (or
followers)[1]. Multilevel Optimization Problems
(MLOP) are mathematical programs which have
a subset of their variables constrained to be an
optimal solution of other programs parameter-
ized by their remaining variables [2]. It’s implic-
itly determined by a series of optimization prob-
lems which must be solved in a predetermined
sequence.

If we set a vector xi ∈ Rni to represent the por-
tion of the decision vector controlled by decision
maker at level i, a function fi(x

1, x2, . . . , xk) to
represent the objective of the decision maker at
level i and the inequality gi(x

1, x2, . . . , xk) ≤ 0
to represent constraints at level i, a MLOP is
mathematically formulated as:

min
x1

f1(x
1, x2, . . . , xk)

s.t. g1(x
1, x2, . . . , xk) ≤ 0

where [x2, x3, . . . , xk] solves

min
x2

f2(x
1, x2, . . . , xk)

s.t. g2(x
1, x2, . . . , xk) ≤ 0,

where [x3, x4, . . . , xk] solves

. . .

where [xk] solves

(1)
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min
xk

fk(x
1, x2, . . . , xk)

s.t. gk(x
1, x2, . . . , xk) ≤ 0

x = (x1, x2, . . . , xk) ∈ X = (X1, X2, . . . , Xk) ⊆ Rn

Xi ⊆ Rni , i = 1, . . . , k, n1 + · · ·+ nk = n.

where k represents the number of levels in the hi-
erarchy, and x ∈ Rn = Rn1 ×Rn2 × · · · ×Rnk is
the decision vector partitioned into the k decision
levels.

Two-level problems (which are known as
bilevel programming problems) and 3-level prob-
lems (usually referred to as trilevel programming
problems) are common in applications [2]. A
trilevel optimization problem, where k = 3 in
equation (1), for instance, comprises of three sub-
problems, one at each optimization level with the
following basic definitions of sets:

• The set

Ω3(x
1, x2) = {x3 ∈ X3 : g3(x

1, x2, x3) ≤ 0} (2)

is called a feasible set for the third level.
• The set of parametric solutions defined
as,

Ψ3(x
1, x2) = {x3 ∈ X3 : x

3 ∈ argmin{
f3(x

1, x2, x3) : x3 ∈ Ω3(x
1, x2)}} (3)

is called the rational reaction set for the
third level.

• The set

Ω2(x
1) = {(x2, x3) ∈ X2 ×X3 : g2(x

1, x2, x3)

≤ 0, g3(x
1, x2, x3) ≤ 0, x3 ∈ Ψ3(x

1, x2)} (4)

is called a feasible set for the second level
problem.

• The set of solutions

Ψ2(x
1) = {(x2, x3) ∈ X2 ×X3 : x

2 ∈ argmin{
f2(x

1, x2, x3) : (x2, x3) ∈ Ω2(x
1)}} (5)

is called the rational reaction set for the
second level, for Xi ⊆ Rni , i = 1, 2, 3.

One can easily see the parametric nature of the
rational reaction sets, in equations (3) and (5),
which describe the dependence of the decisions
taken at the upper levels on the decisions taken
at lower levels.

Because of this sequential nature of the ratio-
nal reaction sets, MLOP are generally very com-
plex and are difficult to solve. It has been shown
that even the linear bilevel programming problem
is strongly NP-Hard [2, 3]. Moreover, the com-
plexity of the problem increases as significantly
as the number of levels increase [4].

However, several algorithmic approaches have
been developed that can solve convex bilevel
and trilevel programming problems. For linear
MLOPs vertex enumeration methods have been
used in [5, 6]. For nonlinear MLOPs many of the
methods try to transform the lower level prob-
lems by using the Karush-Kuhn-Tucker (KKT)
conditions or penalty functions [7, 8]. However,
the relaxed KKT conditions may result in non-
optimal reactions from the lower levels or in am-
biguity to choose one solution among the optimal
reaction set. Moreover, it seems too difficult to
extend such an approach beyond two levels, be-
cause of the non-convex constraints introduced
due to complementarity conditions. Recently,
Tilahun et al. [9] have proposed a meta-heuristic
algorithm to solve a multilevel problem of gen-
eral form. The algorithm takes the variables from
other levels as fixed values and solve the problem
at each level (from top to bottom) using (1+1)-
evolutionary strategy. However, the comparison
made between the previous values and the solu-
tion from each iteration, in the adaptation proce-
dure, depends only on the objective value of each
level without considering the reaction from other
levels. This may create non optimal Stackelberg
solutions, as the decision makers at each level op-
timizes its own objective function without taking
the reaction from other levels into consideration.

By considering the upper level variables as pa-
rameters in the lower level problems Fáısca et.
al., [10, 11] have proposed a Multi-parametric
Programming (MPP) approach to solve MLOPs,
when the lower level problems are convex. Using
this approach, one can convert multilevel prob-
lems as sequential multi-parametric optimization
problems. If the lower levels are convex, their
parametric solutions are unique in each region,
where the solution is stable. But many prac-
tical problems that are modeled using MLOP
may contain non-convex terms in their lower level
problems [8]. In this case, even though MPP ap-
proach produces a mathematical program with-
out equilibrium constraints depending on the up-
per level problems, the rational reaction set of the
inner level problem (with non-convexity formula-
tion) may be a disconnected set. So, it turns out
that the upper level optimization problem may
not have a solution in the rational reaction set,
even if the upper level is a linear programming
problem. Moreover, the global optimal solution
cannot be efficiently computed and the behavior
of a local solution is hard to analyze for the inner
level optimization problems.
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In this paper we apply the process of convex-
ification of the lower level problems to under-
estimate them by convex functions (if they are
nonconvex) at each iteration and use MPP ap-
proach to propose a branch-and-bound algorithm
to find a global approximate solution for multi-
level problems with non-convexity at their inner
levels. The paper is organized as follows; in Sec-
tion 2, multiparametric nonlinear programming
problems are described and the respective critical
regions are defined. Section 3 presents the pro-
posed algorithm for bilevel and trilevel program-
ming problems and convergence proof is also pre-
sented. Illustrative examples are given in Section
4. We conclude the paper by giving a conclusive
remark in Section 5.

2. Preliminary Concepts

In MLOPs, the lower level problems can be
considered as parametric optimization problems,
where the decision vectors for upper levels are the
parameters. To solve such kind of problems the
following notions are helpful.

2.1. Multi-parametric nonlinear
programming

Consider the following multi-parametric nonlin-
ear programming problem as the inner level prob-
lem of a bilevel programming problem, where the
parameter vector θ represents the vector of up-
per level optimization variables and x is the op-
timization variable of the current level:

Z(θ) = min
x

f(x, θ)

s.t.

gi(x, θ) ≤ 0, for all i = 1, 2, . . . , p, (6)

hj(x, θ) = 0, for all j = 1, 2, . . . , q

x ∈ X ⊆ Rn, θ ∈ Θ ⊆ Rm,

where f , g1, . . . , gp and h1, . . . , hq are twice con-
tinuously differentiable functions in x and θ. As-
sume also that f is a convex function and the
functions g1, . . . , gp, and h1, . . . , hq define convex
sets.

If x is a feasible solution to problem (6) for a
given θ, we classify the constraint functions as:
active constraints, where the set of constraints
that satisfy the property gi(x, θ) = 0, for some
i, and as inactive constraints, those that satisfy
gi(x, θ) < 0 for some i.

Definition 1. The active set A(x, θ) of the in-
equality constraints of problem (6) is the set of
constraints’ indices of the active constraints, that
is,

A(x, θ) = {i ∈ {1, 2, . . . , p}|gi(x, θ) = 0}

Definition 2. For an active set A(x, θ), we say
that the linear independence constraint qualifica-
tion condition holds if the set of active constraint
gradients are linearly independent.

The first-order KKT optimality conditions for
(6) are given for the Lagrangian:

L = f(x, θ) +

p∑
i=1

λigi(x, θ) +

q∑
j=1

µj hj(x, θ)

by the following conditions.

▽xL = 0,

gi(x, θ) ≤ 0,

λigi(x, θ) = 0, (7)

λi ≥ 0, for all, i = 1, 2, . . . , p

hj(x, θ) = 0, for all, j = 1, 2, . . . , q

where, λ and µ are Lagrange multiplier vectors.
The triple (x0, λ0, µ0) is called a KKT point if it
satisfies the conditions in (7).

Definition 3. Strict complementary slackness is
said to hold at a KKT point (x0, λ0, µ0) if and
only if for i = 1, 2, . . . , p, λi > 0 if gi(x0, θ0) = 0
and λi = 0 if gi(x0, θ0) < 0.

The main sensitivity result for (6) is derived
directly from system (7) and is given in the next
theorem, taken from [12].

Theorem 1. Let θ0 be a vector of parameter val-
ues and (x0, λ0, µ0) be a KKT triple correspond-
ing to (7), where, λ0 is nonnegative and x0 is
feasible in (6). Also assume that,

(1) strict complementary slackness condition,
(2) the gradients of the active constraints are

linearly independent (LICQ: Linear Inde-
pendence Constraint Qualification condi-
tion), and

(3) the second-order sufficiency conditions

hold. Then, in the neighborhood of θ0, there
exists a unique, once continuously differentiable
function, Z(θ) = [x(θ), λ(θ), µ(θ)], satisfying (7)
with Z(θ0) = [x(θ0), λ(θ0), µ(θ0)], where x(θ) is
a unique isolated minimizer for (6), and

dx(θ0)
dθ

dλ(θ0)
dθ

dµ(θ0)
dθ

 = −M−1
0 ·N0 (8)

where, M0 and N0 are the Jacobian of system
(7) with respect to x and θ:
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M0 =



∇xxL ∇xg1 . . . ∇xgp
λ1∇T

x g1 − g1 0
...

. . .

λp∇T
x gp − gp 0

∇T
xh1 0 · · · 0
...

∇T
xhq 0 · · · 0



N0 =



∇2T
θxL

−λ1∇θg1
...

−λp∇θgp
∇θh1
...

∇θhq


Note that the assumptions in Theorem 1 en-

sure that the inverse of the Jaccobian of equation
(7) exists [11, 13, 14]. In other words, when M0

is not invertible any violation of the assumptions
in Theorem 1 is easily detected.

In [11] Dua et al., have proposed an algorithm
to solve equation (8) in the entire range of the
varying parameters for general convex problems.
This algorithm is based on approximations of the
nonlinear optimal expression, x = γ⋆(θ) by a set
of first order approximations, as given by Corol-
lary 1 below.

Corollary 1 (First order estimation of x(θ),
λ(θ), µ(θ), near θ = θ0 [15]). Under the consider-
ations of Theorem 1, a first order approximation
of [x(θ), λ(θ), µ(θ)] in the neighborhood of θ0 is
given by, x(θ)

λ(θ)
µ(θ)

 =

 x0
λ0

µ0

−M−1
0 ·N0 · (θ − θ0) (9)

where (x0, λ0, µ0)=(x(θ0), λ(θ0), µ(θ0)),
M0 = M(θ0), N0 = N(θ0)

The space of θ where this solution (9) remains
optimal is defined as the critical region (CR), and
can be obtained by using feasibility and optimal-
ity conditions. Feasibility is ensured by substi-
tuting x(θ) into the inactive inequalities given
in problem (6), whereas the optimality condition
is given by λ̌(θ) ≥ 0, where the multiplier λ̌(θ)
corresponds to the vector of active inequalities,
resulting in a set of parametric constraints. Each
piecewise linear approximation is confined to re-
gions defined by feasibility and optimality con-
ditions [11]. If ǧ corresponds to the non-active
constraints, and λ̌ to the Lagrangian multipliers

of the active constraints, we have:{
ǧ(x(θ), θ) ≤ 0 Feasibility conditions
λ̌(θ) ≥ 0 Optimality conditions.

Consequently, the explicit expressions are given
by a conditional piecewise linear function [11]:

x = C1 +K1 · θ, θ ∈ CRR
1

x = C2 +K2 · θ, θ ∈ CRR
2

...
x = Cp +Kp · θ, θ ∈ CRR

p ,

where Ci’s are column vectors and Ki’s are real
matrices, whereas CRR

i ⊆ Rm are critical regions
and note that CRR

i denotes the ith critical region.

2.2. Convex relaxation of bilinear and
concave terms

If the multi-parametric nonlinear optimization
problem (6) contains bilinear and concave terms,
the KKT conditions (7) may not produce para-
metric optimal solutions. To assure that KKT
optimality conditions are both necessary and suf-
ficient for obtaining the global parametric opti-
mum of the inner level problem, the occurrence of
any non-convex term must be underestimated by
a convex envelope to approximate it by a convex
function.

The convex envelope of bilinear terms bijyiyj
taken over the rectangle R = {(yi, yj) : yLi ≤ yi ≤
yUi , y

L
j ≤ yj ≤ yUj } is denoted by VexR[bijyiyj ]

and can be obtained as follows:

Theorem 2 ([16]). Let bij, for i =
1, 2, . . . , n2 − 1 and j = i + 1, . . . , n2, be
a real number, then the convex envelope of
a bilinear term bijyiyj can be defined as:
VexR[bijyiyj ] = max{bijl1ij(yi, yj), bijl2ij(yi, yj)}

where, l1ij(yi, yj) =

{
yLj yi + yLi yj − yLi y

L
j , bij > 0

yUj yi + yLi yj − yLi y
U
j , bij ≤ 0

and l2ij(yi, yj) =

{
yUj yi + yUi yj − yUi y

U
j , bij > 0

yLj yi + yUi yj − yUi y
L
j , bij ≤ 0

Theorem 2 gives us a tighter lower bound for
each bilinear terms. On the other hand the
over-estimator of such terms can be obtained
by adding the maximum separation to the lower
bound and can be stated in Corollary 2.

Corollary 2. The maximum separation between
bijyiyj and VexR[bijyiyj ] inside the rectangle R

is equal to δij = |bij |
[yUi −yLi ][yUj −yLj ]

4

Proof. See [17] �
Similarly, any occurrence of univariate concave

functions can be trivially underestimated by their
linearizations at the lower bounds of the variable
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ranges [18]. Thus the convex envelope of the con-
cave function c(y) over the interval [yL, yU ] is the
linear function of y obtained by:

Vexc = c(yL) +
c(yU )− c(yL)

yU − yL
(y − yL)

The maximum separation between the concave
function and its convex under-estimator can be
found by minimization problem [19] as:

MaxSe = − min
yL≤y≤yU

{−c(y) +Vexc},

where, Vexc is the convex under-estimator of c(y).

3. Algorithm for Multi-level
Optimization with Special
Non-convexity Formulation at Inner
Levels

Applying the formulations in subsection 2.1, it is
possible to solve convex MLOP as described in
[10] and [11]. However, if the inner level prob-
lems are non-convex, we need to convexify them
as described in subsection 2.2 and underestimate
the given problem by an approximate convex
problem. Using this approach we will propose
an algorithm to solve nonlinear MLOP in terms
of branch-and-bound procedure. In this paper,
special form of non-convexity, where only bilin-
ear and concave terms appear in the objective of
the most inner level problem, will be considered
and the algorithm will be tested for bilevel and
trilevel problems of such a form.

3.1. Algorithm for bilevel programming
problem with special non-convexity
formulation at the inner problem

Consider the following non-convex bilevel prob-
lem:

min
x

f1(x, y)

s.t. g1(x, y) ≤ 0 (10)

min
y

f2(x, y) =

n2−1∑
i=1

n2∑
j=i+1

bijyiyj +

c(y) + h1(x) + h2(y)

s.t g2(x, y) ≤ 0

yL ≤ y ≤ yU , xL ≤ x ≤ xU ,

where g2(x, y) forms a convex polyhedron, h1(x)
and h2(y) are linear with respect to x and y re-
spectively, c(y) is a concave function, x ∈ X ⊆
Rn1 , y ∈ Y ⊆ Rn2 and X and Y are compact
convex sets. Note that, the inner level is a non-
convex minimization problem.

The approach begins with rewriting the inner
level of problem (10) as a MPP:

min
y

f2(x, y) =

n2−1∑
i=1

n2∑
j=i+1

bijyiyj + c(y) +

h1(x) + h2(y)

s.t g2(x, y) ≤ 0 (11)

yL ≤ y ≤ yU

xL ≤ x ≤ xU

As discussed in subsection (2.2) each bilinear and
concave terms can be under-estimated by their
respective tighter convex terms VexR[bijyiyj ] and
Vexc respectively. Thus, the under-estimator
problem of (11) is formulated as:

min
y

f2(x, y) =

n2−1∑
i=1

n2∑
j=i+1

VexR[bijyiyj ]

+Vexc + h1(x) + h2(y)

s.t g2(x, y) ≤ 0 (12)

yL ≤ y ≤ yU , xL ≤ x ≤ xU

Problem (12) is a linear MPP problem, which
can be solved by using Linear MPP algorithm
described in [14], resulting in:

yi = mi
2 + ki2 · x, H i

2 · x ≤ di2, (13)

where, i = 1, 2, . . . , I2, with I2 being the number
of critical regions. Substituting the expression
given in (13) into the objective function of prob-
lem (12) we obtain the parametric lower bound
Ž1
i (x) for the solution of problem (11) within the

corresponding critical regions, CRi. Adding the
maximum separations, δij and MaxSe, for bi-

linear and concave terms respectively on Ž1
i (x)

gives the parametric over-estimator Ẑ1
i .

Each of the lower bounds Ž1
i (x) is then com-

pared to Ẑ1
i and the region of x where Ẑ1

i (x) −
Ž1
i (x) ≤ ϵ are fathomed for a given small posi-

tive tolerance ϵ. If each of Ž1
i (x) are within ϵ of

Ẑ1
i (x) in the space of x, then the expressions in

(13) can be incorporated into the leader’s prob-
lem of (10). Otherwise, the initial region of y
is partitioned into two by bisecting the variable
that has the longest side from among those that
resulted in non-convexity in the problem, as in
[17]. After branching in y, the corresponding
under-estimator subproblems in each subregion
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can be formulated as follows:

Ž21(x) = min
y

n2−1∑
i=1

n2∑
j=i+1

VexR1[bijyiyj ] +

Vexc1 + h1(x) + h2(y)

s.t. g2(x, y) ≤ 0 (14)

xL ≤ x ≤ xU , yL ≤ y ≤ yUnew,

and,

Ž22(x) = min
y

n2−1∑
i=1

n2∑
j=i+1

VexR2[bijyiyj ] +

Vexc2 + h1(x) + h2(y)

s.t. g2(x, y) ≤ 0 (15)

xL ≤ x ≤ xU , yLnew ≤ y ≤ yU

where VexR1[bijyiyj ] and VexR2[bijyiyj ] are
under-estimators of the bilinear terms over the
region yL ≤ y ≤ yUnew and yLnew ≤ y ≤ yU respec-
tively and Vexc1 and Vexc2 are convex under-
estimators of the concave terms over the region
yL ≤ y ≤ yUnew and yLnew ≤ y ≤ yU respectively.

Each of the problems (14) and (15) are again
solved using linear MPP algorithm and one can
substitute each of these parametric solutions into
the objective functions of (14) and (15) respec-
tively to obtain the parametric lower bounds

Ži
21
(x) and Ži

22
(x) for the solution of problem

(11). Similarly, one can get the parametric up-
per bound by adding the maximum separation

to each of the lower bounds Ži
21
(x) and Ži

22
(x),

to obtain the parametric over-estimators Ẑ21
i and

Ẑ22
i .
Now, by comparing each parametric upper

bounds with the former upper bound for each
subproblem we choose the least upper bound
within the corresponding critical regions; and we
shall denote it by Zu(x). Similarly, comparing
the lower bounds and taking the maximum of
them, we update the lower bound as well and de-
note it by Z l(x). Consequently, convergence test
is performed by comparing the updated paramet-
ric upper bound with the updated lower bounds.
If the convergence test is satisfied the branching
procedure stops there.

Otherwise, the process continues in the same
manner as discussed above until the lower bound
and the upper bound are separated by sufficiently
small positive tolerance ϵ. Following this pro-
cedure, the bilevel optimization problem will be

converted to a single-level optimization problem:

min
x

f∗
1 (x, y(x))

s.t

g1(x, y(x)) ≤ 0 (16)

x ∈ S,

where S = {x ∈ X : y ∈ Y, g2(x, y(x)) ≤ 0}

Due to the partitioning of the parametric region,
the solution of the first-level optimization prob-
lem depends on the number of critical regions
obtained in the inner problem. Based upon the
above discussion an algorithm for the solution of
a bilevel programming problem is presented in
Table 1

Table 1. A Parametric programming

algorithm for bilevel programming prob-

lems with non-convexities in the inner

problem

Step Description
1 Consider the inner problem of (10) as a MPP

problem, with the upper level variables are be-
ing considered as parameters;

2 Initialize the current parametric upper bound
as Z̄u(x) = ∞, current parametric lower bound
as Z̄l(x) = −∞, a space of upper level opti-
mization variable x, as a parameter space (CR)
determined by the lower and upper bounds xL

and xU respectively, a space of inner level op-
timization variable y determined by the lower
and upper bounds yL and yU respectively, and
tolerance, ϵ;

3 For a given region of x, CR, and the corre-
sponding space of y, convexify the inner prob-
lem and solve using linear MPP algorithm and
obtain the parametric lower bound, Ž(x) and

the parametric upper bound, Ẑ(x) for the solu-
tion of the inner problem as discussed in Section
3.1;

4 Compare Z̄u(x) and Ẑ(x) as described in Ap-
pendix B and update the current parametric
upper bound as Z̄u(x) = min(Z̄u(x),Ẑ(x));

5 Compare Z̄l(x) and Ž(x) as described in Ap-
pendix B and update the current parametric
lower bound as Z̄l(x) = max(Z̄l(x),Ž(x));

6 If, Zu(x) − Zl(x) ≤ ϵ, and Zu(x) ≤ Zl(x)
fathom the corresponding space of parameters
and the relaxed convex optimization problems
are infeasible for some rectangle, then in such
cases fathom those regions and the correspond-
ing space of parameters.

7 If there is any more space of parameter x and a
space of optimization variable y to be explored
go to Step 8. Otherwise, go to Step 12.
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Step Description
8 Branch on y and formulate a convex under-

estimator in each subrectangles of y;
9 Solve the convex under-estimator problems in

each subrectangles using MPP approach and
obtain the parametric lower and upper bounds
for the solution in each subrectangles.

10 Compare the lower bounds of each subrectan-
gles within the corresponding critical regions
and take, Ž(x) to be the minimum within the
corresponding critical region;

11 Compare the upper bounds of each subrect-
angle within the corresponding critical regions
and take Ẑ(x) to be the minimum within the
corresponding critical region and go to Step (4).

12 Substitute each of the solutions of the inner
problem into the leader’s problem and formu-
late one-level optimization problem;

13 Solve each single-level problem using suitable
global optimization method;

14 Compare the leader’s optimal solutions and se-
lect the best as one needs.

In order to prove the convergence of the algo-
rithm stated in Table 1 we need to justify the
following statements.

Theorem 3. Consider problem (10) and assume
that the optimization variables are bounded. If
the reformulated inner level problem has a solu-
tion y(x) ∈ 2R

n
at each iteration, then the func-

tional sequence χk(x) = Ẑk(x) − Žk(x), is a de-

creasing sequence, where Ẑk(x) is the kth least
upper bound and Žk(x) is the kth greatest lower
bound.

Proof. To prove the theorem we need the follow-
ing two arguments.

(1) First we need to show that the sequence

{Ẑk(x)}nk=1 is a decreasing sequence. To

this end, let Ẑp(x) be the upper bound
at pth iteration. Hence, from the al-
gorithm for the pth iteration we have,
Ẑp(x) = min{min{Ẑi(x)}p−1

i=1 , Ẑ
p(x)},

and similarly, at p+1, we have Ẑp+1(x) =

min{min{Ẑi(x)}pi=1, Ẑ
p+1(x)} =

min{min{Ẑi(x)}p−1
i=1 , Ẑp(x), Ẑ

p+1(x)},
but Ẑp(x) = min{min{Ẑi(x)}p−1

i=1 , Ẑ
p(x)}.

This implies that Ẑp+1(x) ≤ Ẑp(x), as
desired.

(2) Secondly, we need to show that Žk(x) is
an increasing sequence. Let Žp be the
lower bound for pth iteration. As a re-
sult of the algorithm, we have, Žp(x) =

max{max{Ži(x)}p−1
i=1 , Ž

p} and similarly
at p+ 1 we have,
Žp+1(x) = max{max{Ži(x)}pi=1, Ž

p+1} =

max{max{Ži(x)}p−1
i=1 , Žp, Ž

p+1}, but,

Žp(x) = max{max{Ži(x)}p−1
i=1 , Ž

p}
and as the size of the rectangular domain
decreases, the maximum separation be-
tween the original non-convex function
and its respective convex under-estimator
function decreases. This implies that
Žp(x) ≤ Žp+1(x).

From the discussion above we can realize that
the parametric upper bound is found by adding
the maximum separation between the under-
estimator and the original non-convex function
over the parametric lower bound. This shows
that χk is independent of the parameter vector
x.

Therefore, since Ẑk(x) is a decreasing sequence
and Žk(x) is an increasing sequence, we can con-
clude that the difference χk is a decreasing se-
quence and hence a convergent sequence.

�
Theorem 4. Let X ⊆ Rm be a polyhedron and
CRQ = {x ∈ X : g̃2(x) − b̃ ≤ 0} ⊆ X, be
a critical region. Assume CRQ ̸= ∅. Also let

CRi = {x ∈ X : g̃i2(x) − b̃i > 0, g̃j2(x) − b̃j ≤
0, ∀j < i, i = 1, 2, . . . ,K} where K = size(b),

and let CRrest =
∪K

i=1CRi. Then

(1) CRrest
∪

CRQ = X,
(2) CRQ

∩
CRi = ∅,

(3) CRi
∩

CRj = ∅, ∀i ̸= j, i.e.
{CRQ, CR1, . . . , CRK} is a partition of
X.

Proof. (1) Since CRi ⊆ X for all i
and CRQ ⊆ X, it is clear that
CRrest

∪
CRQ ⊆ X. To show the back-

ward inclusion let x ∈ X and assume
that x /∈ CRQ. Then, there exists an
index i such that g̃i2(x) − b̃i > 0. Let

i∗ = mini≤K{i : g̃i2(x) > b̃i}, by def-

inition of i∗ we have g̃i
∗
2 (x) > b̃i

∗
and

g̃j2(x) < b̃j , ∀j < i∗. This implies that

x ∈ CRi∗ , thus x ∈ CRRest
∪

CRQ.
Hence CRrest

∪
CRQ = X,.

(2) If x ∈ CRQ then by definition, there
doesn’t exist an index i that satisfy
g̃i2(x) − b̃i > 0. which implies that x /∈
CRi.

(3) Let x ∈ CRi and take i > j. Since
x ∈ CRi, by definition of CRi(i > j)

g̃j2(x) − b̃j ≤ 0, which implies that x /∈
CRj .

�
As a direct consequence of the above two the-

orems we have the following corollary.
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Corollary 3. Let CRrest
∪

CRQ =
X, CRQ

∩
CRi = ∅ ∀i and CRi

∩
CRj = ∅, ∀i ̸=

j be a partition of X. If {χk(x)}nk=1 is a decreas-
ing functional sequence, then the algorithm, given
by Table 1, converges.

Note that one can extend the idea discussed
here above also for trilevel programming prob-
lems as discussed here below.

3.2. Algorithm for trilevel programming
with non-convexity formulation in
the inner problems

Consider the following non-convex trilevel opti-
mization problem, where the second and third
level objectives can have bilinear and concave
terms.

min
x

f1(x, y, z)

s.t. g1(x, y, z) ≤ 0

min
y

f2(x, y, z)

s.t. g2(x, y, z) ≤ 0 (17)

min
z

f3(x, y, z) =

n3−1∑
i=1

n3∑
j=i+1

bijzizj +

c(z) + h(x, y, z)

s.t g3(x, y, z) ≤ 0

xL ≤ x ≤ xU , yL ≤ y ≤ yU , zL ≤ z ≤ zU ,

where the constraint functions g1, g2 and g3 each
forms a convex polyhedron, h is linear with re-
spect to all its variables, and c(z) is a concave
function.

Here again the solution procedure starts by
convexifying the third-level problem and formu-
lating a convex multi-parametric programming
problem, where the variables determined by the
two upper level decision makers are considered
as parameters. Then the global parametric solu-
tion for the third level problem is found by the
same approach as discussed in Section 3.1 for the
solution of the inner level problem.

Substituting the solutions into the second-level
problem, we obtain a multi-parametric program-
ming problem, where the variables determined by
the leader are the parameters. Note that since
the parametric solutions for the third level prob-
lem are obtained in linear form, the complexity
of the second level problem does not increase.

If the second level problem also has special
non-convexity formulation, it is necessary to ap-
ply the same procedure as discussed in Section
3.1 for the inner level problem and substitute the
solution into the leader’s problem. Finally, the

resulting single-level problem is solved using suit-
able global optimization methods.

On the other hand, if the second level prob-
lem is a convex multi-parametric problem, the
KKT conditions are sufficient. Thus, the convex-
ification process and the branch-and-bound pro-
cedure for the second level problem is not neces-
sary in the above discussion.

Generally, the algorithm in Table 1 will be ap-
plied twice if the second level problem also has
the same type of non-convexity as the third level.
Otherwise, the relaxation step in Table 1 could
be omitted for the second stage.

3.3. Algorithm for k-level programming
with non-convexity formulation in
the inner problems

Consider problem (1) with special non-convexity
formulation at each (or some of the) optimiza-
tion level(s). The kth-level optimization prob-
lem can be rewritten as a multi-parametric pro-
gramming problem where, the upper levels opti-
mization variables are considered as parameters.
The resulted problem can be solved parametri-
cally using the algorithm described in Table 1
(from Step 2 - Step 11). The parametric so-
lution can be incorporated into the (k − 1)th–
level. In the same manner the (k− 1)th-level op-
timization problem can be reformulated as multi-
parametric programming problem which also be
solved globally using the algorithm described in
Table 1 (from Step 2 - Step 11). Applying the
same procedure recursively, one can arrive at the
first level and solve the problem globally in each
critical region obtained during branching.

4. Illustrative Examples

Example 1: A bilevel problem

Consider the following bilevel programming
problem, where the inner problem contains a bi-
linear term:

min
x

f1 = −2x1 + y1 − y2 − 1

s.t
1

2
x1 + y2 − 0.5 ≤ 0 where [y1, y2]

T solves

min
y

f2 = y1y2

s.t − 2y1 − y2 + x1 ≤ 0 (18)

−y1 − 3y2 +
1

2
x2 ≤ 0

−1 ≤ x1, x2 ≤ 1

−1

6
≤ y2 ≤

7

12
,
1

2
≤ y1 ≤ 1
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First of all, consider the inner level problem of
(18) as a MPP problem with x a parameter vec-
tor of the optimization problem:

min
y

f2 = y1y2

s.t − 2y1 − y2 + x1 ≤ 0

−y1 − 3y2 +
1

2
x2 ≤ 0 (19)

−1 ≤ x1, x2 ≤ 1

−1

6
≤ y2 ≤

7

12
,
1

2
≤ y1 ≤ 1

Under-estimate problem (19) by using the for-
mula discussed in subsection 2.2 to get:

min
y

f2 =
1

2
y2 −

1

6
y1 +

1

12
s.t − 2y1 − y2 + x1 ≤ 0

−y1 − 3y2 +
1

2
x2 ≤ 0 (20)

−1 ≤ x1, x2 ≤ 1

−1

6
≤ y2 ≤

7

12
,
1

2
≤ y1 ≤ 1

Solving problem (20) using linear MPP algorithm
one can get parametric solutions within each of
the corresponding critical regions

CRR
1 =



y =

{
3
5x1 −

1
10x2 − 0.4

1
5x1 −

1
5x2 + 0.83

0.5− x1 ≤ 0
−1

2x2 − 1.83 ≤ 0
x1 − 1 ≤ 0
−x2 − 1 ≤ 0
−x1 − 1 ≤ 0
x2 − 1 ≤ 0

,

CRR
2 =



y =

{
3
5x1 −

1
10x2 + 0.08

1
5x2 −

1
5x1 + 0.4

−x1 − 0.67 ≤ 0
1
2x2 − 8.5 ≤ 0
x1 − 0.5 ≤ 0
x2 − 1 ≤ 0
−x1 − 1 ≤ 0
−x2 − 1 ≤ 0

and

CRR
3 =



y =

{
3
5x1 −

1
10x2 + 0.4

1
5x2 −

1
5x1 + 0.167

−x1 − 1.83 ≤ 0
−1

2x2 − 0.5 ≤ 0
x1 + 0.67 ≤ 0
x2 − 1 ≤ 0
−x1 − 1 ≤ 0
−x2 − 1 ≤ 0

Substitute the parametric solutions into the
objective function of problem (20) to get the
parametric lower bound of the solution with in

the corresponding critical regions. These are
Ž1 = 0.56x1 − 0.06x2 − 1.6 in CRR

1 , Ž2 =
0.56x1−0.06x2+1.75 in CRR

2 and Ž3 = 0.56x1−
0.06x2 + 0.5 in CRR

3 .
The parametric upper bound can be found by

adding the maximum separation (as described in
Corollary 2) δij = 0.125 to the lower bounds

and can be described as follows: Ẑ1 = 0.56x1 −
0.06x2 − 1.475 in CRR

1 , Ẑ2 = 0.56x1 − 0.06x2 +

1.875 in CRR
2 and Ẑ3 = 0.56x1 − 0.06x2 + 0.625

in CRR
3 .

Compare upper bounds with lower bounds
within the corresponding critical regions, CRR

s .
But since the difference, 0.125, is greater than
the pre-specified tolerance ϵ = 2.8275 × 10−6,
branching on the optimization variable is per-
formed. Hereby, the algorithm terminates after
fifteen branching steps with parametric solutions

y1(x1, x2) = 0.6x1 − 0.1x2 + 0.6
y2(x1, x2) = 0.2x2 − 0.2x1 + 1

and set of inequalities (what we call a critical re-

gion) CRR =

{
−1 ≤ x1 ≤ 1
−1 ≤ x2 ≤ 1

for ϵ = 2.8275 ×

10−6 and there is no rest region to be explored.
So, one can incorporate the rational reaction set
into the upper level problem and problem (18)
becomes a single level optimization problem:

min
x

f1 = −1.2x1 − 0.3x2 − 2.4

s.t 0.3x1 + 0.2x2 + 0.5 ≤ 0, −1 ≤ x1, x2 ≤ 1(21)

Solving this problem globally one obtains an
optimal solution (y1, y2, x1, x2) = (0.1, 1,−1,−1)
and an optimal value as f2 = 0.1 and f1 = −0.9.

Example 2: A trilevel problem

Consider the following trilevel programming
problem with the occurrence of a concave term
in the third level:

min
x1

f1 = −6x1 + 2x2

s.t
1

2
x1 + x2 ≤

1

2
,

min
x2

f2 = 2x2 + z2

s.t − 2x1 + x2 ≤ −z1, (22)

min
z1,z2

f3 = −z21 + x2 + z1

s.t − 2z1 + z2 + x1 ≤ 0

−z1 − 3z2 +
1

2
x2 ≤ 0

0 ≤ x1, x2, z1 ≤ 1 , 0 ≤ z2 ≤
1

2
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The solution procedure starts with reformulation
of the third level problem as a MPP problem by
considering the optimization variables of the two
upper levels as parameters and can be described
as follows:

min
z1,z2

f3 = −z21 + x2 + z1

s.t − 2z1 + z2 + x1 ≤ 0 (23)

−z1 − 3z2 +
1

2
x2 ≤ 0

0 ≤ x1, x2, z1 ≤ 1 , 0 ≤ z2 ≤
1

2

Convexify the concave term as discussed in
Subsection 2.2 and reformulate problem (23) as
follows:

min
z1,z2

f3 = x2 +
1

2
z1

s.t − 2z1 + z2 + x1 ≤ 0 (24)

−z1 − 3z2 +
1

2
x2 ≤ 0

0 ≤ x1, x2, z1 ≤ 1 , 0 ≤ z2 ≤
1

2

After solving problem (24) using linear MPP al-
gorithm, one gets a parametric solution

z =

{
3
7x1 +

1
14x2 + 0.016

1
7(x2 − x1) + 0.021

with the corre-

sponding critical region CRR =

{
0 ≤ x1 ≤ 1
0 ≤ x2 ≤ 1

Substitute the solution into the objective func-
tion of problem (24) to get the parametric lower
bound Ž(x) = 3

14x1 + 29
28 . Consequently, add

the maximum separation (MaxSe = 0.0625) over
Ž(x) to obtain the parametric upper bound as

Ẑ(x) = 3
14x1 + 29

28 + 0.0625. Compare up-
per bounds with lower bounds within the cor-
responding CRR. But the difference is greater
than the pre-specified tolerance ϵ = 0.002, then
branching on the optimization variable is per-
formed. Hereby, the algorithm terminates after
three branching steps with parametric solution:

z1(x1, x2) = 0.4286x2 + 0.071x2
z2(x1, x2) = 0.143(x2 − x1) + 0.01

and critical region CRR =

{
0 ≤ x1 ≤ 1
0 ≤ x2 ≤ 1

.

Compare the upper bound ẑ(x) = 0.357x1 +
1.0595x2 + 0.0019 with lower bound Ž(x) =
0.357x1 + 1.0595x2 and the difference (0.0019)
is less than the pre-specified tolerance 0.002.

Now we can incorporate these results into the
second level problem and obtain the second level

problem as:

min
x2

f2 = 1.857x2 + 0.143x1 + 0.01

s.t − 1.5714x1 + 1.4286x2 ≤ 0 (25)

0 ≤ x1 ≤ 1

Since problem (25) is a linear parametric pro-
gramming problem, there is no need of convex
relaxation and branching procedures. Hence, one
can solve it using linear MPP algorithm for global
optimality and get a parametric optimal solution
for the second level, x2(x1) = 2x1−1, and critical
region CRR = {0 ≤ x1 ≤ 1, lastly one can in-
corporate the result above into the leaders prob-
lem and solve it for x1 to get the following re-
sults (x1, x2, z1, z2) = (0.6, 0.2, 0.271, 0.047) with
(f1, f2, f3) = (−3.2, 0.447, 0.16853)

5. Conclusion

The difficulty and complexity of the solution ap-
proach for MLOP is easily confirmed by look-
ing its simplest version, what we call it linear
MLOP. Especially when nonconvexity appear in
the inner level problem, most of the existing al-
gorithms fail to work. However, in this paper
we have described a global strategy for the so-
lution of MLOP with non-convexity formulation
in the inner problems based on the combination
of MPP approach and a branch-and-bound al-
gorithm. The proposed algorithm is suitable for
problems involving only special non-convex and
linear terms in the objective functions as well
as in the constraint sets. The same procedure
can be applied successively to solve any multi-
level problem with the same form as discussed in
subsection 3.3 for k-level case.
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Appendix A. Procedures to Define the
Rest of Parametric Regions

Given an initial region, CRIG, defined by
CRIG = {θL1 ≤ θ1 ≤ θU1 , θ

L
2 ≤ θ2 ≤ θU2 }

and a region of optimality, CRR such that
CRR ⊆ CRIG, a procedure is described in
this section to define the rest of the region,
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CRrest = CRIG − CRR. For the sake of sim-
plicity we consider the case when only two pa-
rameters, θ1 and θ2, with CRR defined by three
inequalities, {g1 ≤ 0, g2 ≤ 0, g3 ≤ 0} where
g1, g2, g3 are linear in θ. The procedure con-
sists of considering one by one the inequalities
which define CRR. For example, consider in-
equality g1 ≤ 0, the rest of the region can be ad-
dressed by reversing the sign of inequality g1 ≤ 0
and removing redundant constraints in CRIG,
which is CRrest

1 = {g1 ≥ 0, θ1 ≥ θL1 , θ2 ≤ θU2 }.
Thus by considering the rest of the inequali-
ties, the total of the rest region is given by,
CRrest = {CRrest

1 ∪ CRrest
2 ∪ CRrest

3 }, where
CRrest

1 , CRrest
2 and CRrest

3 are given in Table
2.

Table 2. Definition of the rest regions

Region Inequalities

CRrest
1 g1 ≥ 0, θ1 ≥ θL1 , θ2 ≤ θU2

CRrest
2 g1 ≤ 0, g2 ≥ 0, θ1 ≤ θU1 , θ2 ≤ θU2

CRrest
3 g1 ≤ 0, g2 ≤ 0, g3 ≥ 0, θL1 ≤ θ1 ≤ θU1 , θL2 ≤ θ2

Appendix B: Comparison of
parametric solutions

A method has been proposed in [14] for the
comparison of two parametric solutions, Z(θ)1

and Z(θ)2 which are valid in the critical regions
CRR

1 and CRR
2 respectively. The comparison

process needs two steps. The first step is to
define a region CRint = CRR

1

∩
CRR

2 . In the
second step, check whether CRint is empty or
not. If CRint is empty, then there is no compari-
son to be performed, otherwise a new constraint
Z(θ)1 ≤ Z(θ)2 is formulated and a constraint re-
dundancy check is made for the new constraint
in CRint. This constraint redundancy test results
in three cases which are analyzed as follows:
Case 1: If the new constraint is redundant (see
[14]), then Z(θ)1 ≤ Z(θ)2, ∀θ ∈ CRint

Case 2: If the new constraint is infeasible (see
[13]), then Z(θ)1 ≥ Z(θ)2, ∀θ ∈ CRint

Case 3: If the new constraint is non-redundant,
then

• Z(θ)1 ≤ Z(θ)2, ∀θ ∈ CRint ∪ {θ|Z(θ)1 −
Z(θ)2 ≤ 0} and

• Z(θ)1 ≥ Z(θ)2, ∀θ ∈ CRint ∪ {θ|Z(θ)1 −
Z(θ)2 ≥ 0}.
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