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Abstract. Non linear models can be represented conveniently by Takagi-Sugeno fuzzy models when 

nonlinearities are bounded. This approach uses a collection of linear models which are interpolated by 

non linear functions. Then the global control law is the interpolation by the same functions of each 

feedback associated to each linear model. A Lyapunov approach enables to compute these feedback 

gains. The number of linear models depends directly on the number of nonlinearities the system has. 

The more models there are, the more difficult it is to guarantee the stability of the closed loop. This 

paper proposes a method to reduce the number of linear models by assuming a number of 

nonlinearities considered as uncertainties and to guarantee the global exponential stability of the 

system. This method is applied on a hydraulic system. 
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1. Introduction  

Takagi-Sugeno fuzzy models enable to represent 

precisely a wide class of nonlinear systems in a 

bounded domain of state variables. In brief, each 

nonlinearity is replaced by two linear models. 

Then these latters are interpolated by nonlinear 

functions to get back the initial nonlinear system 

[1]. To guarantee the stability of the closed loop, 

a PDC (Parallel Distributed and Compensation) 

control law is often used: it assumes to link each 

linear model to a linear feedback. Using a 

Lyapunov approach, with a quadratic function, 

the whole control problem can be casted as 

Linear Matrix Inequalities problem (LMI) [1-3]. 

We can remark that if the interpolating functions 

depend on non-measurable outputs, the problem 

is much more complex. In the opposite case, the 

observer and the controller can be designed 

separately [4]. 

 Since the number of linear models is equal to 

2n
 with n  the number of nonlinearities, it is 

clear that the more nonlinearities the system has, 

the more difficult it is to get the feedback gains 

because the number of LMI conditions will be so 

important that the solvers do not find a solution. 

For example in [5], there was a hydraulic system 

aimed at mixing two liquids into one tank. There 

were three nonlinearities, and feedbacks gains 

could be computed to guarantee the stability of 

the closed loop. However this approach was 

applied to a system based on three liquids to mix, 

but cannot be applied on a system based on four 

nonlinearities and the stability of the closed loop 

cannot be proved with the same LMI problem as 

previously. 
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 This paper proposes to interpret some 

nonlinearities of the model as uncertainties and 

to guarantee the global exponential stability of 

the system.  

 However, the number of linear models is 

reduced to a half each time a non-linearity is 

suppressed. We hope to get a solution for that.  

 We will also show that this approach gives 

interesting results for our hydraulic system.  

 Section two recalls some basic principles of 

Takagi-Sugeno fuzzy models. Basic conditions 

to guarantee the stability of the closed loop will 

be evoked, as well as a few matrix properties 

used in the rest of the paper.  

 Section three presents the control problem 

when uncertainties in the model are taken into 

account.  

 Finally, section four exposes the results about 

our hydraulic system. 

2. Fuzzy models stabilization 

2.1 Fuzzy model 

We begin by recalling what a Takagi-Sugeno 

(TS) model [2,6,7] is. Let be a nonlinear system:  

      ;x f x g x u y Cx    (1) 

A Takagi-Sugeno (TS) model is obtained, if 

it’s possible, to find r  partial models of the type:   

 ;i i ix A x Bu y C x    
 (2) 

and r  functions  ih x , with the constraints   

  0ih x   and  
1

1
r

i

i

h x


   (3) 

such that (1)  is equal to :   

z z zx A x B u y C x    (4) 

With   
1

r

z i i

i

A h x A


   ,   
1

r

z i i

i

B h x B


  and 

  
1

r

z i i

i

C h x C


   (5) 

Let us study the case of a single non linearity. 

To obtain a TS fuzzy model from a nonlinear 

model, we can use the following properties for 

every bounded function  f x f f    :  

If we put  
 

1

f f x
h x

f f





 and  

 
 

2

f x f
h x

f f





 with  1 0h x  ,  2 0h x   and 

   1 2 1h x h x   we have : 

 

 
   f x f f f x

f x f f
f f f f

 
 

 
  (6) 

Hence, we obtain 2nr   partial models for a 

system having n  nonlinearities. 

For example: let be the nonlinear model 

( ) sin( ( ))x t x t , then the nonlinear function 

considered is 
sin( )

( )
x

f x
x

  which is bounded. 

For  0 0 0, ,
2

x x x x


    we obtain: 

0 0

0 0

0 0 0
1 2

0 0 0 0

sin( ) sin( )sin( )
1

( sin( ))

( sin( )) sin( ) sin( )
( ).1 ( ).

( sin( ))

x x x xx

x x x x

x x x x x
h x h x

x x x x x


  




  



 (7)  

Then, the two rules TS model is:

 

if x  is 
1( )h x  then ( ) ( ) 1x t x t   

if x  is 
2 ( )h x  then 0

0

sin( )
( ) ( )

x
x t x t

x
   

2.2 Stabilization conditions 

When dealing with TS fuzzy models the classical 

control law is PDC [8] :  

 
     

1

r

i i

i

u t h x F x t


   (8) 

Determining the control law consists in 

finding r  control gains
iF . For continuous fuzzy 

models, a quadratic Lyapunov function :

       TV x t x t Px t , with 0P  , is mainly used. 

This lead to a LMI problem which enables to 

compute the gains 
iF  [1-3, 8-10].  Let us show 

this:  

Let be:   TV x x Px , then we must have 

  0V x  . This leads to:  

 
  0T TV x x Px x Px      (9) 

    0
TT T

z z z z z zx A B F Px x P A B F x     (10) 

 
    0

T

z z z z z zA B F P P A B F       (11) 

 
0T T T

z z j i z zXA A X B M M B     (12) 

with : 
1X P  and 1

i iM F P . 

This last inequation (12) is verified if we have:  

 ,i  0ii   (13) 

 
, ,i j i j 

 
0ij ji     (14) 

with  T T T

ij i i j i i jXA A X B M M B      (15) 

These conditions are very conservative. Current 

researches try to lower more and more the 
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conservativity of the LMIs. The next section will 

present a series of matrix properties in order to 

reduce this conservativity. 

These properties can make conditions of 

stability into LMI if we obtain BMI (bilinear 

inequality of matrix) and/or maximize or 

minimize the number of free decisions variables 

to facilitate finding solution.  

Please also note that in this paper only 

quadratic Lyapunov functions are used. They are 

currently researches trying to apply non quadratic 

Lyapunov functions for continuous fuzzy models. 

It is often required to use hypothesis about the 

derivative of the membership functions that must 

be checked a posteriori during experiments or 

simulations. Indeed terms  ih z  appears in P . 

But it is not possible to enforce such constraints 

in the control law through LMIs. This questions 

the whole validity of the approach because a 

valid simulation does not imply that the same 

validity would be obtained for other initial 

conditions. A thorough discussion on this issue 

can be found in [11], where the authors reject the 

whole approach due to this problem. Moreover 

non quadratic Lyapunov functions are often 

associated to bilinear matrix inequalities (BMIs). 

2.3 Properties 

In this section, some properties about matrices 

are given. 

Lemma 1. (Schur’s complement [6]) 

Matrices X , Y  and R  being of appropriate 

sizes, we have : 

  

1 (*)0
0

0

T

T

YY XR X

X RR

    
   

  
 (16) 

((*) represents all terms induced by symmetry in 

a symmetric matrix). 

Lemma 2. [12]: The two next problems are 

equivalent: 

(i) Find 0P  , such that: 0TT A P PA    (17) 

(ii) Find 0P  , L , G  such that:  

 

(*)
0

T T

T T T

T A L LA

P L G A G G

  
 

    
 (18) 

Lemma 3. (Relaxation [5,13,14]) 

Let be the matrices ij  and the condition: 

 

 

    

2

1

1 1

0

r

zz i ii

i

r r

i j ij ji

i i

h z

h z h z



 

   

   





 (19) 

(19) is true if there exist 
iQ  and ijQ , ( )j i  such 

as the following conditions are respected: 

 

 i ,  ii iiQ   (20) 

 
,i j i j  , ij ji ij jiQ Q        (21) 

 
 

11

21 22

1 1

(*)

0

r rrr r

Q

Q Q

Q Q Q


 
 
  
 
 
  

  (22) 

Please remark that more advanced techniques 

have been proposed to obtain from (19) a finite 

sets of LMIs that are less restrictive than (20)-

(22), [10,15-17]. They can be applied in our 

approach, since the ij  terms are not modified. 

However the associated LMIs may become too 

large so that the solvers are unable to find 

solutions. 

3. Rules reduction by uncertainties  

3.1 Model 

This approach consists of writing some 

nonlinearities as uncertainties [13,18]. 

          
1

r

i i i i i

i

x t h A A x t B B u t


       (23) 

With: 

 . .i a i iA H a t Ea   ,  . .i b i iB H b t Eb    (24) 

Ha , Hb , 
iEa , 

iEb  are constant matrixes and: 

   . 1T

i ia a   ,  . 1T

i ib b    (25) 

Let us consider the following augmented 

state vector        T

cx t x t y y  ,  

with 
cy  consign on the outputs. 

 
    T

cx t x t y y    (26) 

 

          

 

 

0

0 0

T

z z z z z

z z z z

z z c

x t A A x t B u C C x t

x tA A B B
u

C C y y

       

       
             

  (27) 

 
         z z z zx t A A x t B B u t      (28) 
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 with 
0

0

z

z

z

A
A

C

 
  

 
, 

0

0

z

z

z

A
A

C

 
   

 
, 

0

z

z

B
B

 
  
 

, 
0

z

z

B
B

 
   

 
. 

We suppose that the state is entirely 

accessible. In the case of the addition of an 

observer, there is no guarantee for convergence 

of the closed loop. We use an integral action in 

the forward path as indicated in figure 1.  

 
 

+/- 

  yC 

System 

ˆ
zF x  

zf  

Observator 

 y  u 
+/-   

x̂  

 
Figure 1. Sructure of observator/control. 

3.2 Robust stabilization 

 
        

1

r

i i z

i

u t h z t F x t F x t


     (29) 

The Lyapunov function is:   TV x x Px  

A decay rate   is chosen, so we have the 

condition:  

 
   2V x V x    (30) 

The above inequality implies that the origin is 

globally exponentially stable. 

Indeed, 

   2V x V x   

Implies that,       20 tV x t V x e   (31) 

Using the fact that: 

 

      

       

2

min

2

max

T

P x t V x t

x t P x t P x t





 


 (32) 

 
min

. and  
max

. denotes the smallest and the 

largest eigenvalues.  

So,  
 

   
max

min

1/ 2

1/ 2

1
. 0 . tx t P x e

P




    (33) 

 

      

   

2 2

min

2 2

max

0

0

t

t

P x t V x e

P x e

















   (34) 

 

 
 

 
 max

min

1/ 2

1/ 2
. 0 . ,t

P
x t x e

P






  (35) 

for all initial conditions  0x . 

(28) and (29) give the closed loop: 

 
     z z z z z zx t A B F A B F x t      (36) 

(4) is equivalent to : 

 

 
0

2

T

z z z z z zT

z z z z z z

A B F A B F P
x x

P A B F A B F P

       
 

       

 (37) 

After pre and post multiplication by 1X P  

and 1

z zM F P , we obtain : 

2 0

T T T T

z z z z z z z z

T T

z z z z

XA A X M B B M X A A X

M B B M X

       

   
  (38) 

with  z z zA H a t Ea   and  z z zB H b t Eb    

we have : 

 

2

0

T T T

z z z z z z

T T T

z z z z

T T T T

z z z z z z

XA A X M B B M X

XEa a H H a Ea X

M Eb b H H b Eb M

    

   

   

  (39) 

By using this property  

1T T T TX Y Y X X X Y Y       and  0   (40) 

we obtain with 0za   and 0zb   (i.e. 

, 0ii a   and 0ib  )  

 

1

1

2

0

T T T

z z z z z z

T T T

z z z z z z

T T T T

z z z z z z z z

XA A X M B B M X

a XEa a a Ea X a HH

b M Eb b b Eb M b HH



 

 





    

   

   

 (41) 

By construction:  

   T

z za t a t I    and    T

z zb t b t I   , then (41) 

is verified if : 

 

1

1

2

0

T T T

z z z z z z

T T

z z z z

T T T

z z z z z z

XA A X M B B M X

a XEa Ea X a HH

b M Eb Eb M b HH



 

 





    

 

 

 (42) 
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Or equivalently: 

  1 1

1 1

2

0

T T T

z z z z z z

T T

z z z z z z

T T T

z z z z z z z z

XA A X M B B M X

XEa a Ea X a H a H a

M Eb b Eb M b H b H b



   

   

 

 

     


 


 

 (43) 

So the use of Schur’s complement gives : 

2

0 0 0

00 0 0

0 0 0

0 0 0

T T T T T T

z z z z z z z z z z z

T

z z

z z

T

z z

z z z

XA A X M B B M X a H XEa b H M Eb

a H a I

Ea X a I

b H b I

Eb M b I

  

 



 



    
 

 
  
 

 
  

  (44) 

The next matrix defined 

2

0 0 0

0 0 0

0 0 0

0 0 0

T T T T T T

i i j i i j i i i j i

T

i i

ij i i

T

i i

i j i

XA A X M B B M X a H XEa b H M Eb

a H a I

Ea X a I

b H b I

Eb M b I

  

 



 



    
 

 
   
 

 
    

  (45) 

Theorem 2. Let be the uncertain TS model (28), 

the PDC law (29) and the ij  defined in (45). If 

there exist a matrix 0X  , a scalars 0ia  , 

0ib  , a matrixes 
iM , 

iiQ , ijQ ,  , 1, ,i j r , 

i j  such that conditions (20), (21) and (22) are 

verified, then the closed loop is globally 

exponentially stable. 

 

Proposition.  Having Theorem 2 verified then, 

we can obtain an estimation as in (35), hence the 

system (28) is globally exponentially stable. 

  

Proof. 

 lim 0x t


  (since theorem 2 verified) 

With 0cy  , we obtain  lim 0cy y


   then the 

output of the system convergence to 
cy . 

Note that the Lemma 2 can be applied on the 

block (1,1) of ij  to further enhanced the results. 

The application of these results will be done on a 

hydraulic system. 

 

4. Application  

4.1 System 

The system that we are studying is represented in 

Figure 2. It’s composed of k  tanks 

interconnected with the 
thk and used in chemical, 

pharmaceutical and agroalimentary industries. 

The goal is to obtain a mixture of 1k   liquids in 

the 
thk  tank exit with a previously fixed 

concentration of every liquid in the mixture. The 

outputs of the system to control are the flow 
skq  

and the relative concentrations 0i  , 

 2, , 1i k  given related to the first tank.   

The pumps supply the tanks respectively by 

variable flows. We suppose that these flows are 

proportional to the voltages applied to the Moto-

pumps. The dynamic of these actioners are 

neglected.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2. Diagram of the system of k  tanks 

4.2 Nonlinear model 

The level of each tank depends on the difference 

of the liquid flowing into and off a tank. 

Depending on the cross-cut of a valve 
iS  that 

can be considered constant, the amount of liquid 

flowing off by an outlet valve  siq t  according to 

Torricelli’s law is : 

 
     , 1, ,si i i iq t p S n t i k  , (46) 

With   2i ip g  

The amount of water ( )eiq t  flowing into tank 

i ,  1, , 1i k   can be described by : 

 ( ) ( )ei i i iq t rS u t ,   1, , 1i k   (47) 

ir  are constants. 

qsk-1(t) 

Tank k 

Tank k-1 

Pump 1 

u1(t) 
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qek-1 (t) 
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From (46) and (47) we obtain the following 

differential equation:   

       i i i i in t p n t ru t     (48)  

Based on these physical relations we get the 

k  state equations to describe the nonlinear 

dynamic behaviour of the plant : 

 

 

     

     

     

1 1 1 1 1

1 1 1 1 1

1

1

k k k k k

k
i

k i i k k

i k

n t p n t ru t

n t p n t r u t

S
n t p n t p n t

S

    





   



   



 




,

 

(49) 

 

The goal is to control the flow  ( )skq t   on the 

outlet side of the tank  k   and the concentration 

of each liquid in the tanks i ,  1, , 1i k  We 

introduce the parameters 0i  , to indicate the 

values of the relative concentrations of each 

liquid compared to the first tank. The 1k    exits 

for the flow are so:  

 

 
     1 sk k k ky t q t p S n t   (50) 

and for the concentrations:   2, , 1i k   

 

 
     1 1 1i i i i iy t p S n t S p n t    (51) 

The goal is thus to make tracking on   1y t   

(50) and regulation on  iy t ,  2, , 1i k   

(51). 

If we consider the model described by 

equations (49), (50) and (51) and desire to obtain 

an exact TS model in a compact domain of 

variables      1 2 ...
T

kn t n t n t   , it’s 

necessary to consider the k  nonlinearities 

 in t ,  1, ,i k . That leads to 2k
 rules. 

For example if we consider the case of 4 tanks, 

we obtain a 16 rules model: 

 

  

         

      

16

1

16

1

i i i

i

i i

i

x t h z t A x t B u t

y t h z t C x t






 



 






 

With matrices for the first model : 

 

1

1

2

2

1

3

3

31 2 4

1 2 3 4

0 0 0

0 0 0

0 0 0

P

n

P

n
A

P

n

PP P P

n n n n

 
 
 
 
 
 

  
 
 
 

 
 
  

, 

 

 

11

22

33

0 0

0 0
1,...,16 ,

0 0

0 0 0

i

P

P
i B

P

 
 
   
 
 
  

 

 

 

4

4

1 2
1 2

1 2

31
3

1 3

0 0 0

0 0

0 0

P

n

P P
C

n n

PP

n n





 
 
 
 
  
 
 
 
 
  

 

 

The other 15 matrixes are obtained from those 

of the first by permuting the terms 
in  and 

in , for 

1...4i  . 

To avoid the problem of exponential 

augmentation of the number of rules according to 

the number of tanks we propose to reduce this 

number of rules by using a TS model with 

uncertainties.  

We have said in the introduction that it’s not 

possible to get a solution to LMI problem with 

four tanks.  

We propose therefore to consider a single non 

linearity,  in t , all others being considered as 

uncertainties.  

We can write for the first tank:  

   
 

 
1

1

k
i k

k i i k

i k k

S p
n t p n t n t

S n t





   (52) 

With the notation : 

 
 

1
k

k

t
n t

  , we can write  

 
   k k k k

k k k

k k k k

t t
t

   
  

   

 
   

 
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With   ,k k kt      that correspond to 

   ,k k kn t n n : we take 
1

k

kn
   and 

1
k

kn
  , we can write  

if  
 

1
k

k

t
n t

   and 
 k k

k k

t 

 




 then 

     
1

1

k
i

k i i k k k

i k

S
n t p n t p n t

S






     

 

if  
 

1
k

k

t
n t

   and 
 k k

k k

t 

 




 then 

     
1

1

k
i

k i i k k k

i k

S
n t p n t p n t

S






     

all the other nonlinearities  in t , 

 1, , 1i k  will be reported in the 

uncertainties. For this : 

 

Let be a nonlinear function :    t   , 

then : 

   m rt t      with    1 1t  
 
and 

 

0,5 ( )

0,5 ( )

m i i

r i i

  

  

  


  
 

Then, we consider the bounded functions 

 
 

1
,i i i

i

t
n t

      ,  1, , 1i k   

Corresponding on    ,i i in t n n . For each of 

them, we can write with    1,1i t   : 

 
1

2
im i i    ,  

1

2
ir i i   ,

   i im ir it t      

 

Finally we obtain :  

 

        

     

2

1

2

1

i i i

i

i i i

i

x t h A A x t Bu t

y t h C C x t






   



   





 (53) 

 

With: 

 

 

1 1

1
1 1

11
1 1 1 1

0 0

0

0 0 0

m

k k m

k
m k k kk m

k k

p

A
p

SS
p p p

S S





  

 


 

 
 
 
 

  
 

 
  
  

 

 

 

1

2

1

0 0

0

0

0 0

k

r

r

B

r 

 
 
 
 
 
 
  

 

 

1 1 1 2 2 2 2

1

1 1 1 1 1 1 1

0 0

0 0

0

0 0 0

k k k

m m

m k k k k m

p S

p S S p

C

p S S p



  

     

 
 


 
 
 
 
 
 

 

To obtain   2 2,A C   we replace  k   by. 
k  

 

   

     

1 2

1 1 1

1 11

11
1 1 1 1 11

0 0

0

0 0 0

0

r

k kk r

k
r k kk r

k k

A A

p t

p t

SS
p t p t

S S

 

 

   

 


 

   

  
 
 
 
 

 
 
 
  

 

(54) 

   

     

1 2

1 1 1 1 2 2 2 2 2

1 1 1 1 1 1 1 11

0 0 0

0 0

0

0 0 0

r r

r k k k kk r

C C

p S t S p t

p S t S p t

    

       

   

 
 


 
 
 
 
 
 

 

(55) 

From the expression of uncertainties (54) we 

can write  1 2 a aA A H a t E       with  

 

 

 

 

1

1

0

0 k

t

a

t



 

 
 

   
 
 

 and  
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11

1 0 0

0 1

0

0 0 1
a

k

k k

H

SS

S S



 
 


 
 

  
 

 
 
  

 

 

  

1 1

1 1

0 0

0

0 0 0

r

a

k k r

p

E

p



 

 
 
 
 
 
  

 

 

In the same way, from the expression (55), we 

can write  1 2 c cC C H c t E      with  

 

 

 

 

1

1

0

0 k

t

c

t



 

 
 

   
 
 

  

and  

 

0 0 0

1 1

0

0

1 0 0 1

cH

 
 


 
 
 
 
  

, 

 

 

1 1 1

2 2 2 2

1 1 1 1

0 0

0

0 0 0

r

r

c

k k k k r

p S

p S
E

S p



 

    

 
 
 
 
 
  

 

 

Model TS with uncertainty is now explicit. 

Let us note that it is the "minimum" number of 

rules which prevailed with its obtaining, and 

which there exists obviously of other possible 

representatives of the nonlinear model (49). 

Now we will compare this method with a 

classic method of linearization. For example we 

use the Taylor linearization.  

 

Taylor linearization: 

We recall that with : 
.

( , )i i in f n u  

Taylor series can be writted as : 

 

   

   

     

0 steady flow 

steady flow 

, ,

, ,

si

i i si si

in

i si i si

i i

si si si si

i si i si

i
y in

si

f n u f n u

f f
n n u u

n u
n u n u

y
y n y n n n

n
n

 

 








 





  





  



  (56) 

, ,is is isn u y  are the set points. 

 

After linearisation and with: 

' ( ), ' ( ); ' ( )i i si i i si i i sin n n u u u y y y     

we obtain: 
 

 
 

 

 
 

 

 
 

 
 

 

1

1

1

2
2 2 2

2

' ' ' ; 1,2,3;
2

' ( )
2

( ) ; 4
2

'
2

' ( )
2

( )
2

i
i i i i

si

k
i

k i si

i si

k
k sk

sk

k

sk

i
i i si

si

k
k k sk

sk

p
n t n ru t i

n t

p
n t n n

n t

p
n n k

n t

p
y t

n t

p
y t n n

n t

p
n n

n t







  




   



   




 


 




  


 





 (57) 

 

From this equation the linear model is : 

   

 

 

' ' ' ; ' ( ), ' ( )

' '

' ',

s sn t n Bu t n n n u u u

y t n

u t n F are control gain

      





  

Matrixes of the system are: 

 

1

1

2

2

3

3

31 2 4

1 2 3 4

0 0 0
2

0 0 0
2

,

0 0 0
2

2 2 2 2

s

s

s

s s s s

P

n

P

n
A

P

n

PP P P

n n n n

 
 
 
 
 
 

  
 
 
 

 
 
  
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1 0 0

0 1 0
,

0 0 1

0 0 0

B

 
 
 
 
 
  

 

 

4

4

1 2
2

1 2

31
3

1 3

0 0 0
2

0 0
2 2

0 0
2 2

s

s s

s s

P

n

P P
C

n n

PP

n n





 
 
 
 
  
 
 
 


 
  

 

 (58) 

4.3 Simulation 

We deal with the case 4k  . The results are 

obtained by using the software Matlab/Simulink. 

The max and the min values of liquid in tanks 

and 
i  are: 

1 2 3 0,1n n n m   , 
1 2 3 4,3n n n m   , 

4 0,05n m , 
4 4n m , 

2 2  , 
3 3  . 

The uncertain model is written then with the 

equations (53) and (55) :  

1

0,36 0 0 0 0 0 0

0 0,18 0 0 0 0 0

0 0 0,18 0 0 0 0

0,36 0,18 0,18 0,25 0 0 0

0 0 0 0,25 0 0 0

0,36 0,31 0 0 0 0 0

0,36 0 0,27 0 0 0 0

A

 
 


 
 
 

  
 
 
 
  

, 

2

0,36 0 0 0 0 0 0

0 0,18 0 0 0 0 0

0 0 0,18 0 0 0 0

0,36 0,18 0,18 2,24 0 0 0

0 0 0 2,24 0 0 0

0,36 0,31 0 0 0 0 0

0,36 0 0,27 0 0 0 0

A

 
 


 
 
 

  
 
 
 
  

, 

1

0 0 0 0,25 0 0 0

0,6 0,31 0 0 0 0 0

0,36 0 0,27 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

C

 
 


 
 

  
 
 
 
  

, 

2

0 0 0 2,23 0 0 0

0,6 0,31 0 0 0 0 0

0,36 0 0,27 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

C

 
 


 
 

  
 
 
 
  

 

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

B

 
 
 
 
 

  
 
 
 
 
 

, 

1 0 0

0 1 0

0 0 1

1 1 1

H

 
 
 
 
 
    

, 

 

1 2

0,27 0 0 0 0 0 0

0 0,13 0 0 0 0 0

0 0 0,13 0 0 0 0

Ea Ea 

 
 


 
  

  (59) 

The found solution gives the following gain: 

 

1

44,1 2,1 5,7 113,1

4 3,5 1,5 7,2

1,9 0,8 3,9 9,1

F

 
 

   
 
  

, 

 

2

45,1 2,3 5,9 116,8

3,2 3,6 1,3 4,6

2,8 0,7 4 11,7

F

 
 

   
 
  

, 

 

1

2,65 2,18 2,20

1,26 0,6 2,13

0,73 1,66 0,44

0,66 1,88 0,84

K

 
 
 
 
   
 
    

  

and  

 

2

2,59 37,9 38,2

1,35 0,14 35

0,83 30,19 2,34

0,83 13,3 14

K

 
 
 
 
  
 
    

 (60) 

To guarantee fix relative concentrations, 2cy  

and 3cy  must be equal to 0. We can see on the 

curves that with the control law we obtain exactly 

the desired set point, Figure 4. 

We also notice that for the change of set point 

for  1y t
 

there is an important error in the 

relative concentrations  2y t .  This corresponds 
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to a transitional regime and the liquid produced 

in this lap of time will not be used. 

To gain place, levels 1, 3 and 4 are 

suppressed. Level 2 are showed only with control 

variables, Figure 3. 

 

 
 

Figure 3. Level in tank 2 (m) and control variables

 1u t ,  2u t ,  3u t . 

  

 

 

Figure 4. Evolutions of  1y t ,  2y t  and  3y t . 

The comparison with Taylor linearization 

shows that the latter does not give satisfied result: 

on Figure 5,  1y t  is not better than in our 

approach. 

 

Figure 5. Evolutions of  1y t , (Taylor linearization) 

5. Conclusion 

The models of Takagi-Sugeno propose a rigorous 

approach allowing the treatment of nonlinear 

systems. In fact they allow their decomposition 

into linear systems, interpolated by nonlinear 

functions. It is possible with this approach to 

write a nonlinear system exactly as the convex 

sum of linear systems, according to weight 

determined in advance. The number of partial 

linear models determined from the number of 

nonlinearities is 2k  for a system having k  

nonlinearities.   

Nevertheless, the study of stability of TS 

fuzzy models will be difficult in the case where 

the number of nonlinearities is important.    

This study proposed a methodology to reduce the 

number of rules and to guarantee the global 

exponential stability of the system. The new 

model included only two rules. All the other 

nonlinearities were considered as uncertainties. 

In this paper LMIs conditions were proposed to 

guarantee the exponential stability of the closed 

loop. These results were applied to a hydraulic 

system which was described by a nonlinear 

model.    
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