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Abstract. A perfect mix of the air and fuel in internal combustion engines is desirable for proper 

combustion of fuel with air. The vehicles running on road emit harmful gases due to improper 

combustion. This problem is severe in heavy vehicles like locomotive engines. To overcome this 

problem, generally an operator opens or closes the valve of fuel injection pump of locomotive engines 

to control amount of air going inside the combustion chamber, which requires constant monitoring. A 

model is proposed in this paper to alleviate combustion process. The method involves recording the 

time-varying flow of fuel components in combustion chamber. A Fuzzy Neural Network is trained for 

around 40 fuels to ascertain the required amount of air to form a standard mix to produce non-harmful 

gases and about 12 fuels are used for testing the network’s performance. The network then adaptively 

determines the additional/subtractive amount of air required for proper combustion. Mean square error 

calculation ensures the effectiveness of the network’s performance. 

 

Keywords: Air-fuel ratio; adaptive learning systems; combustion engines; neuro-fuzzy network; 

detector; corrector. 
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1. Introduction 

The air-fuel ratio control problem has been 

extensively investigated over many years. PI-feed 

forward control is commonly used to control the 

fueling and maintain a desired air-fuel ratio. 

According to Astrom and Wittenmark [1] gain 

scheduling can be used to improve the 

performance. However, the control gains are 

engine-specific and difficult to tune. Cho and 

Hedrick [2] derived a nonlinear controller for 

fuel-injected automotive engines  while Cho and 

Oh [3] designed a control law applicable to a 

wide range of conditions. Choi and Hedrick [4] 

designed an observer-based controller for spark- 

 

 

 

ignited engines and Kaidantzis et al. [5] 

described a robust, self-calibrating feedback for  

air-fuel ratio control. Won et al. [6] detailed air-

fuel ratio control using a Gaussian network. 

Yoon and Sunwoo [7] derived an adaptive sliding 

model control algorithm based on the 

measurement of a binary oxygen sensor to reduce 

the exhaust gas emissions. Raghuram et al. [8] 

proposed a model for estimating the AFR from 

cylinder pressure data. Yinhua et al. [9] presented 

a modeling approach from individual cylinder 

fuel injection to the output of the sensor and thus 

determining air-fuel ratio for internal combustion 

engines with multi-cylinders. 
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In terms of advanced approaches, here we 

mention the use of adaptive controllers by Turin 

and Geering [10], observer based controllers by 

Powell et al. [11], H∞ controllers by Mianzo et 

al. [12] and Model Predictive Controllers by 

Muske and Jones [13]. The use of an electronic 

throttle as an additional control actuator by 

Chang et al. [14] and secondary/port throttles 

Stefanopoulou et al. [15] have been also 

explored. Apart from stoichiometric air-to-fuel 

ratio controllers, Zhang et al. [16] have described 

control of air-to-fuel ratio in a lean burn engine 

using linear parameter-varying controllers. The 

motivation for these and related studies has been 

to achieve improved performance and robustness 

of the air-to-fuel ratio control thereby enabling 

emission, fuel economy and drivability 

improvements.   

Previous papers have described the use of 

neural networks to correlate the signatures 

formed by the spark plug voltage waveforms 

with specific values of air-fuel ratio [17,18]. 

Some of the practical problems, due to electrical 

noise, the high voltages encountered and lack of 

stability in the engine, have also been reported by 

Howlett [19,20]. Powell et al. & Muske and 

Jones [11,13] found that the neural network can 

differentiate between various categories of air-

fuel ratio with a success rate of up to 

approximately 90% provided load, speed etc., 

were held constant. A number of neural network 

architectures have been investigated in this 

application, including the Multi-Layer Perceptron 

(MLP) and the Radial Basis Function (RBF) network. 

Neural network models have been described 

in the literature by [21-23]. The MLP network 

has proven useful in a range of applications, 

providing a compact representation of the 

problem space. A Cerebellar Model Articulation 

Controller (CMAC)  Neural Network have been 

used by Arora [24] for adaptively regulating the 

air-fuel balance in combustion engines. With the 

use of large amounts of training data, the 

standard MLP network executing a back-

propagation algorithm gives the desired results 

and the CMAC Neural Network learns adaptively 

and converges quickly enough. But due to 

vagueness in the type and quantity of fuel along 

with the uncertainty in amount of air, pure neural 

networks fail to give generalized result. Hence, a 

robust, low-cost method of monitoring and 

controlling combustion process may be of great 

interest to engine manufacturers. Such a system 

must have the capability of handling uncertainty 

with trainability mechanism to maintain a 

balance between the quantity of air and fuel. 

Heading in the same direction, an effort is made 

to develop a model which not only smoothly 

handles vagueness, but also identifies the 

imbalance in amount of air and fuel for proper 

combustion. 

In recent years, techniques coupled with fuzzy 

control are becoming popular in the automotive 

field. Assuming that the load and speed of engine 

are constant, an adaptive learning system based 

on Neural Network has been introduced to deal 

with fuzzy environment. The novelty in the 

proposed model lies in its approach. A neuro-

fuzzy model is developed in MATLAB with two 

parts: detector and corrector. Once trained, the 

network first adaptively determines the 

additional/subtractive amount of air required for 

proper combustion and then absorbs/releases the 

required amount of air. Capability to deal with 

fuzziness or uncertainty in the amount of air and 

fuel is its strength. The rest of the paper is 

organized as follows. Section II discusses the 

combustion process taking place in combustion 

chamber. Section III discusses the architecture of 

adaptive neuro-fuzzy inference system and give 

details on data generation and selection. Section 

IV presents the methodology used and discusses 

the test results. Finally, Section V summarizes 

findings and conclusion of this study. 

2. Combustion Process 

All fuels consist mostly of atomic Carbon (C), 

Hydrogen (H), Oxygen (O), Nitrogen (N), 

Sulphur (S), minerals (ash) and water (H2O). In 

the process of fuel combustion, the molecular 

Oxygen (O2) in air reacts with the combustible 

components of fuel. As an example, the fuel 

Carbon (C) reacts with oxygen (O2) of the air to 

generate Carbon Dioxide (CO2). If the reaction is 

incomplete, Carbon Monoxide (CO), a deadly 

gas is generated. It is worthwhile to point out that 

all combustion products such as CO2, CO, NOx, 

CnHm, SO2, SO3, except for the water generated 

by combustion of H to H2O, are harmful, out of 

which CO2 is absorbed by plants to produce O2. 

Theoretically, the air-fuel ratio necessary for 

complete combustion depends only upon the 

complete composition of the fuel; practically it 

also depends upon how thoroughly the air and 

fuel are mixed so that their particles can combine 

properly. Improving combustion means burning 
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the fuel completely and minimizing harmful 

emission. 

2.1. Internal combustion engine 

An engine in which both the heat energy and the 

ensuing mechanical energy are produced inside 

the engine is called Internal Combustion Engine. 

One of the problems the engine faces is that the 

fuel system might be supplying too much or too 

little fuel and air mixture, making the combustion 

to be improper. This may result in emission of 

harmful gases like CO, NOx, etc. 

In internal combustion engines, the 

combustion of fuel takes place in the presence of 

air, not pure oxygen. Air contains many 

constituents, particularly oxygen, nitrogen, argon 

and other vapors and inert gases. Its volumetric 

composition is approximately 21% oxygen, 78% 

nitrogen and 1% argon. Since neither nitrogen 

nor argon enters into chemical reaction, it is 

sufficiently accurate to assume that volumetric 

air proportions are 21% oxygen and 79% 

nitrogen and that for 100 moles of air, that are 21 

moles of oxygen and 79 moles of nitrogen. That 

is: 

2

2

  N 79
3.76 

  O 21

moles of
moles

moles of
          (1) 

Therefore, for each mole of oxygen in air, 

there are 3.76 moles of nitrogen. The internal 

combustion engine uses a control scheme that 

monitors outputs of a system to control the inputs 

to a system, thereby managing the emissions and 

fuel economy of the engine. 

The model proposed in this paper, can be 

incorporated into combustion unit to determine 

when and how long the air injector should be 

open. This can be done to ensure the lowest 

emissions and best mileage. This would lead to 

two cases: 

• Case 1: If the air intake valve stays open for 

long, chances are there that more air than 

needed is sucked in, which may result into 

injection of more fuel than required. This 

results into burning of more fuel giving less 

mileage. 

• Case 2: If the air intake valve opens for less 

time, the less amount of air will be sucked in 

than the desired quantity, which may result 

into imbalance in combustion process. This 

results into improper burning of fuel emitting 

harmful gases. 

In order to reduce the emission of carbon 

monoxide (CO) and other toxic gases and to 

carry out efficient combustion in internal 

combustion engines and giving adequate mileage, 

the application determines the proper amount of 

air-fuel mixture required. The model consists of 

two parts: 

• Detector: Depending upon the type of the 

fuel and the quantity of the fuel, the model 

determines the amount of air required for 

most efficient combustion  

• Corrector: Depending upon the type of the 

fuel, the quantity of the fuel and the air 

intake, the model determines the quantity of 

air to be added or reduced for efficient 

combustion. 

 

Figure 1(a). Internal combustion engine (courtesy: 

http://mechanicalengineeringnotebook.com) 
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Figure 1(b). Process supporting proper combustion in 

combustion chamber 

Figure 1(a) depicts a schematic diagram of 

internal combustion engine and Figure 1(b) 
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shows the proposed phases to be incorporated 

into combustion engine for maintaining a proper 

balance between air and fuel going inside the 

combustion chamber. For more details on the 

parts and working of internal combustion 

engines, readers are referred to [25]. 

 There are a number of factors that restrict the 

flow of air into the input valve leading to 

inefficient combustion like a slight pressure drop 

through a throttle body. The fuel injection throttle 

bodies restrict air flow producing a pressure drop 

when the throttle blade is partially closed. Intake 

valves and ports offer some restriction at some 

engine speeds. The exhaust stroke does not expel 

all the burnt gases because some exhaust is 

trapped in the clearance volume, the exhaust 

valves and exhaust pipes offering some 

restrictions. So, the model suggests to sense the 

amount of fuel and the amount of air entering the 

combustion chamber and decide whether the air 

entering the chamber is sufficient or not so as to 

make necessary increment or decrement in the 

amount of air by controlling the input valve or 

the exhaust valve as the part of the variable valve 

technology. The fuel flow rate is bounded 

between 0 to 0.004
kg

s
.  

This restriction is important when simulating the 

performance because it is unrealistic to allow the 

controller to command negative or infinite fuel. 

3. Proposed Neuro-Fuzzy Model 

The neuro-fuzzy models try to link the basic 

concepts of fuzzy logic and neural network 

theory. The peculiar concept of fuzzy logic is that 

an element of the world belongs to a set, 

specifying a feature of the element called 

linguistic variable, with a value ranging from 0 to 

1 according to a function called membership 

function. Following the conventional logic, an 

inference system based on rules in the form ‘‘IF-

THEN’’ is formulated for the fuzzy logic. 

The computation of the rule consequences 

starting from the value of its antecedent is 

computed by means of different functions 

(minimum, maximum, and weighted mean). In 

neuro-fuzzy models, neural networks are used to 

tune the membership functions of a fuzzy system, 

and to extract fuzzy rules from numerical data. 

To enable a system to deal with cognitive 

uncertainties in a manner more like humans, the 

concept of fuzzy logic is incorporated into the 

neural networks.  

3.1. Adaptive neuro-fuzzy inference system 

As suggested by Shing and Jang [26], Adaptive 

Neuro-Fuzzy Inference System (ANFIS) can 

serve as a basis for constructing a set of if-then 

rules with proper membership functions to 

generate input-output pairs. In this work, a 6-

layered neuro-fuzzy inference system as shown 

in figure 2 has been used.  

 

Figure 2. Six-layered ANFIS architecture 

For the explanation of layer-wise 

implementation of ANFIS using the above 

structure, let us consider the Detector part of the 

model with the example of a simplest fuel CH4. 

Around 200 samples consisting of different 

combinations of C and H for each of the 40 fuels 

were used for training the ANFIS. Figure 3 

shows a sample dataset for ANFIS training. 

Figure 3. Sample training data for ANFIS (Detector) 

The input is in the form of milligram of C and 

H and output is milligram of air required. 

1 2 of Carbon,  of Hydrogenx mg x mg   

 

Layer 1 is the input layer. Neurons in this 
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layer simply pass external crisp signals to Layer2 

that is: 

(1) (1)

i iy x                             (2) 

where, 
(1)

ix is the input and 
(1)

iy is the output of 

the neuron i in the layer 1. The input and output 

of this layer are shown as follows: 

 

Table 1. Sample input to the first layer of ANFIS 

Input Output 
(1)

1 5.74245973171096x   (1)

1 5.74245973171096y   
(1)

2 1.92754026828903x   (1)

2 1.92754026828903y   

Layer 2 is the fuzzification layer in which 

neurons perform fuzzification of input on 

Gaussian membership function. 

(2) 2

2

( )

(2) 2

ix c

iy e 




                             (3) 

Where, 
(2)

ix is the input (same as
(1)

iy ) and 

(2)

iy is the output of the neuron i in the layer 2.  

Layer 3 is the rule layer in which each neuron 

corresponds to a single Sugeno-type fuzzy rule. 

A rule neuron receives inputs from respective 

fuzzification neurons and calculates the firing 

strength of the rule it represents. In an ANFIS, 

the conjunction of rule antecedents is evaluated 

by operator product. 

(3) (3)

1

k

i ij

j

y x


                               (4) 

Where, 
(3)

ix is the input and 
(3)

iy is the output 

of the neuron i in the layer 3. 

Layer 4 is the normalization layer in which each 

neuron receives inputs from all the neurons in the 

rule layer and calculates the normalized strength 

of a given rule. The normalized firing strength is 

the ratio of the firing strength of a given rule to 

the sum of firing strengths of all rules. It 

represents the contribution of a given rule to the 

final result. Thus, the output of the neuron i in 

layer4 is determined as 
(4)

(4)

(4)

1 1

ji i
i in n

ji j

j j

x
y

x





 

  

 
              (5) 

Where, 
(4)

ix is the input and
(4)

iy is the output 

of the neuron i in the layer 4. 

For the next layer first we have to estimate the 

consequent parameters for each neuron in layer 5. 

The equation for estimating consequent 

parameters is, 

 
1

* T T

dk A A A y


                    (6) 

where dy is the desired output for the given input-

output pair and A, 

1 2 1 2 1 21 25 25
[  (1) (1) ............ (1) (1)]A x x x x       (7) 

dy = 197.84109609534735 

 

Layer 5 is the defuzzification layer. Each 

neuron in this layer is connected to the respective 

normalization neuron, and also receives initial 

inputs 1x and 2x . A defuzzification neuron 

calculates the weighted consequent value of a 

given rule as  

 

 

(5) (5)

0 1 1 2 2

0 1 1 2 2     

i i i i i

i i i i

y x k k x k x

k k x k x

  

  
             (8) 

 

Considering the same values of 1x = 

5.74245973171096 and 2x = 1.927540268278903, 

the sample output from Layer 5 is as follows: 

 

Table 2. Fifth layer computation in ANFIS 
 

 

 

0.013073 0.001544 0.0007608 

0.0750714     

0.0251988     

0.2931879 0.0346279 0.3826602 

1.6836194     

0.5651314     

0.0257728 0.003044 0.002957 

0.1479993     

0.0496781     

8.89E-06 1.05E-06 3.51E-10 

5.10E-05 

  1.71E-05     

1.20E-11 1.42E-12 6.41E-22 

6.89E-11     

2.31E-11     

 

k 
i

(5)

iy
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Table 2. Fifth layer computation in ANFIS (cont.) 
 

 

 

0.294531 0.0347866 0.3861742 

1.6913321     

0.5677203     

6.6023982 0.7797987 194.05499 

37.914006     

12.726388     

0.5803866 0.0685485 1.4995335 

3.3328468     

1.1187186     

0.0001998 2.36E-05 1.78E-07 

0.0011515     

0.0003852     

2.70E-10 3.19E-11 3.25E-19 

1.55E-09     

5.21E-10     

0.0258783 0.0030564 0.0029812 

0.1486051     

0.0498815     

0.5803705 0.0685466 1.4994501 

3.3327541     

1.1186875     

0.0510177 0.0060256 0.0115868 

0.2929672     

0.0983387     

1.76E-05 2.08E-06 1.37E-09 

0.0001008 

  3.39E-05 

  2.38E-11 2.81E-12 2.51E-21 

1.36E-10 

  4.58E-11   

8.89E-06 1.05E-06 3.51E-10 

5.10E-05   

1.71E-05   

0.000199 2.35E-05 1.76E-07 

0.001143   

0.0003835   

1.75E-05 2.07E-06 1.37E-09 

0.0001008   

3.37E-05   

6.03E-09 7.12E-10 1.62E-16 

 

Table 2. Fifth layer computation in ANFIS (cont.) 

   

3.46E-08   

1.16E-08   

8.15E-15 9.62E-16 2.96E-28 

4.68E-14   

1.57E-14   

1.20E-11 1.42E-12 6.40E-22 

6.88E-11   

2.31E-11   

2.69E-10 3.18E-11 3.21E-19 

1.54E-09   

5.18E-10   

2.36E-11 2.79E-12 2.48E-21 

1.35E-10   

4.56E-11   

8.15E-15 9.62E-16 2.96E-28 

4.68E-14   

1.57E-14   

1.10E-20 1.30E-21 5.39E-40 

6.32E-20   

2.13E-20   

 

Layer 6 is represented by a single summation 

neuron. This neuron calculates the sum of the 

outputs of all defuzzification neurons and 

produces the overall ANFIS output y. 

 

 (6)

0 1 1 2 2

1 1

n n

i i i i i

i i

y x k k x k x
 

        (9) 

 

 

3.2. Generating training and test data 

The general formula of fuel used in combustion 

engines can be taken as
m n pC H O where m, n and 

p represent the number of moles of carbon, 

hydrogen and oxygen atoms in a mole of fuel. 

The basic equation for combustion of fuel in 

presence of air is: 
 

 

2 2

2 2 2

3.76

3.76
2

m n p cc cc

cc

C H O Y O Y N

n
mCO H O Y N

  

 
           

(10) 

k  (5)

iy
i k  (5)

iy
i



Air fuel ratio detector corrector for combustion engines using adaptive neuro-fuzzy networks                        91 

 

Table 3. Sixth layer computation in ANFIS 

(6)

ix   (6)

ix  

7.60 E-04  1.37E-09 

3.82E-02  2.51E-21 

2.95E-03  3.51E-10 

3.51E-10  1.76E-07 

6.41E-22  1.37E-09 

3.86E-01  1.62E-16 

         194.05  2.96E-28 

         1.49  6.40E-22 

1.78E-07  3.21E-19 

3.25E-19  2.48E-21 

2.98E-03  2.96E-28 

        1.49  5.39E-40 

1.15E-02   

The summation is:  197.84 

 

where Ycc is the moles of oxygen per mole of 

fuel. The nitrogen does not take part in reaction. 

On balancing the number of moles of oxygen on 

both sides: 

2 4
cc

P n
Y m                       (11) 

4 2
cc

n P
Y m                      (12) 

The stoichiometric equation now becomes: 

2 2

2 2 2

3.76
4 2 4 2

3.76
2 4 2

m n p

n p n p
C H O m O m N

n n p
mCO H O m N

   
        
   

 
     

 

 

(13) 

For complete combustion of fuel of finite size, 

some additional amount of oxygen is required. 

Each droplet of fuel should be surrounded by 

excess air to assure oxidation of all the fuel 

molecules. Thus, practically depending on engine 

and fuel type, 1.5 times as much as air is actually 

used than is theoretically required. This is called 

excess air factor. Consider the following example 

equation to determine the amount of air required 

for combustion on the basis of quantity of fuel: 
 

4 2 2 2 2 22 7.52 2 7.52CH O N CO H O N    

(14) 

Step1: Estimate the Quantity of fuel coming in 

Considering 5 mg of 4CH  

 

Step2: Convert it into moles 

Weight
N 

Molecular Weight
moles        (15) 

5
0.3125 

16
moles  

Now, 1 mole of 4CH requires 2 moles of 2O .  

Therefore,  

4

2

0.3125 2
0.3125   

1

        0.625   

moles of CH

moles of O






 (16) 

Similarly, 1 mole of 4CH requires 7.52 moles 

of 2N . Therefore, 

4

2

7.52 0.3125
0.3125   

1

          2.35   

moles of CH

moles of N






(17) 

Step3: Determine the Moles of air required 

• 0.21 moles of 2O  1 mole of air 

2

0.625
0.625   

0.21

2.9761905   air

= a (suppose)

moles of O

moles of



 (18) 

• 0.79 moles of 2N  1 mole of air 

2

2.35
2.35   

0.79

2.9746834   air

                        = b (suppose)

moles of N

moles of



 (19) 

 

Step4: Compute air with safety factor (i.e. 

Lambda – excess air factor) 

   If 18 19  then, 

    *  safety factor

else

  *  safety factor

c a

c b







        (20) 

Here, 2.9761905 1.5 4.446428575c    .  
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While the standard safety factor ranges from 

0.7 to 1.5, we have considered safety factor to be 

1.5. 

 

Step5: Figure out the air required in terms of mg 

 of air= 28.84 4.446428575 28.84

      128.2350001 

mg c

mg

  


(21) 

 

Step6: Perform other derivations, if required 

  2  0.21 32 29.88mg of O c          (22) 

2  0.79 32 98.355mg of N c         (23) 

      

   

0.3125 1 12 3.75

mg of C moles of fuel molecules of C

molecular weight of C

 



   

  (24) 

      

   

0.3125 4 1 1.25

mg of H moles of fuel molecules of H

molecular weight of H

 



   

(25) 

4. Experiments and Results 

The training data consisted of almost various 

types of fuels. Separate experiments have been 

carried out for “detector” and “corrector” part of 

the model. A flowchart representing the steps of 

proposed ANFIS model is shown in figure 4. 

Supervised training method has been used to 

train the ANFIS to detect the amount of air 

required to burn the fuel flowing in the 

combustion chamber. After the training, the 

network has been tested using the test set to 

check the validity of the model. Validation data 

is used to test the data not utilized to develop the 

model. Fuzzy logic Toolbox of MATLAB have 

been used develop the ANFIS model. The 

network also determines the surplus/deficit 

amount of air required to completely burn the 

fuel. For both detector and corrector, gbell 

nonlinear membership function having 

parameters a, b, c is used to adjust the overall 

form of μ(x). Parameter a is width of the 

membership function, parameter c is location of 

the peak of membership function and parameter b 

determines the extent of fuzziness [27]. Gbell 

follows a smooth curve at the extreme points and 

achieves more accurate results than triangular 

membership function [28]. 

 After rigorous training of ANFIS for selected 

fuels the network performance error is measured. 

The calculations shown in table 3 depicts the 

actual overall outcome y produced by ANFIS in 

detection phase which agrees with expected 

output dy (refer equation 7). This validates the 

effectiveness and accuracy of the proposed air-

fuel ratio model. 

4.1. Detector  

The model for the detector considers 2 fuzzy 

inputs for Carbon (C) and Hydrogen (H) as the 

major constituents of fuel with ‘gbell’ 

membership function as shown in figure 5. 

Figure 6 represents that the error curve plotted 

on the training data after 10 epochs was found to 

be 9.2726e-0005. This action plots the test data 

against the FIS output (shown in red) in the plot. 

Figure 7 shows the comparison between expected 

actual output (FIS output) and the output 

produced by ANFIS on 200 training data pairs. It 

can be observed that both the actual and expected 

outcomes almost overlap each other. 

MATLAB has been used to model the 

detection and correction of the amount of air 

required for proper combustion inside the 

combustion chamber. As discussed above, the 

structure of six layered Neuro-fuzzy Inference 

System with two inputs and single output is 

shown in figure 8. The inputs are the amount of 

Carbon and Hydrogen and the output is generated 

in terms of amount of air required for full 

combustion.  

Figure 9 shows the non-linear surface of the 

Sugeno Fuzzy model. With five membership 

functions for each of the two inputs, the ANFIS 

model considers 25 rules. 

4.2. Corrector 

For implementation of “corrector” ANFIS in the 

model is provided with 3 inputs, fuel constituents 

Carbon (C) and Hydrogen (H) and air with same 

‘gbell’ membership function as shown in figure 

10.  

The ANFIS structure with three inputs and 

single output is shown in figure 11 whereas 

figure 12 demonstrates the non-linear error 

surface of the model. 
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Figure 4. Flowchart for separate training and testing for detector and corrector of model 

 
 

  
(a) Carbon (b) Hydrogen 

Figure 5. Input membership function for training data (Detector) 
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Figure 6. ANFIS training error curve (Detector) 

 

 

 

 

Figure 7. ANFIS output (Detector) 

 

 

 

 

Figure 8. ANFIS structure (Detector) 

 

 

Figure 9. Error surface for ANFIS (Detector) 
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(c)  Air 

Figure 10. Input membership function for training 

data (Corrector) 

 

 

 

Figure 11. ANFIS Structure (Corrector) 

 

 

Figure 12. Error surface for ANFIS (Corrector) 

 

5. Findings and Conclusion 

A model has been proposed with an improved 

technique for adaptive control of the air supply to 

an internal combustion engine. The technique 

provides a convenient and quick method of 

achieving good fuel regulation and consequently 

improved control of exhaust emissions. The 

fuzzy fuel-injection Neural Network incorporated 

into combustion system can result into increased 

engine power with better fuel usage. In addition, 

the system is capable of maintaining the balance 

between air and fuel, leading to reduced 

emissions. Constant monitoring and control of 

the air suction by combustion chamber for 

burning of fuel is effective way to achieve 

improved combustion efficiency and 

performance, as well as the reduction of exhaust 

emissions. Thus, maintaining air-fuel ratio is 

important in the combustion and calibration 

processes. If there is too much fuel, not all of it is 

burnt, causing high fuel consumption and 

increased emissions of HC and CO; too little fuel 

can result in overheating and engine damage such 

as burnt exhaust valves. 

The fuzzy neural network is capable of 

autonomously learning the amount of air required 

to burn completely a given amount of fuel 

through the use of adaptive learning method. 

Besides controlling the emission of harmful 

gases, the air-to-fuel ratio control also aids fuel 

economy. Experimental results demonstrate the 

improved air-fuel regulation thereby assuring that 

the approach is found to be extremely effective in 

identifying imbalance in combustion, detecting 

previously learnt air-fuel combination, and 

autonomously improving its performance over 

time by self-learning. Air-to-fuel ratio control 

performance can strongly impact key vehicle 

attributes such as emissions, fuel economy and 

drivability. Together with the fuzzy sets and 

rules, the proposed model can be considered as a 

monitoring and control system, which helps to 

regulate the proportion of air and fuel in vehicles 

to increase combustion engine efficiency and to 

reduce the amount of harmful gases thus emitted. 

This aided the optimization process and resulted 

in quick and convenient tuning. 
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