
An International Journal of Optimization and Control: Theories & Applications

ISSN:2146-0957 eISSN:2146-5703

Vol.14, No.3, pp.249-260 (2024)

http://doi.org/10.11121/ijocta.1519

RESEARCH ARTICLE

Design optimal neural network based on new LM training algorithm
for solving 3D - PDEs

Farah F. Ghazi a, Luma N. M. Tawfiq a*

aDepartment of Mathematics, College of Education for Pure Science, Ibn Al-Haitham, University of Baghdad,
Baghdad, Iraq
farah.f.g@ihcoedu.uobaghdad.edu.iq, luma.n.m@ihcoedu.uobaghdad.edu.iq

ARTICLE INFO ABSTRACT

Article History:
Received 4 January 2024
Accepted 28 April 2024
Available Online 19 July 2024

In this article, we design an optimal neural network based on new LM training
algorithm. The traditional algorithm of LM required high memory, storage
and computational overhead because of it required the updated of Hessian ap-
proximations in each iteration. The suggested design implemented to converts
the original problem into a minimization problem using feed forward type to
solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the
parameters of learning with highly precise. Examples are provided to portray
the efficiency and applicability of this technique. Comparisons with other de-
signs are also conducted to demonstrate the accuracy of the proposed design.

Keywords:
PDEs
Neural networks
BP-training algorithm
Unconstrained optimization
LM training algorithm
Convergence analysis

AMS Classification 2010:
78M32; 78M50; 68U99

1. Introduction

Partial differential equations (PDEs) based math-
ematical models can be used to describe a wide
variety of physical issues. The PDEs govern a
wide range of physical, chemical, and biological
events [1, 2]. A mathematical model is a con-
densed, mathematically stated depiction of phys-
ical reality. Nonlinear PDEs are also crucial for
study in a wide range of domains, including hy-
drodynamics, engineering, quantum field theory,
optics, plasma physics, etc [3–5]. Since they fre-
quently do not have exact solutions, numerical
techniques are used to approximate them.

In addition, many researchers have been solve
nonlinear PDEs by using homotopy analy-
sis method (HAM) [6], Homotopy perturba-
tion method (HPM) [7, 8], Variational Iteration
method (VIM) [9], and Adomain decomposition
methods (ADM) [10–17]. Moreover, a number of
methods, including numerical approach used to

solve different type of PDEs for more details see
[18–22], iterations, differential, and Laplace trans-
formation approaches, have been utilized to nu-
merically and analytically solve comparable types
of the wave-like and also heat-like problems. It
is important to use a suitable method for solv-
ing any equation or problem. In recent years
some authors used neural networks as an impor-
tant method to solve many of real-world prob-
lems because of their specification. Some authors
used ANNs for solving different types of differen-
tial equations such that Oraibi et. al. [23] first
gave the concept of solving ordinary differential
equations using a neural network by formulating
a trial solution of the differential equation. The
authors tested the applicability and accuracy of
their developed method not only for ordinary dif-
ferential equations but also for systems of cou-
pled differential equations. Further, the authors
compared their results with the results obtained
by using other numerical methods, and reported

*Corresponding Author

249

http://creativecommons.org/licenses/by/4.0/

250 F.F. Ghazi, L.N.M. Tawfiq / IJOCTA, Vol.14, No.3, pp.249-260 (2024)

that developed ANN method is superior in terms
of memory requirements and accuracy.

Several attempts have been made to solve dif-
ferent types of differential equations using feed-
forward neural networks. Hussein and Mo-
hammed [24] reported a hybrid method by com-
bining optimization techniques with neural net-
works to solve high-order ordinary differential
equations. In a related work, Tawfiq and Hus-
sein [25] introduced a novel method for solving
boundary value problems using artificial neural
networks. They also implemented the method
for irregular domain boundaries with Dirichlet
as well as Neumann boundary conditions and
used for processing face recognition. Tawfiq [26]

solved initial and boundary value problems us-
ing a single-layer finite element neural network
and investigated the accuracy of the method for
nonlinear forward and inverse problem, and also
for a system of ordinary differential equations.
Salih and Tawfiq [27] presented a functionally
weighted neural network (FWNN) a new class of
artificial neural networks incorporating an infinite
number of nodes and showed that their new net-
work has superior extrapolation capability over
other networks then used to solve Troesch’s prob-
lem. Hussien et. al. [28] proposed an artifi-
cial neural networks-based deep neural network
and dropout to solve time dependent differen-
tial equations. The authors showed that artificial
neural network-based deep is very well approx-
imating dynamic systems represented by time-
dependent differential equations. Ali and Taw-

fiq [29] in their paper used artificial neural net-
works to approximate the solution of unsteady
state confined aquifer problem. The authors used
linear and non-linear terms in different types of
unsteady sate differential equations to illustrate
the accuracy of the method. Ali et. al. [30] pro-
posed feed forward neural network design for solv-
ing nonlinear second order, eigenvalue problem for
partial differential equation. They presented ex-
ample to show speed, accuracy and effectiveness
of applying neural network technique and found
their results more precise than other numerical
methods. The proposed neural network based
on new modification of BFGS update algorithm.
Gupta and Batra [31] developed a vectorized al-
gorithm and impleme-nted it in Python code us-
ing a deep artificial neural network to solve the
system of ordinary differential equations. Fur-
ther, to show the effectiveness of the proposed
method he compared his results with the fourth-
order Runge-Kutta method and showed the high
accuracy of his proposed method. Hussien and

Dhannoon [28] presented a meshless parameter
estimation method for solving a system of par-
tial differential equations using an artificial neu-
ral network. The authors demonstrated that the
deep learning ANN-based approach is very effec-
tive in solving differential equations in reasonable
computing times. They illustrated their method
for linear and non-linear partial differential equa-
tions with Dirichlet and Neumann boundary con-
ditions for both regular and irregular boundaries.
Khamas et. al. [32] design suitable neural net-
work to solve singular initial and boundary value
problems. The proposed design used to determine
the effect hookah smoking on health with different
types of tobacco. Tawfiq et. al. [33] in their pa-

per discussed pitfalls for solving differential equa-
tions with neural networks. They considered ex-
amples and counter-examples for numerical tests
to substantiate their findings. ANNs have a lot of

advantages including high learning ability, adap-
tiveness, parallel processing, fault-tolerance, er-
ror computation, and machine training making
this method the preferred choice to solve ordi-
nary, partial and singular differential equations
with initial or/and boundary conditions [34]. The
researchers used different design of ANNs depend-
ing on type of problems; number of given data
or samples. While, the ANN reliability has been
assessed in this research. The new approach of
training based on the LM training algorithm has
been proposed. The objective function for this
research include the minimizing.

This article has been consisting as follows: In
next section, define and gives a background of the
ANNs. In section 3, LM training algorithm is pre-
sented. In section 4, modification for LM training
algorithm will be given. In section 5, 3D equa-
tion Linear & non PDE presented then we design
optimal ANN for solving this equation with im-
plementation and discussions for the result will be
given. Finally, the conclusions are given in section
6.

2. Neural networks

A neural network is a structure of parallel pro-
cessing for distributing information in the form of
connected layers consist of a set of nodes called
neurons (also are called processing elements) is
the basic processor in ANNs, along with directed
line segments between them called links (also are
called connections). All nodes can be taken any
number of arrival connections and can have any
number of coming out connections, but the signs
must be the same [31]. In effect, all nodes have a
one coming out connection that can branch out to

Design optimal neural network based on new LM training algorithm for solving 3D - PDEs 251

form multiple output connections, each of which
carries the same sign. Each node possesses a
transfer (activation) function which can use in-
put signs, and which produces the node’s out-
put sign. Generally, ANNs have been general-
izations of mathematical models of human brain,
based on the processing of information occurs at
many connections nodes; signs are passed between
nodes over connection links which has an associ-
ated weight; each node applies an transfer func-
tion to its weighted input net to determine its sign
of output.

Thus for a given input vector x, the input to this
neuron is W T

j x . We assume that each of the hid-
den neurons has identical transfer function σ, but
that bias bj. So the output from the j-th hidden
neuron is σ(W T

j x+ bj).

Now we denote the weight connecting the jth hid-
den node to the output by 0j . The output func-
tion g(x) of the ANN is therefore [35]:

g (x) =
k∑

j=1

0jσ(W T
j x+ bj) (1)

Note that σ must be sigmoidal functions, so we
choice suitable σ herein defined as [32]:

σ (ni) =
2

e−2ni + 1
− 1 (2)

Then, the ANN input-output equation is:

Ŷ = Φ(xTW T + bT)0T

where WϵRn×r;0ϵR1×n and bϵRn×1 are the ad-
justable input weights, output weights and bias
respectively.

The structure of interconnections ANN can be
classified to different classes of ANNs architecture
such feed forward neural network (FFNN): orga-
nized of nodes are in the form of layers and ar-
rival input from the previous layer then feed their
output to the next layer, in a strictly the data
goes from the input node to the output node as
feed-forward way i.e., forward loops. Feedback
neural network (FBNN): all possible connections
are allowed between layers and neurons. The data
transfer in the network as back loops. Herein we
choose FFNN.

3. LM Training algorithm

Here’s a simplified mathematical breakdown of
the ”trainlm” algorithm:

(1) Initialization:
• Initialize weights (W) and biases (b)
randomly.

• Set the learning rate (η = 0.001) for
the Levenberg-Marquardt algorithm.

(2) Forward Propagation:
• For each input sample xi:
• Calculate the weighted sum and ap-
ply the activation function for each
neuron in the hidden layer:

aij =

n∑
k=1

wijkxik + bij (3)

uij = σ(aij)

• Propagate the activations to the out-
put layer using a similar process:

aik =

m∑
j=1

wijkaij + bik (4)

uik = σ(aik)

(3) Calculate Error:
Compute the error (Ei) between predicted
(neural) output (uik) and target (exact)
output (u̇ik)

Ei =
1

2

K∑
k=1

(u̇ik − uik)
2 (5)

(4) Backpropagation:
• Compute the gradient of the error
with respect to weights and biases in
the output layer:

gik = − ˙(uik − uik) σ́(aik) (6)

∂Ei

∂wijk
= gikaij

∂Ei

∂bik
= gik

• Propagate the error gradient back to
the hidden layer and compute gradi-
ents there

gij = σ́(aij)

K∑
k=1

wijkgik (7)

∂Ei

∂wijk
= gijxik

∂Ei

∂bij
= gij

(5) Update Weights and Biases Using
Levenberg-Marquardt:

• The Update the weights and biases
using the Levenberg-Marquardt up-
date rule:

w
(t+1)
ijk = w

(t)
ijk − η ρ

252 F.F. Ghazi, L.N.M. Tawfiq / IJOCTA, Vol.14, No.3, pp.249-260 (2024)

w
(t+1)
ijk = w

(t)
ijk −

(
JTJ + λI

)−1
JT
k e (8)

b
(t+1)
ijk = b

(t)
ijk − η ρ (9)

Where, ρ is search direction.
(6) Repeat:

• Iterate through the dataset multiple
times, adjusting weights and biases
after each iteration.

• Stop when the error converges or
a predefined number of iterations is
reached.

Based on its speed, the algorithm seems to be the
most efficient way to train feedforward neural net-
works of moderate size (with up to several hun-
dred weights). Additionally, it has a streamlined
implementation in MATLAB software, as the ma-
trix equation solution is built-in. These attributes
make it particularly effective in a MATLAB envi-
ronment [28].

4. Suggested modification for LM
training algorithm

In this section we will present suggested modified
for LM training algorithm denoted by MLM as
follow:

Algorithm 1.
Step 1: Given point x0 ∈ Rn and constants
d0, d1, d2, µ0 and m such that µ0 > m > 0;
0 < d0 < d1 < d2 < 1.σ ∈ (0, 2], θ ∈ [0, 1] Let
k = 0.
Step 2: If

∥∥JT
k Ek

∥∥ < ϵ, then stop. otherwise
Solve

λk = µk

(
θ ∥Ek∥σ

1 + ∥Ek∥σ
)
+

(1− θ)
∥∥JT

k Ek

∥∥σ
1 +

∥∥JT
k Ek

∥∥σ (10)

Step 2. Compute the search direction pk

pk =
(
JT
k Jk + λkI

)−1
JT
k Ek. (11)

Step 3: Calculate rk = Aredk/Predk, where Aredk
is an actual reduction which equal to:

Aredk = ∥Ek∥2 − ∥E (xk + pk)∥2 (12)

and Predk is a predicted reduction which equal to:

Predk = ∥Ek∥2 − ∥Ek + Jkpk∥2 (13)

set

xk+1 =

{
xk + pk if rk ≥ d0

xk otherwise

Step 4: Choose µk+1 as

µk+1 =

4µk if rk < d1

µk if rk ∈ [d1, d2]

max
{µk

4 ,m
}

ifrk > d2

Step 5: Take k := k + 1 and go to Step 2.

5. Design optimal ANN to solve 3D-
differential equations

In this section we suggest optimal design ANN
to solve 3D- PDEs. The optimum based on suit-
able choice of number of neurons in the hidden
layer depending on trial and error. That is design
ANN requires fully interconnection three layers;
1st layer is input layer consist 4 neurons in the
input layer (x, y, z&t); 3rd layer is output layer
consist one neuron with linsig. transfer function
which represents the solution of the network and
2nd layer is hidden layer with tanhsig. transfer
function consist 9 neurons in 1st trial then 10
neurons in 2nd trial then 13 neurons in 3rd trial
and 15 neurons in 4th trial. So, we comparing

between the number of neurons in hidden layer in
the training ANN, for solving non- linear PDE we
see that in case solving the linear equation when
the number of neurans large (15 neurons) that
make a good design for ANN to solve it according
to time 00:00:08 with performance 4.7370e-07 and
best epoch 726, see Figures 2, 3, 4 and 5. But Fig-
ure 1, illustrat the implementation and accuracy
of suggested design in different values of time t.
Whereas, in nonlinear equation the lower number
of neurons (9 nodes) in the hidden layer give the
better value according to time 00:00:00 with per-
formance of the network solution unet (x, y, z, t; θ)
is 8.7805e-30 and best epoch 8, see Figures 7, 8,
9 and 10. The preformance of the network solu-
tion unet (x, y, z, t; θ) is 8.7470e-10 which is best
from archticher of ANN with one hidden layer.
But Figure 6, illustrat the implementation and
accuracy of suggested design in different values
of time t. While in the case solving nonlinear
equation take long time 00:02:21 in ANN consist
9 nodes in 1st hidden layers and 3 nodes in 2nd
hidden layers in 1000 epoch and the value of pre-
formance is 1.8910e-11. However, this value is not
good when comparing with one hidden layer net-
work. In other words the best archticher is one
hidden layer ANN with 9 nodes in hidden layer
since it is sufficient to give good result for solving
nonlinear equation.

Training suggested ANN by back propagation rule
and using unconstrain optimazation methods new
LM algorithm. For every input data x, y, z and t,
the process from input layer to the hidden layer
described as follows:

ni =
9∑

i=1

(Wxix+Wyiy +Wziz +Wtit) + b1

Design optimal neural network based on new LM training algorithm for solving 3D - PDEs 253

where Wxi ,Wyi,Wzi and Wti are the weights in-
terrelate of the inputs x, y, z and t to the hidden
layer respectively, and b1 is the biases of hidden
layer. Hence, it is activated by the log. sig. func-
tion as Eq.(2). The next step is the process of the

interrelate of the hidden layer to the output layer
which is based on the following formula:

hi =
9∑

j=1

0ijσ (ni) + b2 (14)

where 0ij are the weights of the hidden layer with
output, and b2 is the biases. When Eq.(6) became

to output layer, it turned into the form

unet (x, y, z, t; θ) =
9∑

j=1

0iσ (hi)

where 0j are the weights of the hidden layers to
the output layers.

Then, it is also easy to express the k-th derivatives
of unet (x, y, z, t; θ) in terms:

∂kunet (x, y, z, t; θ)

∂xk
=

n∑
j=1

∂k0jf(h2)

∂xk
(15)

∂kunet (x, y, z, t; θ)

∂yk
=

n∑
j=1

∂k0jf(h2)

∂yk
(16)

∂kunet (x, y, z, t; θ)

∂zk
=

n∑
j=1

∂k0jf(h2)

∂zk

∂kunet (x, y, z, t; θ)

∂tk
=

n∑
j=1

∂k0jf(h2)

∂tk
(17)

For k = 1, . . . , n.

The mean square error (mse) will be computed to
check the accuracy of the approximate solutions
that obtained in these cases for different values
of the epochs. Moreover, illustrates the target of
output in each case and the behavior of gradient
in the validation case at epoch 1000. Target val-
ues of training is 70, validation 15 and testing 15.
The learning rate (η) = 0.001.

Example 1. Consider the 2nd order, 3D linear
homogeneous hyperbolic PDE :

u(x, y, z, t) =uxx + uyy + uzz + ut for 0 < x, y

and z < 1

IC: u(x, y, z, 0) = sin (πx) sin (πy) sin (πz)
BCs:u(0, y, z, t) = 0, u(1, y, z, t) = 0, u(x, 0, z, t) =
0, u(x, 1, z, t) = 0, u(x, y, 0, t) = 0, u(x, y, 1, t) =
0, u(x, y, 0, t) = 0, u(x, y, 1, t) = 0
The exact solution [19] is u (x, y, z, t) =

sin (πx) sin (πy) sin (πz)exyzt .

We solve this equation by suggested design of
ANN and implemented in MATLAB vol. 2023a,
after training suggested ANN we see below the
result of the equation at different time in Fig-
ures 1-7 and the value of neural network Table
1 with using sigmoidal functions as in eq.2 be-
tween the first and the hidden layer while be-
tween the hidden and last layer purlin function.
Figure 8 show the performances of ANN, Figures
9-12 explain the performances of test, validation
& training, Figure 13 show the valued of gradi-
ent, Mu & validation, finally in Figure 14 explain
the errors between exact & suggested solution.

Figure 1. Results of suggested de-
sign for zero time of Example 1.

Figure 2. Results of suggested de-
sign for time 0.1 of Example 1.

Figure 3. Results of suggested de-
sign for Example 1when time t= 0.2.

254 F.F. Ghazi, L.N.M. Tawfiq / IJOCTA, Vol.14, No.3, pp.249-260 (2024)

Figure 4. Results of suggested de-
sign when time t= 0.3 for Example 1.

Figure 5. Results of suggested de-
sign when time t= 0.4 for Example 1.

Figure 6. Results of suggested de-
sign when time t= 0.6 for Example 1.

Figure 7. Results of suggested de-
sign when time t= 1 for Example 1.

Figure 8. Comparison of Perfor-
mances of ANN for Example 1, be-
tween train, test & validation in case
15 neurons in hidden layer.

Figure 9. Performances of training
for Example 1, in case 15 neurons in
hidden layer.

Table 1. Results of suggested design in different cases for Example 1

No. Layer & Nodes Best epoch Time Best-perf. Best-Vperf. Best-tperf. Gradient lr.
1 9 1000 00:00:08 7.5071e-06 7.4696e-06 8.5628e-06 0.000104 0.001
2 10 538 00:00:06 6.6823e-06 6.7689e-06 6.7437e-06 0.000121 0.001
3 13 314 00:00:05 1.5217e-06 1.5500e-06 1.2775e-06 0.000241 0.001
4 15 726 00:00:08 4.7370e-07 6.1617e-07 1.2674e-06 0.00012 0.001
5 [9 3] 1000 00:00:11 4.7538e-08 5.2877e-08 4.8976e-08 0.00031 0.001
6 [9 9] 1000 00:00:17 6.4486e-09 6.4733e-09 6.3662e-09 1.98e-06 0.001
7 [9 19] 1000 00:00:33 8.7470e-10 9.0352e-10 1.2115e-09 9.35e-06 0.001

Design optimal neural network based on new LM training algorithm for solving 3D - PDEs 255

Figure 10. Performances of valida-
tion for Example 1, in case 15 neurons
in hidden layer.

Figure 11. Performances of test for
Example 1, in case 15 neurons in hid-
den layer.

Figure 12. Comparison between ex-
act & ANN results for Example 1, in
case 15 neurons in hidden layer .

Figure 13. Gradient, Mu & valida-
tion for Example 1, in case 15 neurons
in hidden layer.

Figure 14. Errors between exact &
suggested solution for Example 1, in
case 15 neurons in hidden layer .

Example 2. Consider the following 4th order 3D
nonlinear Jimbo-miwa equation

uxxxy + 3uxyux + 3uyuxx + 2uyt − 3uxz = 0

With ICs: uy(x, y, z, 0) =
9
2 sech2

(
3
2(x+ y + z)

)
Exact solution in [33, 34]: u(x, y, z, t) =
3 tanh

(
3
2(x+ y + z − 3t)

)
We solve that equation by suggested ANN and
implemented in MATLAB vol. 2023a suggested
design consist three layers: 1st layer (input layer)
consist of 4 nodes represent {x, y, z & t}. In the
hidden layer, we take the different case depend-
ing on number of neurons and 3rd layer (output
layer) gives the solution of the network. Other
design illustrate the results for different values of

256 F.F. Ghazi, L.N.M. Tawfiq / IJOCTA, Vol.14, No.3, pp.249-260 (2024)

Table 2. The value of parameters for suggested ANN in different cases for Example 2.

No. Layer & Nodes Best epoch Time Best-perf. Best-Vperf. Best-tperf. Gradient lr.
1 9 8 00:00:00 8.7805e-30 8.6926e-30 8.8637e-30 5.24e-15 0.001
2 10 11 00:00:09 3.2411e-31 3.2205e-31 3.2382e-31 1.41e-15 0.001
3 13 8 00:00:14 7.4300e-28 7.4141e-28 7.3858e-28 5.59e-14 0.001
4 15 8 00:00:22 1.0665e-23 1.0648e-23 1.0641e-23 3.06e-11 0.001
5 [9 3] 1000 00:02:21 1.8910e-11 1.8696e-11 1.8787e-11 7.22e-07 0.001
6 [9 9] 1000 00:03:35 3.863 6e-09 3.8756e-09 3.8627e-09 2.98e-06 0.001
7 [9 19] 1000 00:06:03 3.3635e-09 3.3775e-09 3.3723e-09 1.84e-06 0.001

time see Figures 15-21 and the value of parame-
ters given in Table 2. Figure 22 shows the perfor-
mances of ANN. Figures 23-26 illustrate the per-
formances of training, test & validation case. Fig-
ure 27 illustrate the value of gradient, Mu & vali-
dation, finally in Figure 28, the errors between ex-
act and neural solution in each case are presented.

Figure 15. Results of suggested de-
sign for zero time of Example 2.

Figure 16. Results of suggested de-
sign when time t = 0.1 for Example
2.

Figure 17. Results of suggested de-
sign when time t= 0.2 of Example 2.

Figure 18. Results of suggested de-
sign when time t= 0.3 for Example 2.

Figure 19. Results of suggested de-
sign when time t= 0.6 for Example 2.

Figure 20. Results of suggested de-
sign when time t= 0.8 for Example 2.

Design optimal neural network based on new LM training algorithm for solving 3D - PDEs 257

Figure 21. Results of suggested de-
sign when time t= 1 for Example 2.

Figure 22. Performances of ANN
for Example 2, in the case of 9 neu-
rons in hidden layer.

Figure 23. Performances of training
ANN for Example 2, in the case 9 neu-
rons in hidden layer.

Figure 24. Performances of valida-
tion for Example 2, in the case 9 neu-
rons in hidden layer.

Figure 25. Performances of test for
Example 2, in the case 9 neurons in
hidden layer.

Figure 26. Comparison between ex-
act & ANN result for 2, in the case 9
neurons in hidden layer.

Figure 27. Gradient, Mu & valida-
tion for Example 2, in case 9 neurons
in hidden layer.

258 F.F. Ghazi, L.N.M. Tawfiq / IJOCTA, Vol.14, No.3, pp.249-260 (2024)

Figure 28. Errors between exact &
neural solution for Example 2, in the
case 9 neurons in hidden layer.

6. Conclusion

In this article, we suggest ANNs with different
architecture based on number of layers and num-
ber of nodes in each layers. Suggested design
trained by unconstrained optimization especially
new LM training algorithm then used to solve 3D
linear and nonlinear differential equations. The
comparison between different design depending
on the number of nodes in hidden layer has been
presented. We see that in Example 1 (linear
case) when the number of nodes large (15 neu-
rons) we get good results and represent optimal
design for ANN to solve this type of equations
according to the time 00:00:08 with performance
4.7370e-07 and best epoch 726, whereas in Ex-
ample 2, (nonlinear case) we see that the lower
number of neurons (9 nodes) in the hidden layer
gives the better results according to the time
00:00:00 with performance of the network solu-
tion unet(x, y, z, t; θ) is 8.7805e-30 and best epoch
8. Also in the case of two hidden layers, the best
archticher of ANN that gives good result in lin-
ear case is as [9 19] nodes, the best epoch is 1000
with long time 00:00:33 when comparing with one
hidden layer but the preformance of the network
solution unet(x, y, z, t; θ) is 8.7470e-10 is best com-
paring with one hidden layer this means that the
two hidden layer with the [9 19] nodes gives bet-
ter result for linear case. While in the nonlinear
case take long time 00:02:21 in [9 3] nodes with
the best epoch is 1000 and the value of prefor-
mance is 1.8910e-11. However, that results is not
good when we comparing with one hidden layer.
This means that the one hidden layer ANN with
9 nodes in hidden layer is sufficient to get good

result for solving nonlinear problems. Also, we
conclude that many important article used origi-
nal LM for training ANN such [38–41] can be re-
solve by training with new LM training algorithm
to get best results

References

[1] Salih, H., Tawfiq, L. N. M., Yahya, Z. R., & Zin,
S. M. (2018). Solving modified regularized long
wave equation using collocation method. Journal
of Physics: Conference Series, 1003(1), 012062.
https://doi.org/10.1088/1742-6596/1003/1

/012062

[2] Hussein, N.A., & Tawfiq L. N.M. (2023). Exact
soliton solution for systems of non-linear (2+1)D-
DEs. AIP Conference Proceedings, 2834(1), 1-7.

[3] Jabber, A. K., & Tawfiq, L. N. M. (2018). New
transform fundamental properties and its appli-
cations. Ibn Alhaitham Journal for Pure and Ap-
plied Science, 31(1), 151-163. https://doi.org/
10.30526/31.2.1954

[4] Ali, S., Khan, A., Shah, K., Alqudah, M. A., &
Abdeljawad, T. (2022). On computational anal-
ysis of highly nonlinear model addressing real
world applications. Results in Physics, 36, 105431.
https://doi.org/10.1016/j.rinp.2022.1054

31

[5] Gul, H., Alrabaiah, H., Ali, S., Shah, K., &
Muhammad, S. (2020). Computation of solution
to fractional order partial reaction diffusion equa-
tions. Journal of Advanced Research, 25, 31-38. ht
tps://doi.org/10.1016/j.jare.2020.04.021

[6] Tawfiq, L. N., & Hussein, N. A. (2023). Efficient
approach for solving (2+ 1) D-differential equa-
tions. Baghdad Science Journal, 20(1), 0166-0166.
https://doi.org/10.21123/bsj.2022.6541

[7] Enadi, M. O., & Tawfiq, L. N. M. (2019). New
approach for solving three dimensional space par-
tial differential equation. Baghdad Science Jour-
nal, 16(3), 786-792. https://doi.org/10.21123
/bsj.2019.16.3(Suppl.).0786

[8] Tawfiq, L. N. M., & Altaie, H. (2020). Recent
modification of homotopy perturbation method
for solving system of third order PDEs. Jour-
nal of Physics: Conference Series, 1530(1), 1-7.
https://doi.org/10.1088/1742-6596/1530/1

/012073

[9] Ghazi, F. F. (2020). Modeling the contamination
of soil adjacent to Mohammed AL-Qassim high-
way in Baghdad. Iraqi Journal of Science, 61(10),
2663-2670. https://doi.org/10.24996/ijs.2
020.61.10.23

[10] Tawfiq, L. N. M., & Kareem, Z. H. (2021). Effi-
cient modification of the decomposition method
for solving a system of PDEs. Iraqi Journal of
Science, 62(9), 3061-3070. https://doi.org/10
.24996/ijs.2021.62.9.21

[11] Kareem, Z. H., & Tawfiq, L. N. M. (2020). Re-
cent modification of decomposition method for
solving nonlinear partial differential equations.

https://doi.org/10.1088/1742-6596/1003/1/012062
https://doi.org/10.1088/1742-6596/1003/1/012062
https://doi.org/10.30526/31.2.1954
https://doi.org/10.30526/31.2.1954
https://doi.org/10.1016/j.rinp.2022.105431
https://doi.org/10.1016/j.rinp.2022.105431
https://doi.org/10.1016/j.jare.2020.04.021
https://doi.org/10.1016/j.jare.2020.04.021
https://doi.org/10.21123/bsj.2022.6541
https://doi.org/10.21123/bsj.2019.16.3(Suppl.).0786
https://doi.org/10.21123/bsj.2019.16.3(Suppl.).0786
https://doi.org/10.1088/1742-6596/1530/1/012073
https://doi.org/10.1088/1742-6596/1530/1/012073
https://doi.org/10.24996/ijs.2020.61.10.23
https://doi.org/10.24996/ijs.2020.61.10.23
https://doi.org/10.24996/ijs.2021.62.9.21
https://doi.org/10.24996/ijs.2021.62.9.21

Design optimal neural network based on new LM training algorithm for solving 3D - PDEs 259

Journal of Advances in mathematics, 18, 154-161.
https://doi.org/10.24297/jam.v18i.8744

[12] Kareem, Z. H., & Tawfiq, L. N. M. (2023). Re-
cent modification of decomposition method for
solving wave-like Equation. Journal of Interdis-
ciplinary Mathematics, 26(5), 809-820. https:

//doi.org/10.47974/JIM-1235

[13] Tawfiq, L. N., & Hussein, N. A. (2022). Ex-
act solution for systems of nonlinear (2+ 1) D-
differential equations. Iraqi Journal of Science,
63(10), 4388-4396. https://doi.org/10.24996
/ijs.2022.63.10.25

[14] Tawfiq, L. N. M., & Abed, A. I. (2021). Effi-
cient method for solving fourth order PDEs. Jour-
nal of Physics: Conference Series, 1818(1), 1-10.
https://doi.org/10.1088/1742-6596/1818/1

/012166

[15] Kareem, Z.H., & Tawfiq, L. N.M. (2022). New
modification of decomposition method for solving
high order strongly nonlinear partial differential
equations. AIP Conference Proceedings, 2398(1),
1-9.

[16] Hussein, N. A., & Tawfiq, L. N. M. (2020, May).
New approach for solving (1+ 1)-dimensional dif-
ferential equation. Journal of Physics: Confer-
ence Series, 1530(1), 1-11. https://doi.org/
10.1088/1742-6596/1530/1/012098

[17] Tawfiq, L. N., & Yassien, S. M. (2013). Solution
of high order ordinary boundary value problems
using semi-analytic technique. Ibn Al-Haitham
Journal for Pure & Applied Sciences, 26(1), 281-
291.

[18] Hussein, N.A., & Tawfiq, L.N.M. (2022). Effi-
cient approach for solving high order (2+1) D-
differential equation. AIP Conference Proceed-
ings, 2398(1), pp. 1-11. https://doi.org/10
.1063/5.0093671

[19] Salih, H., & Tawfiq, L. (2020, November). So-
lution of modified equal width equation using
quartic trigonometric-spline method. Journal of
Physics: Conference Series, 1664(1), 1-10. http
s://doi.org/10.1088/1742-6596/1664/1/012

033

[20] Tawfiq, L. N. M., & Khamas, A. H. (2020,
May). New coupled method for solving Burger’s
equation. Journal of Physics: Conference Series,
1530(1), 1-11. https://doi.org/10.1088/1742
-6596/1530/1/012069

[21] Tawfiq, L. N. M., & Khamas, A. H. (2023). New
approach for calculate exponential integral func-
tion. Iraqi Journal of Science, 64(8), 4034-4042.
https://doi.org/10.24996/ijs.2023.64.8.2

7

[22] Tawfiq, L. N. M., Al-Noor, N. H., & Al-Noor, T.
H. (2019, September). Estimate the rate of con-
tamination in baghdad soils by using numerical
method. Journal of Physics: Conference Series,
1294(3), 1-11. https://doi.org/10.1088/1742
-6596/1294/3/032020

[23] Tawfiq, L. N., & Oraibi, Y. A. (2017). Fast train-
ing algorithms for feed forward neural networks.

Ibn Al-Haitham Journal for Pure and Applied Sci-
ence, 26(1), 275-280.

[24] Tawfiq, L. N., & Hussein, A. A. (2013). De-
sign feed forward neural network to solve singular
boundary value problems. International Scholarly
Research Notices, 2013, 1-7. https://doi.org/
10.1155/2013/650467

[25] Tawfiq, L. N. M., & Hussein, W. R. (2016). Design
suitable neural network for processing face recog-
nition. Global Journal of Engineering Science and
Researches, 3(3), 58-64.

[26] Tawfiq, L. N. M. (2017). The finite element neu-
ral network and its applications to forward and
inverse problems. Ibn AL-Haitham Journal For
Pure and Applied Science, 19(4), 109-124.

[27] Tawfiq, L. N. M., & Salih, O. M. (2019). De-
sign suitable feed forward neural network to solve
Troesch’s problem. Sci. Int.(Lahore), 31(1), 41-
48.

[28] Hussien, Z. (2020). Anomaly detection approach
based on deep neural network and dropout. Bagh-
dad Science Journal, 17(2 (SI)), 0701-0701. http
s://doi.org/10.21123/bsj.2020.17.2(SI).

0701

[29] Ali, M. H., & Tawfiq, L. N. (2023). Design optimal
neural network for solving unsteady state con-
fined aquifer problem. Mathematical Modelling of
Engineering Problems, 10(2), 565-571. https:

//doi.org/10.18280/mmep.100225

[30] Alia, M. H., & Tawfiqa, L. N. (2023). Novel neu-
ral network based on New modification of BFGS
update algorithm for solving partial differential
equations. Advances in the Theory of Nonlinear
Analysis and its Applications, 7(4), 76-88.

[31] Gupta, R., & Batra, C. M. (2022). Performance
assessment of solar-transformer-consumption sys-
tem using neural network approach. Baghdad Sci-
ence Journal, 19(4), 0865-0865. https://doi.or
g/10.21123/bsj.2022.19.4.0865

[32] Tawfiq, L. N. M., & Khamas, A. H. (2021). De-
termine the effect hookah smoking on health with
different types of tobacco by using parallel pro-
cessing technique. Journal of Physics: Conference
Series, 1818(1), 1-10. https://doi.org/10.108
8/1742-6596/1818/1/01217

[33] Tawfiq, L. N. M., & Tawfiq, M. N. M. (2017).
The effect of number of training samples for ar-
tificial neural network. Ibn AL-Haitham Journal
For Pure and Applied Science, 23(3), 1-7.

[34] Ghazi, F. F., & Tawfiq, L. N. M. (2020). New ap-
proach for solving two dimensional spaces PDE.
Journal of Physics: Conference Series, 1530(1),
012066. https://doi.org/10.1088/1742-659
6/1530/1/012066

[35] Jamil, H.J., Albahri, M.R.A., Al-Noor, N.H., Al-
Noor, T.H., Heydari, A.R., Rajan, A.K., Arnetz,
J., Arnetz, B. & Tawfiq, L.N.M. (2020). Hookah
smoking with health risk perception of different
types of tobacco. Journal of Physics: Conference
Series, 1664(1), 012127. https://doi.org/10.1
088/1742-6596/1664/1/012127

https://doi.org/10.24297/jam.v18i.8744
https://doi.org/10.47974/JIM-1235
https://doi.org/10.47974/JIM-1235
https://doi.org/10.24996/ijs.2022.63.10.25
https://doi.org/10.24996/ijs.2022.63.10.25
https://doi.org/10.1088/1742-6596/1818/1/012166
https://doi.org/10.1088/1742-6596/1818/1/012166
https://doi.org/10.1088/1742-6596/1530/1/012098
https://doi.org/10.1088/1742-6596/1530/1/012098
https://doi.org/10.1063/5.0093671
https://doi.org/10.1063/5.0093671
https://doi.org/10.1088/1742-6596/1664/1/012033
https://doi.org/10.1088/1742-6596/1664/1/012033
https://doi.org/10.1088/1742-6596/1664/1/012033
https://doi.org/10.1088/1742-6596/1530/1/012069
https://doi.org/10.1088/1742-6596/1530/1/012069
https://doi.org/10.24996/ijs.2023.64.8.27
https://doi.org/10.24996/ijs.2023.64.8.27
https://doi.org/10.1088/1742-6596/1294/3/032020
https://doi.org/10.1088/1742-6596/1294/3/032020
https://doi.org/10.1155/2013/650467
https://doi.org/10.1155/2013/650467
https://doi.org/10.21123/bsj.2020.17.2(SI).0701
https://doi.org/10.21123/bsj.2020.17.2(SI).0701
https://doi.org/10.21123/bsj.2020.17.2(SI).0701
https://doi.org/10.18280/mmep.100225
https://doi.org/10.18280/mmep.100225
https://doi.org/10.21123/bsj.2022.19.4.0865
https://doi.org/10.21123/bsj.2022.19.4.0865
https://doi.org/10.1088/1742-6596/1818/1/01217
https://doi.org/10.1088/1742-6596/1818/1/01217
https://doi.org/10.1088/1742-6596/1530/1/012066
https://doi.org/10.1088/1742-6596/1530/1/012066
https://doi.org/10.1088/1742-6596/1664/1/012127
https://doi.org/10.1088/1742-6596/1664/1/012127

260 F.F. Ghazi, L.N.M. Tawfiq / IJOCTA, Vol.14, No.3, pp.249-260 (2024)

[36] Kareema, Z. H., & Tawfiqa, L. N. (2023). Solv-
ing (3+ 1) D-New Hirota bilinear equation using
tanh method and new modification of extended
tanh method. Advances in the Theory of Nonlin-
ear Analysis and its Applications, 7(4), 114-122.

[37] Hussein, N. A., Helal, M. M., & Tawfiq, L. N. M.
(2023). Double LA-transform and their proper-
ties for solving partial differential equations. AIP
Conference Proceedings, 2834(1), 1-10

[38] Kumar, A., Kumar, M., & Goswami, P. (2024).
Numerical solution of coupled system of Emden-
Fowler equations using artificial neural network
technique. An International Journal of Optimiza-
tion and Control: Theories & Applications, 14(1),
62-73. https://doi.org/10.11121/ijocta.14
24

[39] Okkan, U. (2011). Application of Levenberg-
Marquardt optimization algorithm based multi-
layer neural networks for hydrological time series
modeling. An International Journal of Optimiza-
tion and Control: Theories & Applications, 1(1),
53-63. https://doi.org/10.11121/ijocta.01
.2011.0038

[40] Kumar, K., Parida, M., & Katiyar, V. K. (2011).
Road traffic noise prediction with neural networks
- A review. An International Journal of Optimiza-
tion and Control: Theories & Applications, 2(1),
29-37. https://doi.org/10.11121/ijocta.01
.2012.0059

[41] Demirtas, M., & Alci, M. (2011). A compara-
tive study of neural networks and fuzzy systems
in modeling of a nonlinear dynamic system. An
International Journal of Optimization and Con-
trol: Theories & Applications, 1(1), 65-73. https:
//doi.org/10.11121/ijocta.01.2011.0055

Farah F. Ghazi is PhD student in mathematics. She
holds (Bachelor’s in 2010 and Master’s in 2016) de-
grees from the University of Baghdad, College of Edu-
cation for Pure Sciences Ibn Al-Haytham, Department
of Mathematics. Also, she teaches in the Mathematics
Department. The number of published and accepted
papers is 16. She is interested in ODE, PDE, Inte-
gral equations, Numerical methods for solving problem
, neural networks, artificial intelligence, and machine
learning.

https://orcid.org/0000-0002-8444-7779

Luma N. M. Tawfiq Professor in Applied Mathe-
matics in the Department of Mathematics, University
of Baghdad, Iraq has more than 230 research publi-
cations in international and Arab magazines, super-
vised more than 53 Msc. & PhD Theses in differ-
ent branches of Applied Mathematics, and discussed
dozens of master’s and doctoral dissertations. Also,
published more than 20 books.

https://orcid.org/0000-0001-5778-4983

An International Journal of Optimization and Control: Theories & Applications (http://www.ijocta.org)

This work is licensed under a Creative Commons Attribution 4.0 International License. The authors retain ownership of
the copyright for their article, but they allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles
in IJOCTA, so long as the original authors and source are credited. To see the complete license contents, please visit
http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.11121/ijocta.1424
https://doi.org/10.11121/ijocta.1424
https://doi.org/10.11121/ijocta.01.2011.0038
https://doi.org/10.11121/ijocta.01.2011.0038
https://doi.org/10.11121/ijocta.01.2012.0059
https://doi.org/10.11121/ijocta.01.2012.0059
https://doi.org/10.11121/ijocta.01.2011.0055
https://doi.org/10.11121/ijocta.01.2011.0055
https://orcid.org/0000-0002-8444-7779
https://orcid.org/0000-0001-5778-4983
http://creativecommons.org/licenses/by/4.0/

	1. Introduction
	2. Neural networks
	3. LM Training algorithm
	4. Suggested modification for LM training algorithm
	5. Design optimal ANN to solve 3D- differential equations
	6. Conclusion
	References

