
 

20 

An International Journal of Optimization and Control: Theories & Applications 

ISSN: 2146-0957   eISSN: 2146-5703 

Vol.14, No.1, pp.20-31 (2024) 

https://doi.org/10.11121/ijocta.1444  
 

 

RESEARCH ARTICLE 

 

 

Scheduling of distributed additive manufacturing machines considering 

carbon emissions 
 

Ibrahim Kucukkoc 

 

Department of Industrial Engineering, Balikesir University, 10145 Balikesir, Turkey 

ikucukkoc@balikesir.edu.tr 

ARTICLE INFO  ABSTRACT 

Article history: 
Received: 8 August 2023 

Accepted: 2 November 2023 

Available Online: 3 November 2023 

 Additive manufacturing is a rapidly growing technology shaping the future of 

manufacturing. In an increasingly competitive economy, additive manufacturing 

can help businesses to remain agile, innovative, and sustainable. This paper 

introduces the multi-site additive manufacturing (AM) machine scheduling 

problem considering carbon emissions caused by production and transportation. A 

mixed-integer linear programming model is developed aiming to optimise two 

separate objectives addressing economic and environmental sustainability in a 

multiple unrelated AM machine environment. The former is the total cost caused 

by production, transportation, set-up and tardiness penalty and the latter is the total 

amount of carbon emissions caused by production and transportation. The model 

is coded in Python and solved by Gurobi Optimizer. A numerical example is 

provided to represent the basic characteristics of the problem and show the 

necessity of the proposed framework. A comprehensive computational study is 

conducted under 600s and 1800s time limits for two main scenarios and the results 

have been elaborated. This article introduces the concept of considering both 

economic and environmental sustainability caused by production and 

transportation, proposing the first mathematical model and measuring its 

performance through a comprehensive experimental study. 
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1. Introduction 

Additive manufacturing (AM) has a wide range of 

application areas from automotive to aeronautics and 

healthcare. Several AM techniques have been 

developed based on the idea that the parts are 3D 

modelled and fabricated layer-by-layer based on the 

cross sections of the computer-aided design model. 

Thus, it is also referred to as 3D printing. Compared to 

the traditional subtractive manufacturing methods, AM 

technologies utilise production by additively releasing 

materials [1].  

AM has a significant role in today's competitive 

economy for several reasons. Firstly, it enables the 

production of complex geometries which otherwise 

difficult or even impossible via traditional methods. 

That also helps integrate multiple parts into a single 

component, reducing assembly processes and 

increasing product strength and durability [2]. The 

geometry flexibility that AM provides allows a higher 

degree of customization without incurring additional 

costs. This has been particularly useful in sectors like 

medical devices, where patient-specific products can be 

produced. Secondly, companies can print products on-

demand rather than mass-producing and storing them 

in inventory, which saves storage space and costs, and 

reduces the risk of products becoming obsolete. 

Another cost advantage is gained by eliminating 

expensive moulds, tools and machine setups.  

Thirdly, rapid prototyping is possible with additive 

manufacturing which significantly reduces the time to 

market. Moreover, the nature of the production that AM 

utilises results in significantly less waste compared to 

subtractive methods, which carve out parts from larger 

blocks of material. Also, the carbon footprint 

associated with the transport of goods can be reduced 

thanks to locally printed parts. Hence, all these 

advantages are related to the environment as well as the 

economic benefits and flexibility.  

The recent pandemic has also highlighted the 

importance of the resilience of supply chains and the 

vulnerability of global supply chains. With additive 

manufacturing, companies can manufacture parts in-

house or domestically, decreasing dependence on 

international suppliers, and increasing resilience [3, 4].  

http://www.ams.org/msc/msc2010.html
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Efficient planning and scheduling of AM machines can 

lead to significant improvements in productivity, cost-

efficiency, quality, and customer satisfaction. This is 

achieved through more effective resource use, reduced 

waste, improved delivery times, and enhanced 

flexibility and responsiveness to change. This paper 

addresses the AM machine scheduling problem where 

unrelated AM machines are dispersively located at 

different factory plants. The AM technology 

considered in this paper is selective laser melting 

(SLM) which uses a high-power laser beam to fuse fine 

metallic powders to create a high-density part with 

complex geometries. As a unique contribution to the 

field, a multi-objective mathematical model is 

developed to minimise total cost as well as total amount 

of carbon emissions (TCE), both caused by production 

and transportation.  

The rest of the manuscript is organised as follows. 

Section 2 reviews the literature on the AM machine 

scheduling problem. Section 3 describes the main 

characteristics of the problem and presents the 

mathematical model developed. The results of the 

experimental study are provided in Section 4 and the 

paper is concluded in Section 5.  

2. Related work 

AM is an emerging field that attracts both academics 

and practitioners. The literature on the AM technology 

addressed in this paper, i.e. SLM, is rather extensive. 

Recently, a thorough examination and analysis of the 

key parameters affecting the SLM manufacturing 

process of difficult-to-cut alloys has been conducted 

based on an extensive review of the existing literature 

by Pimenov et al. [5]. Li et al. [6] proposed a new 

design method to concurrently achieve lightweight and 

self-sustaining design for SLM processes. However, 

the number of studies on the efficient planning and 

scheduling of these SLM machines is still limited.  

As pioneering works on planning and scheduling of 

AM machines, Kucukkoc et al. [7] aimed to maximise 

the utilisation of AM machines, and Li et al. [2] focused 

on the minimisation of average cost by proposing a 

mathematical model as well as two constructive 

heuristics. Several researchers have followed these 

works, as will be summarised hereafter.  

Chergui et al. [8] simultaneously addressed the 

scheduling and nesting problems in AM and proposed 

a heuristic algorithm to satisfy due dates. Kucukkoc et 

al. [9] proposed a genetic algorithm (GA) approach to 

minimise maximum lateness in a multiple heterogenous 

AM machine environment.  Kucukkoc [1] aimed to 

minimise makespan in single, parallel identical and 

parallel unrelated AM machine scheduling problems 

through a MILP model developed. Li et al. [10] 

combined the order acceptance problem with the 

scheduling problem of SLM machines and proposed a 

dynamic and strategy-based decision-making 

approach. Kapadia et al. [11] have also studied the 

order acceptance and scheduling problem under such a 

condition that orders can be accepted fully or partially 

and proposed a GA to maximise profit. Zhang et al. [12] 

integrated the irregular packing constraints into the AM 

machine scheduling problem and proposed an 

improved evolutionary algorithm. Kucukkoc [13] 

showed the necessity of considering nesting and 

scheduling problems together to get applicable as well 

as better scheduling solutions.  

Altekin and Bukchin [14] showed the necessity of 

considering cost and makespan objectives 

simultaneously and proposed a multi-objective 

optimisation approach to investigate the trade-off in 

between. Kucukkoc et al. [15] aimed to minimise the 

total tardiness in a parallel unrelated AM machine 

environment and proposed a GA-based approach. 

Alicastro et al. [16] aimed to minimise makespan via a 

reinforcement learning iterated local search algorithm 

in a multiple identical/non-identical AM machine 

environment. Another study addressing the makespan 

as well as total tardiness is conducted by Rohaninejad 

et al. [17], who developed a hybrid non-dominated 

sorting GA-based metaheuristic in addition to a bi-

objective model. Arık [18] combined the AM machine 

scheduling problem with the planning of post-

processing assembly operations and proposed a MILP 

model as well as a local search heuristic.  

Hu et al. [19] solved the AM machine scheduling 

problem using MILP and an adaptive large 

neighbourhood search algorithm considering two-

dimensional nesting and unequal part release times. Wu 

et al. [20] addressed the cloud-based 3D printing 

problem and proposed a heuristic algorithm for the 

scheduling of orders received through the cloud-based 

platform. Oh et al. [21] presented a taxonomy and 

comprehensive review of the nesting and scheduling 

problem in AM. 

Different from the common approach caused by the 

nature of the AM machine scheduling problem, Kim 

and Kim [22] addressed the problem by considering the 

maximum processing time of parts when calculating 

the processing time of a batch. They proposed three 

meta-heuristics to minimise makespan considering 

sequence-dependent set-up times.  

Che et al. [23] introduced the part orientation problem 

into the AM machine scheduling and proposed a MILP 

model as well as a simulated annealing algorithm for 

solving it. Oh and Cho [24] addressed the AM machine 

scheduling problem within a flow-shop environment 

considering both the build and post processes 

simultaneously. A mixed-integer programme was also 

proposed to minimise makespan for different 

scheduling policies. Ying et al. [25] proposed an 

adjusted iterated greedy search algorithm to solve the 

single AM machine scheduling problem. Zipfel et al. 

[26] proposed an iterated local search algorithm for 

customer order scheduling in additive manufacturing 

focusing on the total weighted tardiness of orders. 

Kucukkoc [27] considered the batch delivery of parts 

belonging to several customers when solving the 
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multiple AM machine scheduling problem. Ying and 

Lin [28] attempted to minimise makespan in parallel 

AM machine scheduling problem with a two-stage 

assembly process. Lee and Kim [29] focused on the 3D 

rotation of parts and aimed to minimise makespan in 

parallel AM machine scheduling problem with 2D 

nesting constraints.  

Dwivedi et al. [30] introduced the simultaneous 

production and transportation problem where the route 

of a mobile AM-installed vehicle is optimised 

considering the delivery due dates of customer orders. 

Exact and heuristic solution approaches were 

developed and their effectiveness has been tested 

through computational tests. Zehetner and Gansterer 

[31] addressed the multi-site AM machine scheduling 

problem to minimise the total cost accumulated by 

production, inventory, setup and transportation. 

Although production scheduling and transportation 

problems have been integrated into other domains of 

scheduling literature [32-34], it has not been handled 

properly in the AM machine scheduling field. As seen 

from the survey given above, there is only one study 

which addresses the multi-site AM machine scheduling 

problem, by Zehetner and Gansterer [31]. However, 

Zehetner and Gansterer [31] only focused on the cost 

including transportation. In our work, we address the 

multi-site AM machine scheduling problem and 

employ a new objective function related to the sum of 

carbon emissions caused by production and 

transportation. Therefore, this study contributes to the 

literature by introducing the multi-site AM machine 

scheduling problem considering carbon emissions and 

proposing a MILP model for solving it. AM machines 

are unrelated (having different processing speed-, cost- 

and emission-related parameters) and orders received 

from geographically dispersed customers have certain 

tardiness penalty costs.  

3. Problem definition 

Part orders (𝑖 ∈ 𝐼) received from customers (𝑢 ∈ 𝑈) are 

assigned to machines (𝑚 ∈ 𝑀) located at 

geographically dispersed factory plants (𝑝 ∈ 𝑃) and 

allocated to batches (𝑗 ∈ 𝐽) to be produced sequentially. 

They are shipped to customers after production, in such 

a concept of on-demand production. The schematic 

representation of the addressed problem is given in 

Figure 1. Note that the numbers of plants, customers, 

part orders and machines provided in the figure are just 

for illustration purposes and they may vary in the 

practical applications.  

Each part has a volume (𝑣𝑖), area (𝑎𝑖),  height (ℎ𝑖),  due 

date (𝑑𝑑𝑖) and tardiness penalty cost (𝑑𝑐𝑖). Each 

machine’s build platform has a maximum supported 

area (𝐴𝑚) and height (𝐻𝑚). Machines require different 

times to set-up (𝑠𝑒𝑡𝑚), release per unit volume of 

material (𝑣𝑡𝑚) and powder-layering (𝑟𝑡𝑚). As the 

machines have different specifications, they cause 

different amounts of 𝐶𝑂2 equivalent emissions during 

production.  

Batches are constituted of different combinations of 

parts seeking the main objective of the problem. As 

already done in the literature, the total volume and the 

maximum height of the parts are used to calculate the 

processing time of a batch in this paper as well. Hence, 

grouping parts with similar heights together may 

reduce the processing time. That yields reduced 

production costs and production emissions.  However, 

as introduced in this paper, if there is more than one 

plant at which the machines are utilised, this approach 

might ignore additional costs and carbon emissions 

caused by transportation. That is because the solution 

that minimises the processing time-related measures 

(i.e. makespan or cost) does not necessarily minimise 

the delivery-related metrics such as transportation cost 

and transportation emissions. Therefore, a more 

sophisticated holistic approach is required to deal with 

all these considerations effectively. For this aim, a 

mixed-integer mathematical model is developed with 

two different objectives considering economic aspects 

and environmental sustainability.      

 

 

Figure 1. The schematic representation of the addressed problem
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It was justified by Kucukkoc [1] that scheduling 

parallel AM machines to minimise makespan is 

strongly NP-hard, having additional complexities over 

classical batch scheduling problems. This is because 

the processing time of a batch is calculated via a 

function [1, 2]. Moreover, this paper focuses on total 

cost (instead of makespan) integrating the 

transportation problem in terms of both total cost and 

emission aspects, which increases the complexity of the 

problem even more. 

The following subsection presents the model 

developed, followed by a numerical example.  

3.1. Mathematical model 

The mathematical model is developed over the work by 

Li et al. [2] and Kucukkoc [1]. It has two objectives, 

such that 𝑓1 aims to minimise the total cost and 𝑓2 aims 

to minimise the total amount of carbon emissions, i.e. 

TCE. The notation, parameters and decision variables 

are given below, followed by the model. 

 

Notation: 

𝑖 : part index, where 𝑖 ∈ 𝐼 

𝑗 : batch index, where 𝑗 ∈ 𝐽 

𝑚 : machine index, where 𝑚 ∈ 𝑀 

𝑢 : customer index, where 𝑢 ∈ 𝑈 

𝑝 : factory plant index, where 𝑝 ∈ 𝑃 

 

Parameters: 

𝑑𝑖𝑠𝑝𝑢 : distance between factory plant 𝑝 and 

customer 𝑢 

𝑃𝑝
𝑀 : the set of machines available at factory 

plant 𝑝 

𝑈𝑢
𝐼  : the set of parts belonging to customer 𝑢 

ℎ𝑖 : the height of part 𝑖 

𝑎𝑖 : the area of part 𝑖 

𝑣𝑖 : the volume of part 𝑖 

𝑑𝑑𝑖  : the due date of part 𝑖 

𝑑𝑐𝑖 : unit tardiness penalty cost for part 𝑖 

𝐴𝑚 : the area of machine 𝑚’s build platform 

𝐻𝑚 : the maximum height of a part that can be 

built on machine 𝑚 

𝑣𝑡𝑚 : the time required to form per unit volume of 

material on machine 𝑚 

𝑟𝑡𝑚 : the unit recoating (powder-layering) time on 

machine 𝑚, (the layer height unit is 

assumed to be the same with that used for 

the part height) 

𝑠𝑒𝑡𝑚 : the time needed to set-up machine 𝑚 

𝜏𝑚 : unit time cost for machine 𝑚 

𝜓 : a large enough positive number 

𝑢𝑛𝑖𝑡𝑇𝐶 : unit transportation cost 

ℎ𝑐 : unit time cost for human work 

𝜀𝑇𝑟 : unit carbon emissions amount released to 

transport per volume of part per 𝑘𝑚  

𝜀𝑚
𝑃𝑟 : unit carbon emissions amount released by 

machine 𝑚 per unit time  

 

Decision variables: 

𝑋𝑖𝑗𝑚 : 1, if part 𝑖 is allocated to batch 𝑗 on machine 

𝑚; 0, otherwise 

𝑌𝑗𝑚 : 1, if batch 𝑗 on machine 𝑚 is utilised; 0, 

otherwise 

𝑃𝐶𝑗𝑚 : production cost for batch 𝑗 on machine 𝑚 

𝑆𝐶𝑗𝑚 : set-up cost for batch 𝑗 on machine 𝑚 

𝐻𝑒𝑗𝑚 : the maximum height of the parts allocated 

to batch 𝑗 on machine 𝑚 

𝑣𝑜𝑙𝑗𝑚 : the total volume of the parts assigned to 

batch 𝑗 on machine 𝑚 

𝑇𝐶𝑢 : total transportation cost for customer 𝑢 

𝑇𝑉𝑝𝑢 : total volume transported from factory plant 

𝑝 to customer 𝑢 

𝑐𝑡𝑖 : completion time of part 𝑖 

𝑡𝑡𝑖 : tardiness of part 𝑖 

𝑠𝑗𝑚 : starting time of batch 𝑗 on machine 𝑚 

𝑝𝑗𝑚 : processing time of batch 𝑗 on machine 𝑚 

𝑐𝑗𝑚 : completion time of batch 𝑗 on machine 𝑚 

𝑇𝐸𝑝𝑢 : carbon emissions caused by transportation 

from factory plant 𝑝 to customer 𝑢 

𝑃𝐸𝑚 : carbon emissons caused by production on 

machine 𝑚 
 

Objective functions: 

𝑀𝑖𝑛 𝑓1 = ∑ ∑ (𝑃𝐶𝑗𝑚 + 𝑆𝐶𝑗𝑚)

𝑚∈𝑀𝑗∈𝐽

+ ∑ 𝑇𝐶𝑢

𝑢∈𝑈

+ ∑ 𝑑𝑐𝑖𝑡𝑡𝑖

𝑖∈𝐼

 

(1) 

𝑀𝑖𝑛 𝑓2 = ∑ ∑ 𝑇𝐸𝑝𝑢

𝑢∈𝑈𝑝∈𝑃

+ ∑ 𝑃𝐸𝑚

𝑚∈𝑀

 (2) 

 

Subject to: 

∑ ∑ 𝑋𝑖𝑗𝑚

𝑚∈𝑀𝑗∈𝐽

= 1     ∀𝑖 ∈ 𝐼 
(3) 

∑ 𝑋𝑖𝑗𝑚

𝑖∈𝐼

≤ 𝜓𝑌𝑗𝑚      ∀𝑗 ∈ 𝐽, 𝑚 ∈ 𝑀 
(4) 

𝑌𝑗𝑚 ≤ ∑ 𝑋𝑖𝑗𝑚

𝑖∈𝐼

     ∀𝑗 ∈ 𝐽, 𝑚 ∈ 𝑀 
(5) 

∑ 𝑎𝑖𝑋𝑖𝑗𝑚

𝑖∈𝐼

≤ 𝐴𝑚     ∀𝑗 ∈ 𝐽, 𝑚 ∈ 𝑀 
(6) 

𝑃𝐶𝑗𝑚 ≥ 𝑣𝑡𝑚𝜏𝑚𝑣𝑜𝑙𝑗𝑚 + 𝑟𝑡𝑚𝜏𝑚𝐻𝑒𝑗𝑚      ∀𝑗 ∈ 𝐽, 𝑚

∈ 𝑀 

(7) 

𝑆𝐶𝑗𝑚 ≥ 𝑠𝑒𝑡𝑚𝑌𝑗𝑚ℎ𝑐     ∀𝑗 ∈ 𝐽, 𝑚 ∈ 𝑀 (8) 

𝐻𝑒𝑗𝑚 ≥ ℎ𝑖𝑋𝑖𝑗𝑚     ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑚 ∈ 𝑀 (9) 

𝑇𝐶𝑢 ≥ 𝑢𝑛𝑖𝑡𝑇𝐶 ∑ 𝑑𝑖𝑠𝑝𝑢𝑇𝑉𝑝𝑢

𝑝∈𝑃

     ∀𝑢 ∈ 𝑈 
(10) 
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𝑇𝑉𝑝𝑢 ≥ ∑ ∑ ∑ 𝑣𝑖𝑋𝑖𝑗𝑚

𝑚∈𝑃𝑝
𝑀𝑗∈𝐽𝑖∈𝑈𝑢

𝐼

     ∀𝑝 ∈ 𝑃, 𝑢 ∈ 𝑈 
(11) 

𝑡𝑡𝑖 ≥ 𝑐𝑡𝑖 − 𝑑𝑑𝑖      ∀𝑖 ∈ 𝐼 (12) 

𝑐𝑡𝑖 ≥ 𝑐𝑗𝑚 + 𝜓(𝑋𝑖𝑗𝑚 − 1)     ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑚 ∈ 𝑀 (13) 

𝑐𝑡𝑖 ≤ 𝑐𝑗𝑚 + 𝜓(1 − 𝑋𝑖𝑗𝑚)     ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑚 ∈ 𝑀 (14) 

𝑐𝑗𝑚 ≥ 𝑠𝑗𝑚 + 𝑝𝑗𝑚      ∀𝑗 ∈ 𝐽, 𝑚 ∈ 𝑀 (15) 

𝑠𝑗𝑚 ≥ 𝑐𝑗−1,𝑚 + 𝑠𝑒𝑡𝑚𝑌𝑗𝑚      ∀𝑗 ∈ 𝐽 𝑎𝑛𝑑 𝑗 > 1, 𝑚

∈ 𝑀 

(16) 

𝑠𝑗𝑚 ≥ 𝑠𝑒𝑡𝑚𝑌𝑗𝑚      ∀𝑗 ∈ 𝐽 𝑎𝑛𝑑 𝑗 = 1, 𝑚 ∈ 𝑀 (17) 

𝑠𝑗𝑚 ≤ 𝜑𝑌𝑗𝑚      ∀𝑗 ∈ 𝐽, 𝑚 ∈ 𝑀 (18) 

𝑝𝑗𝑚 ≥ 𝑣𝑡𝑚𝑣𝑜𝑙𝑗𝑚 + 𝑟𝑡𝑚𝐻𝑒𝑗𝑚      ∀𝑗 ∈ 𝐽, 𝑚 ∈ 𝑀 (19) 

𝑣𝑜𝑙𝑗𝑚 ≥ ∑ 𝑣𝑖𝑋𝑖𝑗𝑚

𝑖∈𝐼

     ∀𝑗 ∈ 𝐽, 𝑚 ∈ 𝑀 
(20) 

𝑣𝑜𝑙𝑗𝑚 ≤ 𝜓 ∑ 𝑋𝑖𝑗𝑚

𝑖∈𝐼

     ∀𝑗 ∈ 𝐽, 𝑚 ∈ 𝑀 
(21) 

𝑇𝐸𝑝𝑢 ≥ 𝜀𝑇𝑟𝑑𝑖𝑠𝑝𝑢𝑇𝑉𝑝𝑢     ∀𝑝 ∈ 𝑃, 𝑢 ∈ 𝑈 (22) 

𝑃𝐸𝑚 ≥ 𝜀𝑚
𝑃𝑟 ∑ 𝑝𝑗𝑚

𝑗∈𝐽

     ∀𝑚 ∈ 𝑀 
(23) 

𝑋𝑖𝑗𝑚 ∈ {0,1}    ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑚 ∈ 𝑀 and 

𝑌𝑗𝑚 ∈ {0,1}    𝑗 ∈ 𝐽, 𝑚 ∈ 𝑀  

(24) 

𝑃𝐶𝑗𝑚 , 𝑆𝐶𝑗𝑚, 𝐻𝑒𝑗𝑚 , 𝑠𝑗𝑚, 𝑝𝑗𝑚 , 𝑐𝑗𝑚 , 𝑣𝑜𝑙𝑗𝑚 ≥ 0      

∀𝑗 ∈ 𝐽, 𝑚 ∈ 𝑀 

(25) 

𝑇𝑉𝑝𝑢 , 𝑇𝐸𝑝𝑢 ≥ 0     ∀𝑝 ∈ 𝑃, 𝑢 ∈ 𝑈 (26) 

𝑇𝐶𝑢 ≥ 0     ∀𝑢 ∈ 𝑈 (27) 

𝑃𝐸𝑚 ≥ 0     ∀𝑚 ∈ 𝑀 (28) 

𝑡𝑡𝑖, 𝑐𝑡𝑖 ≥ 0     ∀𝑖 ∈ 𝐼 (29) 
 

The objective given in Eq. (1) aims to minimise the 

total cost accumulated from production, set-up, 

transportation and tardiness. The aim of the other 

objective given in Eq. (2) is to minimise the TCE 

calculated considering (i) the transportation of parts 

from plants to customers and (ii) their production on the 

machines. Note that the time consumed when setting up 

the machine is not included in this calculation. Eq. (3) 

ensures that every part is assigned to exactly one batch 

and machine. Eq. (4) prevents assigning a part to a 

batch if the batch is not utilised. Eq. (5) relates the two 

decision variables (𝑌𝑗𝑚 and 𝑋𝑖𝑗𝑚) to each other. Eq. (6) 

satisfies the area capacity of the building platform 

based on the specifications of the AM machines. Eq. (7) 

calculates the production cost of each batch using the 

total volume and the maximum height of the parts 

allocated to that batch. Eq. (8) is to calculate the set-up 

cost of each batch utilised. Eq. (9) gets the maximum 

height of the parts in the batch. Eq. (10) calculates the 

transportation cost for each customer based on the total 

volume of the parts shipped to that customer, which is 

calculated by Eq. (11). Tardiness of each part is 

calculated by Eq. (12), using its completion time (𝑐𝑡𝑖) 

calculated through Eq. (13) and Eq. (14). Note that 

these two constraints are specially formed to avoid non-

linearity as the completion time of the part is gathered 

from the completion time of the batch that the part is 

allocated into. The completion time of a batch is 

obtained from Eq. (15). The start time of a batch is 

calculated by Eq. (16) and Eq. (17) taking the set-up 

time of the batch and completion time of the previous 

batch on the same machine (if any) into account. Eq. 

(18) sets the start time of the batch to zero if the batch 

is not utilised. Eq. (19) calculates the processing time 

of each batch based on its total volume (from Eq. (20)) 

and maximum height (by Eq. (9)). Similar to Eq. (18), 

Eq. (21) sets  𝑣𝑜𝑙𝑗𝑚 to zero if there is no part in the 

batch. Carbon emissions are obtained through Eq. (22) 

and Eq. (23). In Eq. (22), the total volume shipped from 

each plant to each customer is multiplied by the unit 

transportation amount and distance to get the carbon 

emissions caused by transportation. In Eq. (23), carbon 

emissions by production in each batch is summed to get 

the TCE caused by production. Domain constraints are 

provided in Eqs. (24)-(29).  

3.2. Numerical example 

Here we consider a numerical example consisting of 

two factory plants, each of which has two AM 

machines (i.e. M1 and M2 at plant 1 and M3 and M4 at 

plant 2) to fabricate a total of 16 parts received from 

four customers. The complete data, including the 

specifications of parts and machines (generated based 

on the test data available by [1, 2]) and the distances 

between factory plants and customers, are provided in 

Appendices.  

The problem is solved under two scenarios: (i) total cost 

is minimised using 𝑓1 and (ii) TCE is minimised using 

𝑓2. When the model is run to optimise 𝑓1, the optimal 

solution is obtained within 53.4s. The detailed 

production schedule and distribution plan based on the 

optimal solution are reported in Table 1 and Table 2, 

respectively. As seen from Table 1, five batches are 

utilised in total (four at plant 1 and one at plant 2).  

Table 1. The production schedule based on the optimal solution considering the first objective function (𝑓1) 

Plant Mach. Batch Assigned Parts  𝑃𝐶𝑗𝑚 𝑆𝐶𝑗𝑚 𝑣𝑜𝑙𝑗𝑚 𝐻𝑒𝑗𝑚 𝑠𝑗𝑚 𝑝𝑗𝑚 𝑐𝑗𝑚 

1 M1 1 1,12,16 2525.38 40 1050.73 6.90 2.00 42.0897 44.0897 

  2 11,14 8447.83 40 3990.77 12.59 46.0897 140.7970 186.8870 

  3 9 3107.30 40 1142.25 11.81 188.887 51.7884 240.6750 

 M2 1 8,10,15 14552.10 40 6869.78 21.79 2.00 242.535 244.5350 

2 M3 1 2,3,4,5,6,7,13 11982.70 20 4025.19 36.50 1.00 149.783 150.7830 
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Table 2. The distribution plan based on the optimal solution considering the first objective function (𝑓1) 

From Plant To Customer Shipped Parts 𝑇𝑉𝑝𝑢 𝑇𝐸𝑝𝑢 

1 1 1 826.08 3097.80 

 3 8,9,10,11,12 8453.26 47549.60 

 4 14,15,16 3774.19 28306.40 

2 1 2,3,4 1727.59 3239.23 

 2 5,6,7 1982.60 1858.69 

 4 13 315.00 1476.56 

While there are three batches planned to be executed on 

M1, no batch is planned for M4. That is based on the 

optimal solution obtained by the model to minimise the 

total cost. The model determines the best combination 

of parts to be grouped and allocates them to the best 

machine and plant considering all the capacity 

constraints as well as the costs caused by production, 

set-up, transportation, and tardiness. For example, the 

batch that part 9 is allocated is scheduled on M1 after 

batch 2 (instead of after batch 1 on M2 at the same 

plant) as it can start to set-up at 186.887 (rather than 

244.535).  

When the problem is solved with an ultimate goal to 

minimise 𝑓2 (scenario 2), the optimal solution is 

achieved within 7.15s (much shorter than that for 

scenario 1). The production schedules for machines and 

the distribution plan to customers are respectively 

provided in Table 3 and Table 4. A total of five batches 

have been utilised again but with a different 

combination of batches and tasks as clearly seen in the 

tables. This time both machines on both plants are 

employed to minimise the TCE majorly caused by 

transportation. As expected, parts belonging to 

Customer 3 are allocated to the machines at Plant 1 to 

minimise transportation emissions. For the same 

reason, other parts are scheduled for production at 

machines located at Plant 2. However, transportation is 

not the single factor causing carbon emissions. The 

model has the ability to minimise production emissions 

as well. For this aim, parts by different customers may 

be grouped into the same batch. For example, as seen 

in Table 3, parts 2, 5, 6, 7 and 15 belonging to three 

different customers are grouped to be produced in the 

same batch considering the capacity limits of the 

machines and height similarity of the parts.  

The objective function values and their components are 

reported in Table 5, comparatively, for both scenarios. 

For the first scenario which aims to minimise the total 

cost (𝑓1), 𝑓1 is obtained as 43895.9 and the TCE for this 

solution is calculated as 𝑓2 = 89327.7. When the 

objective is altered to minimise the TCE, 𝑓2 is obtained 

as 77216.4 and the total cost for this solution is acquired 

as 𝑓1 = 46463.5. This clearly shows how the two 

objective functions act. In scenario 2, while the 

production emissions increase (from 3799.4 to 3851.9), 

the model reduces the transportation emissions with a 

significant amount (from 85528.3 to 73364.5) to 

minimise the TCE, i.e. 77216.4. 

 

Table 3. The production schedule based on the optimal solution considering the second objective function (𝑓2) 

Plant Mach. Batch Assigned Parts  𝑃𝐶𝑗𝑚 𝑆𝐶𝑗𝑚 𝑣𝑜𝑙𝑗𝑚 𝐻𝑒𝑗𝑚 𝑠𝑗𝑚 𝑝𝑗𝑚 𝑐𝑗𝑚 

1 1 1 8,10 11061.40 40 4984.78 21.79 2.00 184.3560 186.3560 

  2 11 5139.77 40 2204.41 12.59 188.356 85.6629 274.0190 

 2 1 9,12 3332.90 40 1264.07 11.81 2.00 55.5483 57.5483 

2 3 1 1,3,4,13,14,16 10354.90 20 3805.26 17.13 1.00 129.4370 130.6050 

 4 1 2,5,6,7,15 13945.70 20 4820.20 36.50 1.00 174.3210 175.3210 

 

Table 4. The distribution plan based on the optimal solution considering the second objective function (𝑓2) 

From Plant To Customer Shipped Parts 𝑇𝑉𝑝𝑢 𝑇𝐸𝑝𝑢 

1 3 8,9,10,11,12 8453.26 47549.60 

2 1 1,2,3,4 2553.67 4788.13 

 2 5,6,7 1982.60 1858.69 

 4 13,14,15,16 4089.19 19168.10 
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Table 5. The comparison of the objective terms for the two 

optimal solutions 

Objective  Min 𝑓1 Min 𝑓2 

Total Cost (GBP) 43895.9 46463.5 

∑ ∑ (𝑃𝐶𝑗𝑚 + 𝑆𝐶𝑗𝑚)𝑚∈𝑀𝑗∈𝐽   40795.3 43994.6 

∑ 𝑇𝐶𝑢𝑢∈𝑈   2280.7 1956.4 

∑ 𝑑𝑐𝑖𝑡𝑡𝑖𝑖∈𝐼   819.9 512.5 

Total Emission (gr 𝐶𝑂2  eq.) 89327.7 77216.4 

∑ ∑ 𝑇𝐸𝑝𝑢𝑢∈𝑈𝑝∈𝑃   85528.3 73364.5 

∑ 𝑃𝐸𝑚𝑚∈𝑀   3799.4 3851.9 

 

3.3. Alternative scenarios 

Additional scenarios have been constituted here to 

observe the behaviour of the model under different 

conditions with no time limit. Brief information on 

each scenario is as follows: 

A-1: The objective is to minimise 𝑓1 where the upper 

limit for 𝑓2 is restricted to 80 kg.  

A-2: The objective is to minimise 𝑓2 where the upper 

limit for 𝑓1 is restricted to 45000 GBP.  

A-3: Lexicographically minimise both objectives, 

where the primary objective is to minimise 𝑓1 and the 

secondary objective is to minimise 𝑓2 

A-4: Lexicographically minimise both objectives, 

where the primary objective is to minimise 𝑓2 and the 

secondary objective is to minimise 𝑓1 

The problem has been solved under four different 

scenarios detailed above and the results have been 

summarised in Figure 2.  

 

Table 6. Design of the test problems 

Problem # nbPlants nbCustomers nbParts nbMachines Machines at Plants 

P1 2 2 10 2 [M1], [M2] 

P2   10 2 [M2], [M1] 

P3   14 2 [M1], [M2] 

P4    14 2 [M2], [M1] 

P5 2 3 12 2 [M1], [M2] 

P6   12 2 [M2], [M1] 

P7   16 3 [M1, M1], [M2] 

P8    16 3 [M1], [M2, M2] 

P9 2 4 18 2 [M1], [M2] 

P10   18 2 [M2], [M1] 

P11   20 3 [M1, M1], [M2] 

P12    20 3 [M1], [M2, M2] 

P13 2 5 20 3 [M1, M1], [M2] 

P14   20 3 [M1], [M2, M2] 

P15   22 4 [M1, M1], [M2, M2] 

P16    22 4 [M1, M2], [M1, M2] 

P17 3 3 14 3 [M1], [M1], [M2] 

P18   14 3 [M2], [M2], [M1] 

P19   16 4 [M1], [M2, M2], [M1] 

P20   16 4 [M1, M2], [M1], [M2] 

P21    20 4  [M2], [M1, M2], [M1] 

P22 3 4 16 4 [M2], [M1, M1], [M2] 

P23   20 4 [M1], [M2, M2], [M1] 

P24   20 4 [M1, M2], [M1], [M2] 

P25   28 4  [M2], [M1, M2], [M1] 

P26    28 4  [M1], [M1], [M2, M2] 

P27 3 5 30 4 [M2], [M1, M1], [M2] 

P28   36 4 [M1], [M2, M2], [M1] 

P29   36 4 [M1, M2], [M1], [M2] 

P30   44 4  [M2], [M1, M2], [M1] 

P31    44 4  [M1], [M1], [M2, M2] 

P32 3 6 40 5 [M2, M2], [M1], [M1, M2] 

P33   44 5 [M1, M1], [M2, M2], [M1] 

P34   44 5 [M1, M2], [M1, M2], [M2] 

P35   46 5  [M2], [M1, M1], [M2, M2] 

P36    46 5  [M2], [M1, M2], [M1, M2] 
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Figure 2. The comparison of the objective values belonging 

to the optimal solutions obtained under different scenarios 

As seen in Figure 2, the minimum value for the total 

cost has been observed for A-3 where 𝑓1 = 43895.9 

and 𝑓2 = 89327.7. The minimum value for the TCE 

has been observed for A-4 where 𝑓1 = 46261.4 and 

𝑓2 = 77216.4. These results are in line with the 

expectations since 𝑓1 is minimised primarily in A-3 

while 𝑓2 is minimised primarily in A-4.  

In A-2, the TCE could be reduced to 83543.8 when the 

total cost was constrained with an upper limit of 45000. 

With regard to A-1, a solution has been obtained with 

𝑓1 = 45461.5 and 𝑓2 = 79646.6 due to the conflicting 

objectives ensuring that the TCE was limited to a 

maximum value of 80 kg. As seen in these results, total 

cost increases in order to reduce the TCE to satisfy the 

constraint.  

To sum up, this numerical example clearly shows the 

relationship between the conflicting objectives and the 

effectiveness of the proposed mathematical model. 

4. Experimental study 

A comprehensive computational study has been 

conducted to observe the performance of the 

mathematical model proposed. For this aim, a total of 

36 test problems [35] have been generated and solved 

under different scenarios using a PC equipped with 

Intel(R) Core(TM) i7-1165G7 2.80GHz with 20 GB Ram. 

Descriptive information on the test problems is given in 

Table 6. The second, third, fourth and fifth columns in 

the table denote the number of plants, the number of 

customers, the number of parts and the total number of 

machines utilised at plants, respectively. The machine 

park at each plant is provided in the last column 

indicating their types. If we consider P8, the test 

problem has two plants with a total of three machines, 

to produce a total of 16 parts received from three 

customers. There is only one machine of type M1 at 

plant 1 and there are two machines of type M2 at plant 

2. 

The model has been coded in Python 3.11.4 and 

executed by Gurobi Optimizer 10.0.2. Each problem 

has been solved under two different scenarios, i.e. (i) 

total cost is minimised (𝑀𝑖𝑛(𝑓1)) and (ii) TCE is 

minimised (𝑀𝑖𝑛(𝑓2)). Two different time limits have 

been applied, i.e. 600s and 1800s, to better observe the 

model’s performance and compare the results obtained 

under different conditions. 

The values of the unit transportation cost (𝑢𝑛𝑖𝑡𝑇𝐶), unit 

carbon emission amount caused by transportation (𝜀𝑇𝑟) 

and hourly human cost (ℎ𝑐) have been kept the same 

with the numerical example (as already provided in the 

Appendices).  

Table 7 reports the results obtained by Gurobi 

Optimizer under the 600s time limit. First, each 

problem has been solved to minimise the total cost 

(𝑀𝑖𝑛(𝑓1)). The objective value of the solution is 

reported (second column) together with the optimality 

status of the model (third column) and the time 

consumed by the solver (fourth column). If the optimal 

solution is not achieved, the optimality gap of the best 

solution is given instead. The fifth column gives the 

TCE for the solution obtained when minimising total 

cost. 

The sixth column corresponds to the objective value of 

the best solution when minimising TCE (𝑀𝑖𝑛(𝑓2)). The 

optimality status (and/or gap) and the consumed time 

are given in the seventh and eighth columns, 

respectively. The total cost (𝑓1) of the solution obtained 

when minimising TCE (𝑓2) is also provided in the last 

column.  

As seen from Table 7, an optimal solution has been 

found for 13 out of 36 test problems when minimising 

𝑓1, i.e. P1-P8, P17-P18 and P20-P22. As for the 

remaining problems, the optimal solution was not 

verified within the time limit given (600s). Due to the 

complexity of the model, the time required to get the 

optimal solution increases with the increase in the 

number of parts, machines, plants and customers. For 

example, P1 and P2 have been solved optimally with 

around 1s running time while P22 required over 300s 

to get the optimal solution and verify it. Even, P9-P16 

were unable to be solved within 600s time limit 

optimality, for which the optimality gap ranged 

between 1.18% and 4.27%. The optimality gap also 

tends to increase with the increased problem 

complexity and reaches as high as 14.94% for P35.  

With regard to minimising TCE (𝑀𝑖𝑛(𝑓2)), Gurobi was 

able to retrieve the optimal solutions in 25 out of 36 test 

problems (as seen in Table 7). This time, the 

performance of the solver was higher in comparison to 

the above scenario. The reason lying behind could be 

the complexity of the total cost calculation, in 

comparison to the calculation of TCE. The optimality 

gap of the solutions was not high, with a maximum of 

0.67 for P35.  
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Table 7. Results obtained under 600s time limit 

Problem 
𝑀𝑖𝑛(𝑓1) / 600s  𝑀𝑖𝑛(𝑓2) / 600s 

𝑓1 Opt/Gap% Time (s) 𝑓2  𝑓2 Opt/Gap% Time (s) 𝑓1 

P1 20289.39 Opt 0.92 21035.8  12389.50 Opt 0.06 22551.3 

P2 20220.76 Opt 1.12 18462.2  12655.63 Opt 0.31 20576.7 

P3 47200.17 Opt 12.24 37967.8  25914.56 Opt 2.02 51962.7 

P4 47447.75 Opt 18.15 47252.1  42811.26 Opt 2.03 49050.2 

P5 47902.08 Opt 4.81 104059.0  95392.25 Opt 0.17 51516.2 

P6 47251.24 Opt 5.30 79652.1  70837.72 Opt 0.26 48358.7 

P7 52509.16 Opt 293.34 118567.0  104784.77 Opt 0.73 7.50537e+07 

P8 53425.41 Opt 439.24 115085.0  104784.77 Opt 2.06 56960.7 

P9 56349.66 1.47 600 124532.0  108666.76 Opt 2.07 6.0064e+07 

P10 55497.35 2.12 600 87588.1  84126.98 Opt 5.91 57011.8 

P11 56195.39 2.09 600 130371.0  110672.94 Opt 3.71 67642 

P12 57271.33 3.42 600 124984.0  110672.94 Opt 44.72 67464.5 

P13 56265.97 1.18 600 133937.0  116906.02 Opt 5.20 63070.6 

P14 57359.01 3.31 600 129050.0  116906.02 Opt 27.32 67043.8 

P15 59224.73 3.86 600 144023.0  126371.48 Opt 133.49 64851.1 

P16 58472.57 4.27 600 135850.0  101615.67 Opt 8.95 6.00628e+07 

P17 48145.79 Opt 38.52 86458.4  80678.96 Opt 1.97 51049.9 

P18 48172.25 Opt 26.77 81036.6  70257.92 Opt 0.20 50832.7 

P19 52520.97 0.51 600 117055.0  104784.77 Opt 1.95 60258.7 

P20 51807.17 Opt 218.52 90064.2  80194.22 Opt 3.37 1.0505e+08 

P21 51777.71 Opt 178.09 88959.4  79928.09 Opt 0.55 56401.5 

P22 51769.16 Opt 328.50 87811.8  80790.83 Opt 51.51 7.00524e+07 

P23 56113.41 2.73 600 126655.0  110672.94 Opt 20.51 66408.5 

P24 55469.07 3.32 600 100769.0  86129.99 Opt 18.01 8.75553e+07 

P25 67381.39 8.98 600 75797.2  67843.31 Opt 288.12 1.40072e+08 

P26 67340.38 8.30 600 87420.8  80114.86 0.3 600 72800.3 

P27 73685.83 10.39 600 120263.0  103579.80 0.48 600 76800.2 

P28 83390.44 10.78 600 139193.0  122773.54 0.11 600 93856 

P29 83572.60 10.67 600 153428.0  135783.21 0.37 600 93922.8 

P30 99175.03 14.03 600 158087.0  139492.17 0.14 600 124806 

P31 99189.24 13.42 600 166476.0  152290.35 0.55 600 115397 

P32 92832.03 12.51 600 166237.0  146158.08 0.59 600 2.62585e+08 

P33 97749.64 12.51 600 180140.0  142728.23 0.21 600 1.45105e+08 

P34 98855.99 13.99 600 174022.0  142605.50 0.16 600 135230 

P35 104208.04 14.94 600 266096.0  162757.17 0.67 600 109776 

P36 103919.76 14.55 600 169917.0  149400.53 0.16 600 129297 

 

Table 8 reports the results obtained when the time limit 

was set to 1800s. As seen from the table, the number of 

optimal solutions has increased to 17 in comparison to 

13 obtained under the 600s time limit when minimising 

𝑓1. For the remaining instances, the optimality of the 

solutions was not verified. However, it was observed 

that the optimality gap has reduced slightly, except for 

P10 (for which it was reduced from 2.2% to 0.55%).  

As also observed for the 600s time limit, Gurobi was 

able to obtain and verify 25 optimal solutions in total 

under the 1800s time limit. However, the average of the 

optimality gap has been reduced from 0.34% to 0.325% 

for the remaining 11 test problems. For P30, increasing 

the time limit from 600s to 1800s has not contributed to 

the capability of the model as the same solutions with 

the same gap have been attained under both conditions. 

For some cases (such as P32), the increased time limit 

helped prune the lower bound further and reduced the 

gap (e.g. from 0.59% to 0.53%). 

5. Conclusions and future work 

This paper addressed the scheduling of parallel 

unrelated AM machines located at geographically 

dispersed factory plants. Due to the increasing 

environmental concerns and the requirements for the 

sustainable use of resources, the TCE (released during 

production and transportation of parts -from plants to 

customers) has been minimised through a separate 

objective function. 
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Table 8. Results obtained under 1800s time limit 

Problem 
𝑀𝑖𝑛(𝑓1)  / 1800s  𝑀𝑖𝑛(𝑓2) / 1800s 

𝑓1 Opt/Gap% Time (s) 𝑓2  𝑓2 Opt/Gap% Time (s) 𝑓1 

P1 20289.39 Opt 0.88 21035.8  12389.50 Opt 0.06 22551.3 

P2 20220.76 Opt 1.22 18462.2  12655.63 Opt 0.29 20576.7 

P3 47200.17 Opt 11.18 37967.8  25914.56 Opt 1.88 51962.7 

P4 47447.75 Opt 14.60 47252.1  42811.26 Opt 2.07 49050.2 

P5 47902.08 Opt 3.87 104059.0  95392.25 Opt 0.17 51516.2 

P6 47251.24 Opt 4.66 79652.1  70837.72 Opt 0.25 48358.7 

P7 52509.16 Opt 283.43 118567.0  104784.77 Opt 0.65 7.50537e+07 

P8 53425.41 Opt 439.22 115085.0  104784.77 Opt 2.07 56960.7 

P9 56349.66 Opt 1037.79 124532.0  108666.76 Opt 2.11 6.0064e+07 

P10 55497.35 0.55 1800 87588.1  84126.98 Opt 5.89 57011.8 

P11 56195.39 Opt 1614.39 130371.0  110672.94 Opt 3.68 67642 

P12 57188.60 2.60 1800 124116.0  110672.94 Opt 41.02 67464.5 

P13 56265.97 Opt 808.61 133937.0  116906.02 Opt 4.72 63070.6 

P14 57359.01 2.63 1800 129050.0  116906.02 Opt 25.88 67043.8 

P15 59224.73 2.66 1800 144023.0  126371.48 Opt 118.60 64851.1 

P16 58472.57 3.17 1800 135850.0  101615.67 Opt 8.14 6.00628e+07 

P17 48145.79 Opt 38.84 86458.4  80678.96 Opt 1.85 51049.9 

P18 48172.25 Opt 26.79 81036.6  70257.92 Opt 0.19 50832.7 

P19 52520.97 Opt 701.57 117055.0  104784.77 Opt 1.80 60258.7 

P20 51807.17 Opt 219.98 90064.2  80194.22 Opt 3.12 1.0505e+08 

P21 51777.71 Opt 178.13 88959.4  79928.09 Opt 0.54 56401.5 

P22 51769.16 Opt 329.59 87811.8  80790.83 Opt 47.23 7.00524e+07 

P23 56113.41 1.47 1800 126655.0  110672.94 Opt 19.25 66408.5 

P24 55424.50 1.74 1800 99097.5  86129.99 Opt 16.14 8.75553e+07 

P25 67213.99 8.44 1800 82364.3  67843.31 Opt 267.75 1.40072e+08 

P26 67340.38 6.93 1800 87420.8  80114.86 0.19 1800 72800.3 

P27 73679.17 10.39 1800 120393.0  103579.80 0.41 1800 76800.2 

P28 83346.94 10.17 1800 139193.0  122773.54 0.10 1800 93856 

P29 83539.95 10.26 1800 151289.0  135783.21 0.35 1800 93922.8 

P30 99175.03 13.45 1800 158087.0  139492.17 0.14 1800 124806 

P31 98982.84 13.13 1800 171216.0  152267.39 0.53 1800 117297 

P32 92825.93 12.30 1800 166235.0  146158.08 0.53 1800 2.62585e+08 

P33 97748.12 11.69 1800 180517.0  142717.12 0.20 1800 1.77619e+08 

P34 98855.99 13.34 1800 174022.0  142594.35 0.15 1800 7.01354e+07 

P35 104130.56 14.41 1800 176594.0  162755.40 0.65 1800 109346 

P36 103307.96 13.74 1800 167487.0  149387.44 0.14 1800 132740 

A MILP model is proposed for the first time in 

literature, and a numerical example is presented to 

show the applicability and practicality of both the 

method and the addressed problem. Some practical 

scenarios have been constituted to show the 

applicability of the model and further elaborate results. 

A comprehensive computational study has also been 

conducted to test the performance of the model and it 

was observed that the number of instances solved 

optimally has increased when the time limit was 

increased from 600s to 1800s, as expected. The results 

of the computational tests indicate that the model is 

capable of producing practical results within a short 

amount of computation time. The methods proposed in 

this work can easily be adapted to solve real-world 

problems and increase the use of shareable resources 

environmentally friendly while minimising total cost. 

While the problem size may increase in real-life 

applications due to the enormous number of orders, 

parts and machines; the proposed models can still 

produce efficient solutions under certain time limits. 

They can also be integrated into existing decision 

support systems together with complex heuristic 

techniques to get quality solutions timely manner.  

Future studies may consider implementing a heuristic 

and/or metaheuristic algorithm to quickly solve large-

size problems especially. One can also develop lower 

bounds for the problem studied here for comparison 

purposes. It is also possible to further extend the MILP 
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model proposed in this work with new industry-

oriented constraints and/or energy considerations.  
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Appendices 

Table A1. Data on parts used for the numerical example 

𝑢 𝑖 ℎ𝑖 𝑎𝑖 𝑣𝑖 𝑑𝑑𝑖 𝑑𝑐𝑖 

1 1 6.9 209.06 826.08 120 1  
2 26.04 550.11 952.6 120 1 

 
3 15.97 23.63 71.91 120 1 

 
4 17.04 99.53 703.08 120 1 

2 5 27.94 56.85 272.92 155 2.5  
6 36.5 742.97 1583.98 155 2.5 

 
7 17.38 50.02 125.7 155 2.5 

3 8 18.46 300.66 3144.39 180 2  
9 11.81 435.66 1142.25 180 2 

 
10 21.79 131.88 1840.39 180 2 

 
11 12.59 349.83 2204.41 180 2 

 
12 2.67 84.97 121.82 180 2 

4 13 17.13 48.27 315 320 3  
14 12.53 269.66 1786.36 160 3 

 
15 18.09 175.77 1885 160 3 

 
16 4.27 122.62 102.83 160 3 

 

Table A2. Data on machines used for the numerical 

example 

𝑚 𝐴𝑚 𝐻𝑚 𝑉𝑇𝑚 𝑅𝑇𝑚 𝑆𝐸𝑇𝑚 𝜏𝑚 𝜀𝑚
𝑃𝑟 

1 625 32.5 0.030864 1.4 2 60 6 

2 625 32.5 0.030864 1.4 2 60 6 

3 1600 40 0.030864 0.7 1 80 6.25 

4 1600 40 0.030864 0.7 1 80 6.25 

 

Table A3. Parameter values for the numerical example 

Parameter Value 

ℎ𝑐 20 𝐺𝐵𝑃/ℎ𝑟 

𝑢𝑛𝑖𝑡𝑇𝐶  0.001 𝐺𝐵𝑃/(𝑘𝑚 ∗ 𝑐𝑚3) 

𝜀𝑇𝑟 0.0375 𝑔𝑟/(𝑘𝑚 ∗ 𝑐𝑚3) 

 

Table A4. Distances between plants and customers (in km) 

used for the numerical example 

Plant/Customer 1 2 3 4 

1 100 75 150 200 
2 50 25 225 125 
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