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1. Introduction

There are many problems in which the current
rate of change of a function can be obtained from
the past values of that function. Time delay sys-
tems are mathematical models of these types of
problems. A system may have variable or con-
stants delays eithre in control action or in the
state variable or in both. Therefore it is rea-
sonable to study the existence or controllability
property of delay dynamical systems. Some of bi-
ological and physical systems having time delays
are population growth, prey predator problems,
mixing of liquids, equations having feedback con-
trol, etc.

In several biological, engineering and physical
problems, differential systems of fractional-order
are found to be suitable models. Therefore, in last
twenty years, they attracted more attention from
researchers. In fact, for the illustration of memory
and hereditary properties, fractional derivatives
provide a better instrument. For this reason, they

have given a lot of applications in the areas of con-
trol theory, aerodynamics, viscoelasticity, physics,
electrodynamics of complex medium, heat con-
duction, electricity mechanics, etc. [1–12]. For
the modeling of the anomalous phenomena in the
theory of complex systems as well as in nature,
systems of fractional-order became more appro-
priate and interesting [1, 13]. Therefore, to de-
scribe diffusion in media with fractal geometry,
the fractional diffusion equation was introduced
in physics by substituting the first-order deriva-
tive by a fractional derivative in classical diffusion
equation, which becomes appropriate for many
applications.

In some areas such as dynamics of nuclear reactor
and thermoelasticity, it is required to reflect the
memory effect of systems in their models. In the
modeling of these problems, if differential equa-
tions are utilized, which involve functions at any
given space and time, the effect of previous out-
comes is omitted. For this reason, to incorporate
the memory effect in these differential equations,
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a term of integration is introduced, which turns
to integrodifferential equation. The integrodiffer-
ential equations have given a huge applications
in mechanics, viscoelastic fluid dynamics, control
theory, thermoelastic contact, heat conduction, fi-
nancial mathematics, industrial mathematics, bi-
ological models, aerospace systems, chemical ki-
netics, etc. (see [15–21]).

The existence and controllability results for dif-
ferent types of linear and non-linear systems are
proved in many articles [14, 20–34, 36–42, 44–51,
53]. Among them, approximate controllability of
fractional systems with Riemann-Liouville deriva-
tives was proved by Liu and Li [38] assuming
Lipschitz continuity. In [36], Zhu et al. ana-
lyzed the approximate controllability of fractional
semilinear systems using itegral contractor. Us-
ing fractional resolvent, Ji and Yang [21] ob-
tained the solution to fractional integrodifferential
systems with Riemann-Liouville derivatives with-
out assuming the Lipschitz condition. Ibrahim
et. al. [33] analyzed approximate controllability
of functional equations with Riemann-Liouville
derivative by applying iterative technique. Ap-
proximate controllability for higher order frac-
tional integrodifferential equation was discussed
by Raja et al. [52]. Making use of fractional
resolvent, existence and controllability of higher
order Riemann-liouville fractional equations were
derived in [35]. However, the controllability of
fractional integrodifferential equations with mul-
tiple delays in control is still an untreated topic.
Our purpose is to obtain a set of new sufficient
conditions for the existence and uniqueness of so-
lutions and approximate controllability of the fol-
lowing fractional integrodifferential systems:


Dκ

t z(t) = Az(t) +
m∑
j=0

Bju(t− bj)

+f
(
t, z(t),

∫ t
0 ξ(t, s, z(s)) ds

)
, t ∈ (0, ℏ],

I1−κ
t z(t)

∣∣
t=0

= y0 ∈ V, u(t) = 0, t ∈ [−bm, 0],

(1)
where 0 < κ ≤ 1 < pκ and Dκ

t is the κ-order
Riemann-Liouville derivative. The control u ∈
U = Lp([0, ℏ];V ′), the state z ∈ Z = Lp([0, ℏ];V ),
where V and V ′ are complete normed spaces. bj
j = 0, 1, 2, . . . ,m, are constant delays such that
0 = b0 < b1 < b2 < · · · < bm < ℏ. The linear
operator A : D(A) ⊆ V → V generates a C0-
semigroup T (t). Bj : U → Z, j = 0, 1, 2, . . . ,m,
are linear maps. f and ξ are V -valued non-linear
functions defined on [0, ℏ]×V ×V and ∆×V , re-
spectively; where ∆ = {(t1, t2) : 0 ≤ t2 ≤ t1 ≤ ℏ}.

The article is structured as follows: After intro-
duction, we have given the preliminaries in Sec-
tion 2. In Section 3, the existence and uniqueness
of solutions are proven. Controllability of the sys-
tem is shown in Section 4. Finally, an example is
given in Section 5.

2. Preliminaries

Definition 1. The Riemann-Liouville fractional
integral of order κ is given by

Iκt φ(t) =
1

Γ(κ)

∫ t

0
(t− s)κ−1φ(s) ds, κ > 0,

where Γ is the gamma function.

Definition 2. The Riemann-Liouville fractional
derivative of order κ is given by

Dκ
t φ(t) =

1

Γ(m− κ)

dm

dtm

∫ t

0
(t− s)m−κ−1φ(s) ds,

where 1 + [κ] = m.

Definition 3. The Mittag-Leffler function
Eκ,κ̂(·) is given by

Eκ,κ̂(ζ) =
∞∑
j=0

ζj

Γ(κj + κ̂)
.

For κ̂ = 1, it is denoted by Eκ(·).
Consider the complete normed space

C1−κ([0, ℏ];V ) = {φ : t1−κφ(t) ∈ C([0, ℏ];V )}
with the norm

∥φ∥C1−κ = sup
t∈[0,ℏ]

{t1−κ∥φ(t)∥V },

where C([0, ℏ];V ) is the set of V -valued continu-
ous functions defined on [0, ℏ]. For C0-semigroup
T (t), we assume supt∈[0,ℏ] ∥T (t)∥ ≤ λT < ∞.

Definition 4. [38] A function z ∈
C1−κ([0, ℏ];V ) is said to be a mild solution of
(1) if

z(t) =tκ−1Tκ(t)y0 +

∫ t

0
(t− s)κ−1

· Tκ(t− s)

(
m∑
j=0

Bju(s− bj)

+ f

(
s, z(s),

∫ s

0
ξ(s, ς, z(ς)) dς

))
ds,

(2)

where

Tκ(t) = κ

∫ ∞

0
ϑζκ(ϑ)T (t

κϑ)dϑ,

ζκ(ϑ) =
1

κ
ϑ−1− 1

κωκ

(
ϑ− 1

κ

)
,
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ωκ(ϑ) =
1

π

∞∑
j=1

(−1)j−1Γ(jκ+ 1)

ϑjκ+1j!
sin(jπκ),

0 < ϑ < ∞.

Definition 5. The set given by

Rℏ(f) = {zu(ℏ) ∈ V : u ∈ U}
is called the reachable set of (1), where zu(·) is the
mild solution of (1) corresponding to u.

Definition 6. The system (1) is said to be ap-

proximately controllable on [0, ℏ] if Rℏ(f) = V .

Lemma 1. [34] For every t ∈ [0,∞), Tκ(t) is
continuous linear map such that

∥Tκ(t)y∥ ≤ λT

Γ(κ)
∥y∥ ∀ y ∈ V.

Lemma 2. [38] If the semigroup T (t) generated
by A is differentiable, then

(i) Tκ(t)y ∈ D(A) ∀ t > 0 and y ∈ V ;

(ii) Tκ(t1)Tκ(t2) = Tκ(t2)Tκ(t1) ∀ t1, t2 > 0;

(iii) dT 2
κ (t)y
dt = 2Tκ(t)

dTκ(t)y
dt , t > 0, y ∈ V ;

(iv) for any y ∈ D(A), there is a φ ∈ Z such

that
∫ ℏ
0 (ℏ− s)κ−1Tκ(ℏ− s)φ(s) ds = y.

3. Existence and Uniqueness of Mild
Solution

To derive the existence result we assume the fol-
lowing:

(A1) T (t) is continuous with respect to opera-
tor norm for t > 0.

(A2) there is a λf > 0 satisfying

∥f(t, y1, y∗1)− f(t, y2, y
∗
2)∥

≤ λf (∥y1 − y2∥+ ∥y∗1 − y∗2∥)
for all yi, y

∗
i ∈ V, i = 1, 2,

(A3) there is a ℘ ∈ Lp([0, ℏ];R), and a λ′
f > 0

such that

∥f(t, y, y∗)∥ ≤ ℘(t) + λ′
f t

1−κ (∥y∥+ ∥y∗∥)
for a.e. t ∈ [0, ℏ] and y, y∗ ∈ V,

(A4) there is a λξ > 0 verifying

∥ξ(t, s, y1)− ξ(t, s, y2)∥ ≤ λξ∥y1 − y2∥
forall y1, y2 ∈ V ;

(A5) there is a Θ ∈ Lp([0, ℏ];R) verifying
∥ξ(t, s, y)∥ ≤ Θ(s)

for all (t, s) ∈ ∆ and y ∈ V .

Theorem 1. Suppose assumptions (A1)-(A5) are
true. Then, for each u ∈ U , the semilinear

system (1) admits exactly one mild solution in
C1−κ([0, ℏ];V ).

Proof. It is enough to prove that, the function
E : C1−κ([0, ℏ];V ) → C1−κ([0, ℏ];V ) defined by

(Ez)(t) = tκ−1Tκ(t)y0 +

∫ t

0
(t− s)κ−1

· Tκ(t− s)

(
m∑
j=0

Bju(s− bj)

+ f

(
s, z(s),

∫ s

0
ξ(s, ς, z(ς)) dς

))
ds,

has exactly one fixed point in C1−κ([0, ℏ];V ). Due
to above assumptions, the function E is well de-
fined.
Let z, z∗ ∈ C1−κ([0, ℏ];V ). Then,

t1−κ∥(Ez)(t)− (Ez∗)(t)∥

≤ t1−κ

∫ t

0

∥∥∥∥(t− s)κ−1Tκ(t− s)

·
(
f

(
s, z(s),

∫ s

0
ξ(s, ς, z(ς)) dς

)
− f

(
s, z∗(s),

∫ s

0
ξ(s, ς, z∗(ς)) dς

))∥∥∥∥ ds
≤

λTλf

Γ(κ)
t1−κ

∫ t

0
(t− s)κ−1

(
∥z(s)− z∗(s)∥

+

∫ s

0
∥ξ(s, ς, z(ς))− ξ(s, ς, z∗(ς))∥ dς

)
ds

≤
λTλf

Γ(κ)
t1−κ

∫ t

0
(t− s)κ−1

·
(
sκ−1s1−κ∥z(s)− z∗(s)∥

+ λξ

∫ s

0
ςκ−1ς1−κ∥z(ς)− z∗(ς)∥ dς

)
ds

≤
λTλf

Γ(κ)
t1−κ

∫ t

0
(t− s)κ−1

(
sκ−1 + λξ

sκ

κ

)
ds

· ∥z − z∗∥C1−κ

=
λTλf

Γ(κ)
tκ
(
(Γ(κ))2

Γ(2κ)
+

λξΓ(κ)Γ(κ+ 1)t

κΓ(2κ+ 1)

)
· ∥z − z∗∥C1−κ

≤
Γ(κ)λTλf

Γ(2κ)
tκ
(
1 +

λξℏ
2κ

)
∥z − z∗∥C1−κ .

Repeating the above process, we can get

t1−κ∥(Enz)(t)− (Enz∗)(t)∥

≤
Γ(κ)(λTλf )

n

Γ((n+ 1)κ)
tnκ

(
n∏

i=1

(
1 +

λξℏ
(i+ 1)κ

))
· ∥z − z∗∥C1−κ
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≤
Γ(κ)

(
λTλfℏκ

(
1 +

λξℏ
2κ

))n
Γ((n+ 1)κ)

∥z − z∗∥C1−κ .

Therefore,

∥Enz − Enz∗∥C1−κ

≤
Γ(κ)

(
λTλfℏκ

(
1 +

λξℏ
2κ

))n
Γ((n+ 1)κ)

∥z − z∗∥C1−κ .

We know that the Mittag-Leffler series

Eκ,κ

(
λTλfℏκ

(
1 +

λξℏ
2κ

))

=
∞∑
i=0

(
λTλfℏκ

(
1 +

λξℏ
2κ

))i
Γ((i+ 1)κ)

is convergent. Therefore, for sufficiently large
value of n,(

λTλfℏκ
(
1 +

λξℏ
2κ

))n
Γ((n+ 1)κ)

<
1

Γ(κ)
.

Thus, from Banach contraction principle E has
exactly one fixed point in C1−κ([0, ℏ];V ). □

4. Controllability analysis

Define the operator Ψf : C1−κ([0, ℏ];V ) → Z
given by

(Ψf (ω))(t) =f

(
t, ω(t),

∫ t

0
ξ(t, s, ω(s)) ds

)
,

ω ∈ C1−κ([0, ℏ];V )

and the bounded linear operator Φ : Z → V given
by

Φ(ω) =

∫ ℏ

0
(ℏ− s)κ−1Tκ(ℏ− s)ω(s) ds, ω ∈ Z.

Remark 1. From Definition 6, the system (1) is
approximately controllable if and only if for each
ε > 0 and a ŷ ∈ V , there exists a control uε ∈ U
such that the mild solution zε corresponding to uε
satisfies∥∥∥∥∥∥ỹ − Φ(Ψf (zε))− Φ

 m∑
j=0

Bjuε(· − bj)

∥∥∥∥∥∥ ≤ ε,

where ỹ = ŷ − ℏκ−1Tκ(ℏ)y0.

To prove the controllability of original system, we
assume the following:

(A6) there is a λ̂f > 0 verifying

∥f(t, y1, y∗1)− f(t, y2, y
∗
2)∥

≤ λ̂f t
1−κ (∥y1 − y2∥+ ∥y∗1 − y∗2∥)

forall yi, y
∗
i ∈ V, i = 1, 2;

(A7) there is a λ̂ξ > 0 verifying

∥ξ(t, s, y1)− ξ(t, s, y2)∥ ≤ λ̂ξs
1−κ∥y1 − y2∥

forall yi ∈ V, i = 1, 2;
(A8) for given ε > 0 and a z ∈ Z, we can get a

u ∈ U such that

∥Φ(z)− Φ(B0u)∥V ≤ ε

and

∥B0u∥Z ≤ λ0∥z∥Z ,
where λ0 is constant and it does not de-
pendent on z;

(A9) 0 <
λT λ̂fλ0λpℏ(1+λ̂ξℏ2−κ)Eκ

(
λT λ̂fℏ

)
Γ(κ)−λT λ̂f λ̂ξℏ3−κκ−1Eκ

(
λT λ̂fℏ

) < 1,

where λp =
(

p−1
pκ−1

)1− 1
p
;

(A10) R(B0) ⊇ R(B1) ⊇ · · · ⊇ R(Bm), where R
stands for the range of operators.

Remark 2. Note that (A2) and (A4) are weaker
assumptions than (A6) and (A7), respectively.
Thus, by Theorem 1, the semilinear system (1)
admits a unique solution in C1−κ([0, ℏ];V ) for
fixed u ∈ U if assumptions (A1), (A3) and (A5)-
(A7) are true.

We derive the following lemma:

Lemma 3. Under assumptions (A1), (A3), (A5)-
(A7) and (A9) any mild solutions of (1) satisfy
the following

(i)
∥z∥C1−κ ≤ k1Eκ

(
λTλ

′
fℏ
)
, u ∈ U,

(ii)

∥z1 − z2∥C1−κ ≤ k2Eκ

(
λT λ̂fℏ

)∥∥∥∥ m∑
j=0

Bju1(· − bj)

−
m∑
j=0

Bju2(· − bj)

∥∥∥∥
Z

, u1, u2 ∈ U,

where

k1 =
λT

Γ(κ)

[
∥y0∥+ λp

(∥∥∥∥∥
m∑
j=0

Bju(· − bj)

∥∥∥∥
Z

+ ∥℘∥Lp

)
ℏ1−

1
p + λ′

fℏ
3−κ− 1

pκ−1∥Θ∥Lp

]
and

k2 =
λTλpℏ1−

1
p

Γ(κ)− λT λ̂f λ̂ξℏ3−κκ−1Eκ

(
λT λ̂fℏ

) .
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Proof. Let z ∈ C1−κ([0, ℏ];V ) be a mild solution
of (1) for u ∈ U , then

z(t) = tκ−1Tκ(t)y0 +

∫ t

0
(t− s)κ−1

· Tκ(t− s)

(
m∑
j=0

Bju(s− bj)

+ f

(
s, z(s),

∫ s

0
ξ(s, ς, z(ς)) dς

))
ds.

Therefore

t1−κ∥z(t)∥V

≤ ∥Tκ(t)y0∥+ t1−κ

∫ t

0

∥∥∥∥∥(t− s)κ−1

· Tκ(t− s)

(
m∑
j=0

Bju(s− bj)

+ f

(
s, z(s),

∫ s

0
ξ(s, ς, z(ς)) dς

))∥∥∥∥∥ ds
≤ λT

Γ(κ)

[
∥y0∥+ t1−κ

∫ t

0
(t− s)κ−1

·

∥∥∥∥∥
m∑
j=0

Bju(s− bj)

∥∥∥∥∥ ds+ t1−κ

∫ t

0
(t− s)κ−1

(
℘(s) + λ′

fs
1−κ∥z(s)∥V

+ λ′
fs

1−κ

∫ s

0
Θ(ς) dς

)
ds

]

≤ λT

Γ(κ)

[
∥y0∥+

(
p− 1

pκ− 1

)1− 1
p

·

(∥∥∥∥∥
m∑
j=0

Bju(· − bj)

∥∥∥∥∥
Z

+ ∥℘∥Lp

)
ℏ1−

1
p

+ λ′
fℏ

3−2κ− 1
p

∫ t

0
(t− s)κ−1 ds∥Θ∥Lp

+ λ′
fℏ1−κ

∫ t

0
(t− s)κ−1s1−κ∥z(s)∥V ds

]

≤ k1 +
λTλ

′
fℏ1−κ

Γ(κ)

∫ t

0
(t− s)κ−1s1−κ∥z(s)∥V ds.

From Corollary 2 of [43], we obtain

t1−κ∥z(t)∥V ≤ k1Eκ

(
λTλ

′
fℏ
)
.

Therefore,

∥z∥C1−κ ≤ k1Eκ

(
λTλ

′
fℏ
)
.

Next, let zi ∈ C1−κ([0, ℏ];V ) be the mild solution

of (1) for ui ∈ U, i = 1, 2. Then

zi(t) = tκ−1Tκ(t)y0 +

∫ t

0
(t− s)κ−1

· Tκ(t− s)

(
m∑
j=0

Bjui(s− bj)

+ f

(
s, zi(s),

∫ s

0
ξ(s, ς, zi(ς)) dς

))
ds.

We have

t1−κ∥z1(t)− z2(t)∥V

≤ λT

Γ(κ)
t1−κ

[∫ t

0
(t− s)κ−1

∥∥∥∥∥
m∑
j=0

Bju1(s− bj)

−
m∑
j=0

Bju2(s− bj)

∥∥∥∥∥ ds+
∫ t

0
(t− s)κ−1

·

∥∥∥∥∥f
(
s, z1(s),

∫ s

0
ξ(s, ς, z1(ς)) dς

)

− f

(
s, z2(s),

∫ s

0
ξ(s, ς, z2(ς)) dς

)∥∥∥∥∥ ds
]

≤ λTλp

Γ(κ)
ℏ1−

1
p

∥∥∥∥∥
m∑
j=0

Bju1(· − bj)

−
m∑
j=0

Bju2(· − bj)

∥∥∥∥
Z

+
λT λ̂f

Γ(κ)
ℏ1−κ

·
∫ t

0
(t− s)κ−1s1−κ

(
∥z1(s)− z2(s)∥

+ λ̂ξ

∫ s

0
ς1−κ∥z1(ς)− z2(ς)∥ dς

)
ds

≤ λTλp

Γ(κ)
ℏ1−

1
p

∥∥∥∥∥
m∑
j=0

Bju1(· − bj)

−
m∑
j=0

Bju2(· − bj)

∥∥∥∥∥
Z

+
λT λ̂f

Γ(κ)
ℏ1−κ

·
(∫ t

0
(t− s)κ−1s1−κ∥z1(s)− z2(s)∥ ds

+ λ̂ξ

∫ t

0
(t− s)κ−1ℏ2−κ ds∥z1 − z2∥C1−κ

)
≤ λTλp

Γ(κ)
ℏ1−

1
p

∥∥∥∥∥
m∑
j=0

Bju1(· − bj)

−
m∑
j=0

Bju2(· − bj)

∥∥∥∥∥
Z

+
λT λ̂f λ̂ξ

Γ(κ)
ℏ3−κκ−1

· ∥z1 − z2∥C1−κ +
λT λ̂f

Γ(κ)
ℏ1−κ

∫ t

0
(t− s)κ−1

· s1−κ∥z1(s)− z2(s)∥ ds.
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From Corollary 2 of [43], we obtain

t1−κ∥z1(t)− z2(t)∥V

≤ λT

Γ(κ)

[
λpℏ1−

1
p

∥∥∥∥∥
m∑
j=0

Bju1(· − bj)

−
m∑
j=0

Bju2(· − bj)

∥∥∥∥∥
Z

+ λ̂f λ̂ξℏ3−κκ−1

· ∥z1 − z2∥C1−κ

]
Eκ

(
λT λ̂fℏ

)
.

Therefore,

∥z1 − z2∥C1−κ

≤ λT

Γ(κ)

[
λpℏ1−

1
p

∥∥∥∥∥
m∑
j=0

Bju1(· − bj)

−
m∑
j=0

Bju2(· − bj)

∥∥∥∥∥
Z

+ λ̂f λ̂ξℏ3−κκ−1

· ∥z1 − z2∥C1−κ

]
Eκ

(
λT λ̂fℏ

)
.

This gives

∥z1 − z2∥C1−κ

≤
λTλpℏ1−

1
pEκ

(
λT λ̂fℏ

)
Γ(κ)− λT λ̂f λ̂ξℏ3−κκ−1Eκ

(
λT λ̂fℏ

)
·

∥∥∥∥∥
m∑
j=0

Bju1(· − bj)−
m∑
j=0

Bju2(· − bj)

∥∥∥∥∥
Z

= k2Eκ

(
λT λ̂fℏ

)
·

∥∥∥∥∥
m∑
j=0

Bju1(· − bj)−
m∑
j=0

Bju2(· − bj)

∥∥∥∥∥
Z

.

□

Theorem 2. Under assumptions (A1), (A3) and
(A5)-(A10), the semilinear system (1) is approx-
imately controllable if the semigroup T (t) is dif-
ferentiable.

Proof. First we prove that for each u∗ ∈ U , there
is a u ∈ U such that

B0u
∗(·) = B0u(·) +B1u(· − b1)

+ · · ·+Bmu(· − bm). (3)

For this, set ℏ = bm+1 and r = min{bj−bj−1 : j =
1, 2, . . . ,m + 1}. Since 0 = b0 < b1 < b2 < · · · <
bm < bm+1 therefore for each bj+1 there exist a
positive integer nj and a constant ϑj ∈ [0, r) such
that bj+1 = bj + njr + ϑj , j = 1, 2, . . . ,m. For

t ∈ [0, b1], we have

B0u
∗(·)−B1u(· − b1)− · · · −Bmu(· − bm)

= B0u
∗(·).

Take u(t) = u∗(t) for t ∈ [0, b1]. For t ∈ (b1, b1+r],
we have (t− b1) ∈ (0, r] ⊂ (0, b1] and

B0u
∗(·)−B1u(· − b1)− · · · −Bmu(· − bm)

= B0u
∗(·)−B1u

∗(· − b1) = B0u11(·)(say),
where u11(·) is known. Take u(t) = u11(t) for
t ∈ (b1, b1 + r].
Now, if t ∈ (b1+r, b1+2r], then (t−b1) ∈ (r, 2r] ⊂
(0, b1 + r] and u(· − b1) is known. Therefore, in
this case

B0u
∗(·)−B1u(· − b1)− · · · −Bmu(· − bm)

= B0u
∗(·)−B1u(· − b1) = B0u12(·)(say),

where u12(·) is known. Take u(t) = u12(t)
for t ∈ (b1 + r, b1 + 2r]. Similarly, we can
find u13(·), u14(·), . . . , u1n1(·) for the intervals
(b1 +2r, b1 +3r], (b1 +3r, b1 +4r], . . . , (b1 + (n1 −
1)r, b1 + n1r]; respectively. If ϑ1 > 0, then
we can also find u1n1+1(·) for the next interval
(b1 + n1r, b1 + n1r + ϑ1]. Thus u(·) is completely
known for t ∈ (b1, b1+n1r+ϑ1] = (b1, b2]. Denote
u(·) by u1(·) for t ∈ (b1, b2].
Repeating the above process, one can ob-
tain u2(·), u3(·), . . . , um(·) for the intervals
(b2, b3], (b3, b4], . . . , (bm, bm+1]; respectively.
Hence the control function u(·) ∈ U , given by

u(t) =

{
u∗(t), t ∈ [0, b1];

uj(t), t ∈ (bj , bj+1], j = 1, 2, . . . ,m

is completely known and it satisfies

B0u
∗(·)−B1u(· − b1)− · · · −Bmu(· − bm)

= B0u(·).

Next, we prove that D(A) ⊆ Rℏ(f), that is, for
any ε > 0 and ŷ ∈ D(A), we are able to find a
control uε ∈ U satisfying∥∥∥∥∥∥ỹ − Φ(Ψf (zε))− Φ

 m∑
j=0

Bjuε(· − bj)

∥∥∥∥∥∥
V

≤ ε,

where ỹ = ŷ−ℏκ−1Tκ(ℏ)y0 and zε(t) = zuε(t). By
Lemma 2, there is a ℘ ∈ Z such that Φ(℘) = ỹ.
Let ε > 0 be given and v1 ∈ U . Then by assump-
tion (A8) and (3), there is a control v2 ∈ U such
that∥∥∥∥∥∥ỹ − Φ(Ψf (z1))− Φ

 m∑
j=0

Bjv2(· − bj)

∥∥∥∥∥∥
V

≤ ε

32
,

where z1(t) = zv1(t). Denote z2(t) = zv2(t), in
view of (A8) and (3), there is a control ω2 ∈ U
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such that∥∥∥∥∥Φ(Ψf (z2)−Ψf (z1))

− Φ

(
m∑
j=0

Bjω2(· − bj)

)∥∥∥∥∥
V

≤ ε

33

and

∥∥∥∥∥∥
m∑
j=0

Bjω2(· − bj)

∥∥∥∥∥∥
Z

≤ λ0 ∥Ψf (z2)−Ψf (z1)∥Z

= λ0

[∫ ℏ

0

∥∥∥∥f (t, z2(t), ∫ t

0
ξ(t, ς, z2(ς)) dς

)

− f

(
t, z1(t),

∫ t

0
ξ(t, ς, z1(ς)) dς

)∥∥∥∥p
V

dt

] 1
p

≤ λ0λ̂f

[∫ ℏ

0

(
t1−κ∥z2(t)− z1(t)∥

+ λ̂ξt
1−κ

∫ t

0
ς1−κ∥z2(ς)− z1(ς)∥ dς

)p

dt

] 1
p

≤ λ0λ̂f

(∫ ℏ

0

(
1 + λ̂ξℏ2−κ

)p
dt

) 1
p

∥z2 − z1∥C1−κ

= λ0λ̂fℏ
1
p

(
1 + λ̂ξℏ2−κ

)
∥z2 − z1∥C1−κ

≤ λ0λ̂fℏ
1
p

(
1 + λ̂ξℏ2−κ

)
k2Eκ

(
λT λ̂fℏ

)
·

∥∥∥∥∥∥
m∑
j=0

Bju1(· − bj)−
m∑
j=0

Bju2(· − bj)

∥∥∥∥∥∥
Z

=
λT λ̂fλ0λpℏ

(
1 + λ̂ξℏ2−κ

)
Eκ

(
λT λ̂fℏ

)
Γ(κ)− λT λ̂f λ̂ξℏ3−κκ−1Eκ

(
λT λ̂fℏ

)
·

∥∥∥∥∥∥
m∑
j=0

Bjv1(· − bj)−
m∑
j=0

Bjv2(· − bj)

∥∥∥∥∥∥
Z

.

Now, if we define

v3(t) = v2(t)− ω2(t), v3 ∈ U,

then

∥∥∥∥∥∥ỹ − Φ(Ψf (z2))− Φ

 m∑
j=0

Bjv3(· − bj)

∥∥∥∥∥∥
V

≤

∥∥∥∥∥∥ỹ − Φ(Ψf (z1))− Φ

 m∑
j=0

Bjv2(· − bj)

∥∥∥∥∥∥
V

+

∥∥∥∥∥Φ(Ψf (z2)−Ψf (z1))

− Φ

(
m∑
j=0

Bjω2(· − bj)

)∥∥∥∥∥
V

≤
(

1

32
+

1

33

)
ε.

By inductions, we get a sequence {vn} in U satis-
fying

∥∥∥∥∥∥ỹ − Φ(Ψf (zn))− Φ

 m∑
j=0

Bjvn+1(· − bj)

∥∥∥∥∥∥
V

≤
(

1

32
+

1

33
+ · · ·+ 1

3n+1

)
ε,

where zn(t) = zvn(t), and

∥∥∥∥∥∥
m∑
j=0

Bjvn+1(· − bj)−
m∑
j=0

Bjvn(· − bj)

∥∥∥∥∥∥
Z

≤
λT λ̂fλ0λpℏ

(
1 + λ̂ξℏ2−κ

)
Eκ

(
λT λ̂fℏ

)
Γ(κ)− λT λ̂f λ̂ξℏ3−κκ−1Eκ

(
λT λ̂fℏ

)
·

∥∥∥∥∥∥
m∑
j=0

Bjvn(· − bj)−
m∑
j=0

Bjvn−1(· − bj)

∥∥∥∥∥∥
Z

,

which shows that the sequence
m∑
j=0

Bjvn(· − bj) : n = 1, 2, . . .


is Cauchy in Z. Since Z

is complete and Φ is bounded therefore, the se-
quenceΦ

 m∑
j=0

Bjvn(· − bj)

 : n = 1, 2, . . .


is Cauchy in V . Thus, we can get a n0 ∈ N such
that

∥∥∥∥∥Φ
(

m∑
j=0

Bjvn0+1(· − bj)

)

− Φ

(
m∑
j=0

Bjvn0(· − bj)

)∥∥∥∥∥
V

≤ ε

3
.

Now,
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∥∥∥∥∥ỹ − Φ(Ψf (zn0))− Φ

(
m∑
j=0

Bjvn0(· − bj)

)∥∥∥∥∥
V

≤

∥∥∥∥∥ỹ − Φ(Ψf (zn0))

− Φ

(
m∑
j=0

Bjvn0+1(· − bj)

)∥∥∥∥∥
V

+

∥∥∥∥∥Φ
(

m∑
j=0

Bjvn0+1(· − bj)

)

− Φ

(
m∑
j=0

Bjvn0(· − bj)

)∥∥∥∥∥
V

≤
(

1

32
+

1

33
+ · · ·+ 1

3n0+1

)
ε+

ε

3

< ε.

As D(A) is dense in V therefore, Rℏ(f) = V . □

5. Example

For x ∈ [0, π], consider the system with the given
boundary condition

D
2
3
t z(t, x) =

∂2

∂x2 z(t, x) +

m∑
j=0

u(t− bj)

+f
(
t, z(t, x),

∫ t
0 ξ(t, s, z(s, x)) ds

)
, 0 < t ≤ 1,

I
1
3
t z(t, x)

∣∣
t=0

= y0(x), u(t) = 0, −bm ≤ t ≤ 0,

z(t, 0) = z(t, π) = 0, 0 < t ≤ 1,

(4)
where 0 = b0 < b1 < · · · < bm < 1.
Take V = V ′ = L2[0, π] and A : D(A) ⊂ V → V
given by

Ay = yxx
with the domain

D(A) ={y ∈ V : y, yx are absolutely continuous

and yx ∈ V, y(0) = 0 = y(π)}.
Then, A has the spectral representation

Ay =

∞∑
n=1

(−n2)⟨y, qn⟩qn, y ∈ D(A),

which generates a semigroup T (t) given by

T (t)y =

∞∑
n=1

exp(−n2t)⟨y, qn⟩qn, y ∈ V

with
∥T (t)∥ ≤ exp(−1) < 1;

where qn(x) =
√

2
π sinnx are eigen functions of A

associated with the eigenvalues λn = −n2, n ∈ N
and the set {qn : n ∈ N} form an orthonormal

basis for V .
If we take

z∗(t, x) =

∫ t

0
ξ(t, s, z(s, x)) ds

and

f (t, z(t, x), z∗(t, x))

= f

(
t, z(t, x),

∫ t

0
ξ(t, s, z(s, x)) ds

)
= (1 + t2) + k0t

a0

(
z(t, x) +

∫ t

0
k1
(
t2 + s2

)
sa1

· cos(ts) cos(1 + z(s, x)) ds

)
,

where

ξ(t, s, z(s, x)) = k1
(
t2 + s2

)
sa1 cos(ts) cos(1+z(s, x))

and ai ≥ 1 − κ, i = 0, 1. Then (A2), (A3) and

(A6) are satisfied with λf = λ′
f = λ̂f = |k0|.

Also, the conditions (A4) and (A7) are satisfied

with λξ = λ̂ξ = 4|k1|.
Now,

∥ξ(t, s, z(s, ·))∥ ≤ |k1|
(
1 + s2

)
sa1

= Θ(s) ∈ Lp([0, 1];R+).

Hence (A5) is satisfied. If we choose the constants
k0 and k1 small enough so that (A9) is satisfied,
then from Theorem 2, the approximate controlla-
bility of (4) follows.
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