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In this paper, a deep artificial neural network technique is proposed to solve the
coupled system of Emden-Fowler equations. A vectorized form of algorithm is
developed. Implementation and simulation of this technique is performed using
Python code. This technique is implemented in various numerical examples,
and simulations are conducted. We have shown graphically how accurately this
method works. We have shown the comparison of numerical solution and exact
solution using error tables. We have also conducted a comparative analysis
of our solution with alternative methods, including the Bernstein collocation
method and the Homotopy analysis method. The comparative results are
presented in error tables. The efficiency and accuracy of this method are
demonstrated by these graphs and tables.
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1. Introduction

Differential equations are used to model natural
phenomena in many fields of science, including
biology, ecology, physics, engineering, chemistry,
etc. Due to the vast applications of these dif-
ferential equations in many branches of science(
[1], [2]), there is a great need to solve these kinds
of equations. The Emden-Fowler equation is also
an important differential equation in astrophysics
and physics. It is also very difficult to solve this
equation numerically due to the singularity be-
havior of the equation at the point ζ = 0. This
equation arises in the study of stellar structure
[3], which involves the evolution of a star under
the laws of physics. Stars’ gravity balances the
stars’ core radiations. This balance is called hy-
drostatic equilibrium. The Emden-Fowler equa-
tion arises when this equilibrium state is mod-
eled while studying the stellar structure. In 1870,
Jonathan Lane [4] introduced the equation, and
Jacob Emden [5] generalized it further. Lane -

Emden equation is given as

d2ω

dζ2
+

2

ζ

dω

dζ
+ ωn = 0, (1)

where n is the polytropic index. Many astrophysi-
cists were interested in the behavior of the solu-
tion of these equations under some initial condi-
tions. Fowler studied the these equations during
1914-1931. The more general form of (1) is

d2ω

dζ2
+
ϑ

ζ

dω

dζ
+ φ(ω) = ψ(ζ), (2)

where φ(ω) is a linear or non-linear function.
Emden-Fowler equation is also used in chemical
reactors, fluid mechanics, and gas dynamics.
There are many variants of Emden-Fowler equa-
tions including coupled system of Emden-Fowler
equations that reads as follows-

d2ω1
dζ2

+ ϑ1
ζ

dω1
dζ = φ1(ζ, ω1, ω2),

d2ω2
dζ2

+ ϑ2
ζ

dω2
dζ = φ2(ζ, ω1, ω2),

(3)
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where ϑ1 > 0, ϑ2 > 0 are real constants. φ1 and
φ2 are nonlinear functions of ζ, ω1 and ω2.
The groundwork of artificial neural net-
work(ANN) was started in 1943 when McCulloch
and Pitts modeled a neuron as a switch that re-
ceives input from other neurons and, depending
on total weighted input, is either activated or re-
mains inactive. Thus, artificial neural networks
are inspired by sensory processing of the brain.
ANN can be created by simulating a network
of model neurons in a computer. The structure
comprises input layer, output layer, and hidden
layers. Every layer contains neurons. By using
an algorithm we can make the network learn to
solve mathematical problems. A model neuron
receives the input from other units, weighs each
unit and add them up. If the total input is above
a threshold we get the output.
When a structure has multiple hidden layers, deep
neural networks (DNNs) are used. Deep neural
networks have been proposed as a way to pro-
duce more predictive models. Combining a large
number of layers endows the model with high
prediction power.

2. Related work

Machine learning techniques such as deep neural
networks have a wide range of applications such as
speech recognition, image classification [6], com-
puter vision tasks [7], machine translation, drug
design, climate science, cybersecurity ( [8], [9]).
DNN is also very useful in automated driving.
Automative researchers are able to detect stop
signs, traffic lights, pedestrians that helps lower
accidents. The deep layers in DNN capture more
variances.
The main issues of deep neural networks are ro-
bustness, stability and adversarial perturbation
which are discussed in ( [10], [11], [12], [13]). The
source of instability arises from the high depth
of neural networks, where a ”shattered gradient”
effect was observed [14]. More advances in the ap-
plications of deep neural networks are presented
in ( [15], [16]).
Solving differential equations using optimization
strategies has been very popular for quite some
time in the form of least squares method ( [17],
[18]) and Galerkin methods [19]. These tech-
niques are also used in neural networks. Nowa-
days researchers are using ANN to solve differ-
ential equations. ANN solutions are in closed-
analytic form and are differentiable. Solving a dif-
ferential equation was first described by Lagaris
et al. [20]. Lee sen ten [21] solved ODEs with

modified back propagation(mBP) with multilayer
perception neural network (MPNN) as ANN tech-
nique. Craig Michoski et. al. [22] Solved PDEs us-
ing deep neural networks (DNNs) They discussed
and analyzed the sod shocktube solution to the
compressible Euler equations. Jiequen Han [23]
also used deep learning to solve high-dimensional
PDEs such as Black-Scholes equation, Allen-cahn
equations, Bellman equation. Sabir et al. [24]
solved fourth order Emden-Fowler equation using
heuristic computing technique. Raja et al. [25]
used Neuro-swarms intelligent computing tech-
inque using kernel to solve Emden-Fowler equa-
tions. Sabir et al. [26] also discussed the applica-
tions of neural networks in COVID-19 model us-
ing the effects of lockdown. Fernandez [27] used a
feedforward neural algorithm to solve linear or-
dinary differential equations using a limit acti-
vation function to construct a feedforward neu-
ral network. Fotiadis (1998) also solved ODEs
and PDEs using ANN and compared the solution
with a numerical method like the finite element
method. Aarts and Ven Der (2001) [28] solved
PDEs with boundary and initial conditions using
neural networks. They used single hidden layers
with multiple inputs and a single output. They
tested their method on physics and geological
problems. Sadogi Yazdi (2011) [29] implemented
an ANN technique with kernel mean square al-
gorithm to solve Ordinary differential equations.
Asady and Nazarlue (2014) [30] solved the Fred-
holm integral equation using ANN with great pre-
cision. Nystorm (2018) [31] solved PDEs in com-
plex geometries using deep feedforward artificial
neural networks. Viana (2020) [32] introduced the
recurrent neural networks to integrate ordinary
differential equations. For more related works we
can check Rackauckas [33], Wang Huan [34].

3. Neural network architecture and
working

We are using vectorized algorithm (given in [35])
to solve the system of Emden-Fowler equations
using deep neural networks (DNN).

Figure 1. Deep ANN schematic diagram.
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As indicated in Figure 1, the network has in-
put layer containing one neuron as an indepen-
dent variable for system of equations and n neu-
rons in output layer. We form a matrix T =[
ζ1, ..., ζr

]
∈ R1×r using r sample points from

domain and take N ∈ Rn×r as output matrix.
For example, Nλ(ζ

τ , Qλ) is the λth output corre-
sponding to τth point, where Qλ is related to the
weights and bias parameters. For each ζ ∈ [a, b]
a trial solution, which is an extension of trial so-
lution given in [35], is considered as

ω̂j(ζ,Qj) =

aj+(ζ−a)Nj(ζ,Qj)+
(ζ − a)2

2!
Nj(ζ,Qj)+..., (4)

where j = 1, 2, ..., n. This trial solution satisfies
the initial conditions. The total cost function is

H =
r∑

τ=1

n∑
j=1

(
d2ω̂j

dζ2
+
ϑj
ζ

dω̂j

dζ
− φj

)2

, (5)

converges to 0, φj = φj(ζ
τ , ω̂j , Qj).

Forward propagation

We represent m− 1 and m layer node by s and j
respectively. The value that goes into jth node,

umj =

d∑
s=1

ymjsa
m−1
s + bms , (6)

In the mth layer, the variable d represents the
number of neurons. The equation (6) can be ex-
pressed in matrix form as follows:

um = Y mam−1 + bm, (7)

where Y m contains all the weights and bm is the
bias. An appropriate activation function passes
The values to the next hidden layer. For consis-
tency, we select the identical activation function
for all nodes within a layer. The values for the
subsequent layer are as follows:

am = πm(um) = πm(Y mam−1 + bm), (8)

where πm is activation function. For the r grid
points, where τ = 1, 2, . . . , r, we proceed with the
following steps. In the initial hidden layer,

u1(τ) = Y 1zτ + b1,

a1(τ) = π1(u1(τ)),

at the second hidden layer,

u2(τ) = Y 2a1(τ) + b2,

a2(τ) = π2(u2(τ)),

similarly the output layer,

uM(τ) = YMaM−1(τ) + bM ,

aM(τ) = πM (uM(τ)).

So we have the matrix form as

U1 = Y 1Z + b1,
A1 = π1(Y 1),

for second layer

U2 = Y 2A1 + b2,
A2 = π2(Y 2),

and so on. The output layer

UM = YMAM−1 + bM ,
AM = πM (YM ),

The algorithm

Step 1 : Take r distinct points and form a vector
T =

[
ζ1, ..., ζr

]
∈ R1×r.

Step 2 : We define the structure of neural net-
works such as number of layers M , input layer
having one unit, M − 2 hidden layers with gm

units, and an output layer with n units, where
n corresponds to the number of unknowns in the
system.

Step 3 : Initialize the parameters such as weights
and bias, Qj , j = 1, 2, ..n, where n denotes num-
ber of neurons. Step 4 : Use forward propagation

• Assign A0 = Z in input layer.
• In hidden layers

Um = Y mAm−1 + bm,
Am = πm(Y m),

wherem = 1, ...M−1, πm is the activation
function for mth hidden layer.

• For output layer,

UM = YMAM−1 + bM ,
AM = πM (YM ),

• We use trial solution of order four in (4).
We need to initialize sets of parameters to
find an unknown function.

Step 5 : Use (5) to calculate the cost, gradients,
and learning parameters. Apply the automatic
differentiation [36].

Step 6 : Utilize gradient descent or any other op-
timization method to update the parameters. We
update the parameters according to following rule

Qr+1
j = Qr

j − ε∇H(Qr
j),

where ε is learning rate and r denotes iteration.

There are many advanced methods we can choose
instead of the gradient descent method such as
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the moment method, which is a modification of
the gradient method. The updating role is

Qr+1
j = Qr

j + Lr+1
j ,

Lr+1
j = γLr

j − ε∇H(Qr),

where γ is a coefficient between 0 and 1, we call
it momentum. Lj is a velocity parameter starting
from 0 corresponding to each unknown.
Another method is Nesterov accelerated gradient
obtained from the moment method with update
rule

Qr+1
j = Qr

j + Lr+1
j ,

Lr+1
j = γLr

j − ε∇H(Qr + γLr
j).

The adaptive gradient method is

Lr
j = Lr−1

j + (∇H(Qr))2,

Qr+1
j = Qr

j − ε√
Lr
j+c

∇H(Qr),

where c is a minimal number to avoid division by
0. Clearly, the learning rate is decaying because
of it.
The update rule for root mean square propagation
is

Lr
j = ρLr−1

j + (1− ρ)(∇H(Qr))2,

Qr+1
j = Qr

j − ε√
Lr
j+c

∇H(Qr),

where ρ ∈ (0, 1) is forgetting factor. Another
method is the Adam adaptive method which is
a combination of the last two methods with up-
dating rule

F r
j = ρ1F

r−1
j + (1− ρ1)∇H(Qr),

Lr
j = ρ2L

r−1
j + (1− ρ2)(∇H(Qr))2,

F̂ r
j = Fr

1−ρ1r
, L̂r

j =
Lr

1−ρ2r
,

Qr+1
j = Qr

j − ε√
L̂r
j+c

F̂ r
j ,

where ρ1 and ρ2, both belonging to the interval
[0, 1), represent the rates of decay for moment es-
timation. Initially, we set the parameters Fr and
Lr to 0.

4. Numerical illustrations

This section presents the implementation of
an algorithm designed to solve known systems
of second-order nonlinear differential equations.
The initial step involves experimenting to deter-
mine the appropriate number of layers and neu-
rons within the layer. The algorithm’s accuracy
is then validated by comparing the analytic and
numerical solutions obtained using conventional

methods. To achieve this objective, we simulate
the problems related to systems of second-order
nonlinear differential equations as follows:

Example 1. Let us consider a problem of Emden-
Fowler equations documented in [37].

d2ω1
dζ2

+ 3
ζ
dω1
dζ = −(3 + ω2

2)ω
5
1,

d2ω2
dζ2

+ 4
ζ
dω2
dζ = (4ω−2

1 + 1)ω−3
2 ,

(9)

with the initial conditions (ICs)

ω1(0) = ω2(0) = 1 and ω
′
1(0) = ω

′
2(0) = 0.

The exact solutions to the problem are ω1(ζ) =
1√
1+ζ2

and ω2(ζ) =
√
1 + ζ2.

4.1. Investigating the network via
experimentation for solving (9)

We performed an experiment to determine how
many neurons are in a layer. We examined how
the number of hidden layers, the number of neu-
rons, and the number of iterations affected the
cost function. We have taken the trial solution up
to n = 4. During the simulation, we varied the
number of hidden neurons, specifically using sizes
h = 4, 13, 27, 60, 90, and 180. We then compared
the convergence of the cost function across these
different sizes by plotting it against the number
of iterations. In addition, we recorded the cor-
responding cost values and calculation times for
each neuron size at the end of the iterations. It is
worth noting that all other parameters remained
constant throughout the experiment.

The findings illustrated in Figures 2(a)-(c)
demonstrate that achieving the necessary level
of accuracy is feasible with only one neuron in
the hidden layer. However, many iterations are
required when working with a smaller number
of neurons, which can pose computational chal-
lenges. Increasing the number of neurons can
improve the model’s performance, but it is not
always necessary. For example, when comparing
a hidden layer with h = 60 neurons to one with
h = 180 neurons, both achieve similar accuracy,
but the former requires less computational time.
In our next experiment, we investigated the im-
pact of the number of hidden layers on the model’s
performance. Previous research by Saeed et al.
(2023) [38] demonstrated that to solve nonlin-
ear singular fractional differential equations, in-
creasing the number of hidden layers results in
improved performance in terms of error. Simi-
larly, Panghal and Kumar (2021) [39] observed
improved accuracy when simulating a delay and
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Figure 2. Comparison of loss functions for ANN models with one vs two hidden layers.

first-order differential equation system with mul-
tiple hidden layers. However, Dufera (2021) [35]
denied more than one hidden layer does not lead
to better performance in his experiments when
solving first-order a system of differential equa-
tions. We conducted numerous experiments to
evaluate the performance of neural networks with
one hidden layer against those with two hidden
layers. The experiments involved varying the
number of neurons in the hidden layers. All
other parameters and activation functions, such
as Tanh, remained the same in all experiments.
The results, depicted in Figure 2(d), show that
for a system of 2nd order differential equations
(9), adding more hidden layers with an appropri-
ate number of neurons leads to improved perfor-
mance.

4.2. Numerical solutions for solving (9)

We opted for two hidden layers comprising 13 and
27 neurons (tuning in the plus-minus range was
not expected to have a significant impact). We
set m = 11 for this experiment and sampled uni-
form grid points within the given interval. ANN

and analytic solutions are presented in Figure 3.
Table 1 contains the numerical values, and Table
2 shows the error resulting from our approach.

4.3. Advantages of using ANN over a
large number of data points for
solving (9)

We operate uniform grid points of size (m=6, 11,
21, 55, 100) over the domain [0, 2] and [0, 3] to
calculate solutions of the ODEs system using the
ANN method. As shown by the mean absolute
error (MAE) in Table 3, one major advantage of
ANN techniques is that they maintain solution ac-
curacy compared to smaller or larger grid points.

Similarly, experiments have been organized for
the problems (10)-(13). Using this architecture,
we compared the numerical and exact solution in
Tables (4)-(11) for each example. We have also
compared numerical and exact solution graphi-
cally with their error plots in Figure 4 and Figure
5.
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Figure 3. Comparison of ANN and exact solutions for system (9) with error plot.

Table 1. ANN and analytical solutions for system (9).

Grid point ANN ω1 Analytic ω1 ANN ω2 Analytic ω2 BCM ω1 [37] BCM ω2 [37]

0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 0.994872 0.995037 1.005022 1.004988 0.996045 1.005800
0.2 0.980208 0.980581 1.020084 1.019804 0.981491 1.020560
0.3 0.957494 0.957826 1.044488 1.044031 0.958620 1.044698
0.4 0.928371 0.928477 1.077510 1.077033 0.929146 1.077590
0.5 0.894540 0.894427 1.118400 1.118034 0.894959 1.118473
0.6 0.857672 0.857493 1.166393 1.166190 0.857883 1.166515
0.7 0.819318 0.819232 1.220721 1.220656 0.819498 1.220874
0.8 0.780811 0.780869 1.280624 1.280625 0.781042 1.280750
0.9 0.743181 0.743294 1.345368 1.345362 0.743387 1.345412
1.0 0.707055 0.707107 1.414256 1.414214 0.707106 1.414213

Table 2. Computing the absolute difference between ANN and exact solutions for system (9).

Grid point error ω1 error ω2

0.0 0.000000 0.000000
0.1 1.65e-04 3.407319e-05
0.2 3.73e-04 2.797772e-04
0.3 3.32e-04 4.574576e-04
0.4 1.05e-04 4.769526e-04
0.5 1.13e-04 3.659818e-04
0.6 1.79e-04 2.029116e-04
0.7 8.6e-05 6.545180e-05
0.8 5.8e-05 5.426605e-07
0.9 1.13e-004 6.053325e-06
1.0 5.2e-05 4.223276e-05

Example 2. Let us consider a problem of Emden-
Fowler equations documented in [40].

d2ω1
dζ2

+ 2
ζ
dω1
dζ = −6(e

ω2
3 + 4)e

2ω1
3 ,

d2ω2
dζ2

+ 2
ζ
dω2
dζ = 6(e

−ω1
3 + 4)e

−2ω2
3 ,

(10)

with ICs

ω1(0) = −3 log(2), ω2(0) = 3 log(2), ω
′
1(0) = ω

′
2(0) = 0.

The exact solutions to the problem are ω1(ζ) =
−3 log(2 + ζ2) and ω2(ζ) = 3 log(2 + ζ2).

Example 3. Let us consider a problem of Emden-
Fowler equations documented in [40].

d2ω1
dζ2

+ 5
ζ
dω1
dζ = −8eω1 − 16e

−2ω2
2 ,

d2ω2
dζ2

+ 3
ζ
dω2
dζ = 8e−ω2 + 8e

ω1
2 ,

(11)

with ICs

ω1(0) = ω2(0) = 0, ω
′
1(0) = ω

′
2(0) = 0.

The exact solutions to the problem are ω1(ζ) =
−2 log(1 + ζ2) and ω2(ζ) = 2 log(1 + ζ2).
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Table 3. MAE for different grid points over intervals.

End points t ∈ [0, 2] t ∈ [0, 2]

Grid point mae ω1 mae ω2 mae ω1 mae ω2

6 0.050588 0.051056 0.426025 0.631669
11 0.044180 0.059593 0.405198 0.763566
21 0.045351 0.032434 0.455094 0.323775
55 0.068090 0.065440 0.803243 0.848116
100 0.051830 0.031469 0.511720 0.320044
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Figure 4. Comparison of ANN and Exact Solutions of Examples with Error Plot.

Example 4. Let us consider a problem of Emden-
Fowler equations documented in [41].

d2ω1
dζ2

+ 8
ζ
dω1
dζ = 4ω1 log(ω2)− 18ω1,

d2ω2
dζ2

+ 4
ζ
dω2
dζ = 10ω2 − 4ω2 log(ω1),

(12)

with ICs

ω1(0) = ω2(0) = 1, ω
′
1(0) = ω

′
2(0) = 0.

The exact solutions to the problem are ω1(ζ) =

e−ζ2 and ω2(ζ) = eζ
2
.

Example 5. Let us consider a problem of Emden-
Fowler equations documented in [42].

d2ω1
dζ2

+ 1
ζ
dω1
dζ = (4ζ2 + 5)ω1 − ω2

1ω2,
d2ω2
dζ2

+ 2
ζ
dω2
dζ = (4ζ2 − 5)ω2 − ω1ω

2
2,

(13)

with ICs

ω1(0) = ω2(0) = 1, ω
′
1(0) = ω

′
2(0) = 0.

The exact solutions to the problem are ω1(ζ) = eζ
2

and ω2(ζ) = e−ζ2.
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Table 4. ANN and analytical solutions for system (10).

Grid point ANN ω1 Analytic ω1 ANN ω2 Analytic ω2 HAM ω1 [37] ADM ω1 [37] HAM ω2 [37] ADM ω2 [37]

0.0 -2.079442 -2.079442 2.079442 2.079442
0.1 -2.094319 -2.094404 2.094467 2.094404 -2.103387 -2.138529 2.103387 2.138529
0.2 -2.139427 -2.138849 2.138916 2.138849 -2.147076 -2.180143 2.147076 2.180143
0.3 -2.212743 -2.211492 2.211501 2.211492 -2.218576 -2.248419 2.218576 2.248419
0.4 -2.311923 -2.310325 2.310259 2.310325 -2.316029 -2.341807 2.316029 2.341807
0.5 -2.434367 -2.432791 2.432683 2.432791 -2.437034 -2.458259 2.437034 2.458259
0.6 -2.577291 -2.575985 2.575894 2.575985 -2.578826 -2.595353 2.578826 2.595353
0.7 -2.737815 -2.736848 2.736822 2.736848 -2.738459 -2.750419 2.738459 2.750419
0.8 -2.913041 -2.912337 2.912383 2.912337 -2.912983 -2.920675 2.912983 2.920675
0.9 -3.100129 -3.099553 3.099640 3.099553 -3.099603 -3.103358 3.099603 3.103358
1.0 -3.296362 -3.295837 3.295927 3.295837 -3.295836 -3.295836 3.295836 3.295836

Table 5. Computing the absolute difference between ANN and exact solutions for system (10).

Grid point error ω1 error ω2

0.0 0.0000 0.0000
0.1 8.6e-05 6.3e-05
0.2 5.78e-04 6.7e-05
0.3 1.251e-03 9e-06
0.4 1.599e-03 6.6e-05
0.5 1.576e-03 1.08e-04
0.6 1.306e-03 9.1e-05
0.7 9.67e-04 2.6e-05
0.8 7.04e-04 4.6e-05
0.9 5.76e-04 8.7e-05
1.0 5.25e-04 9.1e-05

Table 6. Computing the absolute
difference between ANN and exact so-
lutions for system (11).

Grid point error y1 error y2

0.0 0.00000 0.00000
0.1 2.475294e-04 3.58e-04
0.2 8.486477e-04 1.192e-03
0.3 9.964365e-04 1.491e-03
0.4 6.801929e-04 1.189e-03
0.5 2.392059e-04 6.62e-04
0.6 1.564534e-05 2.99e-04
0.7 1.703470e-07 2.45e-04
0.8 1.429000e-04 3.71e-04
0.9 1.941502e-04 4.20e-04
1.0 8.640381e-05 2.87e-04

Table 7. Computing the absolute
difference between ANN and exact so-
lutions for system (12).

Grid point error ω1 error ω2

0.0 0.000000 0.000000
0.1 1.3e-05 1.72e-04
0.2 2.51e-04 9.3e-05
0.3 4.09e-04 1.0e-04
0.4 4.04e-04 8.4e-05
0.5 2.76e-04 8.1e-05
0.6 1.09e-04 9.9e-05
0.7 1.10e-05 6.2e-05
0.8 3.50e-05 9.0e-05
0.9 3.0e-05 6.8e-05
1.0 1.07e-04 5.0e-05

5. Conclusions and future directions

In this paper, we used a vectorized algorithm that
employs the ANN method for solving systems of
ordinary differential equations (ODEs). We have
compared the numerical and exact solution. Re-
sults show the stability between target and pre-
dicted results, this validates the model. Through
various experiments with Python code and ac-
companying graphical simulations, we gained in-
sight into the nature of the model architecture.
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Figure 5. Comparison of ANN and exact solutions of examples with error plot.

Table 8. ANN and analytical solutions for system (11).

Grid point ANN ω1 Analytic ω1 ANN ω2 Analytic ω2 HAM ω1 [40] HAM ω2 [40]

0.0 0.000000 -0.000000 0.000000 0.000000
0.1 -0.020148 -0.019901 0.020259 0.019901 -0.037713 0.054825
0.2 -0.079290 -0.078441 0.079633 0.078441 -0.093487 0.109631
0.3 -0.173352 -0.172355 0.173847 0.172355 -0.183502 0.198153
0.4 -0.297520 -0.296840 0.298029 0.296840 -0.303739 0.316521
0.5 -0.446526 -0.446287 0.446949 0.446287 -0.449283 0.459979
0.6 -0.614954 -0.614969 0.615268 0.614969 -0.614869 0.623398
0.7 -0.797552 -0.797552 0.797797 0.797552 -0.795395 0.801766
0.8 -0.989535 -0.989392 0.989763 0.989392 -0.986339 0.990600
0.9 -1.186848 -1.186654 1.187074 1.186654 -1.184086 1.186262
1.0 -1.386381 -1.386294 1.386582 1.386294 -1.386294 1.386294

Specifically, we found that for specific problems,
even a single neuron in the hidden layer can
achieve the necessary accuracy. In contrast, more
significant numbers of neurons provide greater
precision at the cost of increased parameter learn-
ing iterations. However, we caution against ar-
bitrary increases in neuron size and recommend
selecting an optimal size based on the underlying
problem.

This study suggests the possibility of develop-
ing neural software that automatically adjusts the
number of hidden layers and neurons based on
the problem. Future research should focus on
conducting additional analytical investigations to
enhance the theoretical underpinnings of DNNs
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Table 9. ANN and analytical solutions for system (12).

Grid point ANN ω1 Analytic ω1 ANN ω2 Analytic ω2

0.0 1.000000 1.000000 1.000000 1.000000
0.1 0.990037 0.990050 1.009879 1.010050
0.2 0.960538 0.960789 1.040718 1.040811
0.3 0.913522 0.913931 1.094274 1.094174
0.4 0.851740 0.852144 1.173594 1.173511
0.5 0.778525 0.778801 1.283944 1.284025
0.6 0.697567 0.697676 1.433231 1.433329
0.7 0.612637 0.612626 1.632378 1.632316
0.8 0.527328 0.527292 1.896571 1.896481
0.9 0.444828 0.444858 2.247840 2.247908
1.0 0.367772 0.367879 2.718332 2.718282

Table 10. ANN and analytical solutions for system (13).

Grid point ANN ω1 Analytic ω1 ANN ω2 Analytic ω2

0.0 1.000000 1.000000 1.000000 1.000000
0.1 1.009847 1.010050 0.989964 0.990050
0.2 1.039864 1.040811 0.960605 0.960789
0.3 1.092748 1.094174 0.913761 0.913931
0.4 1.171816 1.173511 0.852052 0.852144
0.5 1.282053 1.284025 0.778786 0.778801
0.6 1.431027 1.433329 0.697719 0.697676
0.7 1.629692 1.632316 0.612724 0.612626
0.8 1.893485 1.896481 0.527462 0.527292
0.9 2.244383 2.247908 0.445117 0.444858
1.0 2.714172 2.718282 0.368234 0.367879

Table 11. Computing the absolute difference between ANN and exact solutions for system (13).

Grid point error ω1 error ω2

0.0 0.000000 0.000000
0.1 2.03e-04 8.6e-05
0.2 9.47e-04 1.84e-04
0.3 1.427e-03 1.70e-04
0.4 1.695e-03 9.2e-05
0.5 1.972e-03 1.5e-05
0.6 2.302e-03 4.3e-05
0.7 2.624e-03 9.8e-05
0.8 2.995e-03 1.70e-04
0.9 3.525e-03 2.59e-04
1.0 4.110e-03 3.54e-04

for solving systems of ODEs, encompassing ar-
eas such as delay differential equations and frac-
tional differential equations. Such investigations
would involve assessing the consistency, conver-
gence, and suitability of DNNs in the context of
solving systems of ODEs.
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