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In this study, we obtain approximate solution for singularly perturbed prob-
lem of differential equation having two integral boundary conditions. With this
purpose, we propose a new finite difference scheme. First, we construct this
exponentially difference scheme on a uniform mesh using the finite difference
method. We use the quasilinearization method and the interpolating quad-
rature formulas to establish the numerical scheme. Then, as a result of the
error analysis, we show that the method under study is convergent in the first
order. Consequently, theoretical findings are supported by numerical results
obtained with an example. Approximate solutions curves are compared on the
chart to provide concrete indication. The maximum errors and convergence
rates obtained are given on the table for different ε and N values.
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1. Introduction

This study is concerned with the numerical solu-
tion the following singularly perturbed equation
with integral boundary values for 0 ≤ ℓ0 < ℓ1 ≤ ℓ

ε2u′′(t)+ εa(t)u′(t)− g(t, u) = 0, 0 < t < ℓ, (1)

u (0) =

∫ ℓ1

ℓ0

u (t) f0 (t) dt+A, (2)

u (ℓ) =

∫ ℓ1

ℓ0

u (t) f1 (t) dt+B. (3)

Here, ε is the perturbation parameter and is de-
fined as 0 < ε ≪ 1. A and B are fixed. a(t)
and g(t, u) are continuous functions in the inter-
val [0, ℓ] and [0, ℓ] × R, respectively. f0 (t) and
f1 (t) are continuous functions on [ℓ0, ℓ1].

When ε = 0 in the Eq. (1), the new equation is an
algebraic equation. The boundary conditions will
be unnecessary for the solution of this equation.
In this case, there will be two boundary layers
t = 0 and t = 1 of the problem (1-(3).

Equations with a positive parameter ε in the co-
efficient of the highest order derivative are called
singularly perturbed equations. Solutions of these
problems have thin boundary layers. In these lay-
ers, the solution changes abruptly and rapidly,
while in other parts of the definition region it
changes slowly and regularly. This irregularity
causes the solution of singularly perturbed prob-
lems to have unlimited derivatives. Thus, serious
difficulties arise in the operation of such problems.
These difficulties are also evident in numerical
solution. Because the approximate solution di-
verges from the exact solution as the mesh steps
get smaller. For this reason, it is very important
to establish appropriate numerical methods for
the solution of problems with singular perturba-
tions. Known classical numerical methods cannot
give numerical results suitable for the exact solu-
tion. Especially in this study, an efficient numer-
ical method such as the finite difference method,
which gives uniform convergence according to ε
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is preferred for the solution of such problems [1]-
[15]. Studies on problems with singular pertur-
bations started in the 1900s. These problems are
encountered in science, economics, sociology, en-
gineering, medical science, fluids mechanics, aero-
dynamics, magnetic dynamics, emission theory,
reaction diffusion, light emitting waves, commu-
nication lines, plasma dynamics, purified gas dy-
namics, motion of mass, plastics, chemical reac-
tor theory, seismology, oceanography, meteorol-
ogy, electric current, ion acoustic waves and some
physical modeling [16]- [21]. Also, Bakhvalov used
a special transformation in the numerical solution
of boundary layer problems [22]. Bitsadze and
Samarskii obtained some generalizations of lin-
ear elliptic boundary value problems [23]. Herceg
and Surla found the numerical solution of the sin-
gularly perturbed problem with non-local bound-
ary values using spline tension [24]. Gupta and
Trofimchuk studied a sharper case for solving the
second-order three-point boundary value prob-
lem [25]. Amiraliyev and Cakir found a uni-
formly convergent approach for the zeroth order
reduced equation and convective singularly per-
turbed problem [2]. Cakir, for the three-point
singularly perturbed problem, using the difference
method, a second-order uniform convergence was
obtained [3]. Cakir and Amiraliyev evaluated the
three-point singularly perturbed boundary value
problem using a Shishkin mesh [4]. In [1, 6–8, 24]
and [26, 34] have been worked on the numerical
solution of the singularly perturbed problem with
nonlocal boundary and integral boundary con-
ditions. The singularly perturbed problem has
also been solved by different numerical methods
[9,10,35]. There are also studies on existence and
uniqueness of these problems in the literature [36]-
[38].

The study of the linear state of our problem (1)-
(3) is in [1], where the problem is solved with a
layer-adapted mesh. The difference of this study
from similar studies in the literature [6] is the use
of a uniform mesh and the two integral bound-
ary conditions of the problem (1)-(3). Although
there are studies on singularly perturbed prob-
lems with two integral boundary conditions solved
in Shishkin mesh as in [6], we have not come
across any studies on singularly perturbed prob-
lems with two integral boundary conditions in
uniform mesh. This gap, which is not in the lit-
erature, constitutes the motivation of our study.

In this paper, the difference scheme is obtained
using the integral rules from [30]. In the second
part, we investigated several important factors for
the exact solution (1)-(3). The difference proce-
dure for the uniform mesh of the problem (1)-(3)

is given in part 3. In the fourth part, the conver-
gence evaluation of the method is made. For the
purpose of applying the theoretical procedure, an
example whose exact solution is unknown is pre-
sented in Sect 5.

Throughout this study, C and C0 will be used as
positive constants that do not depend on ε and
h. The norm ∥.∥ is used to denote the maximum
norm.

2. Some properties of the Exact
Solution

Here we will give a Lemma and its proof, which
will be needed for later parts of the study.

Lemma 1. Let u(t) be the solution of the (1)-(3),

a(t) ∈ C1[0, ℓ], γ =
∫ ℓ1
ℓ0

(|f0 (t)|+ |f1 (t)|) dt < 1,

∂g/∂u − εa′ (t) ≥ β∗ > and |∂g/∂t| ⩽ C for t
∈ [0, ℓ], then the estimations

|u(t)| ⩽ C0, (4)

∣∣u′(t)∣∣ ⩽ C

{
1 +

1

ε

(
e−

c0t
ε + e−

c1(ℓ−t)
ε

)}
, (5)

hold, where 0 ⩽ t ⩽ ℓ and

C0 = (1− γ)−1 (|A|+ |B|+ β−1 ∥F∥∞
)
,

c0 =
1

2

(√
a2 (0) + 4β∗ + a (0)

)
,

c1 =
1

2

(√
a2 (ℓ) + 4β∗ − a (ℓ)

)
.

Proof. Using the mean value theorem for g(t, u)
in (1), we have

g(t, u) =
∂g (t, ξu)

∂u
u(t) + g(t, 0), 0 < ξ < 1,

supposing of

b(t) =
∂g (t, ξu)

∂u
> 0, G(t) = g(t, 0).

Let’s rewrite the (1)-(3) problem as follows to get
the proof of (4)

ε2u′′(t) + εa(t)u′(t)− b (t)u (t) = G (t) , (6)

u (0) =

∫ ℓ1

ℓ0

f0 (x)u (x) dx+A, (7)

u (ℓ) =

∫ ℓ1

ℓ0

f1 (t)u (t) dt+B. (8)

Here, using the maximum principle [4,39] and (6)-
(8) we arrive at the following inequality:

|u (t)| ≤ |u (0)|+ |u (ℓ)|+ β−1 ∥G∥∞ , t ∈ [0, l] .
(9)
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Now, using the boundary values (7) and (8), let’s
obtain the inequality (4)

|u (0)| ≤ |A|+
∫ ℓ1

ℓ0

|f0 (t)| |u (t)| dt, (10)

|u (ℓ)| ≤ |B|+
∫ ℓ1

ℓ0

|f1 (t)| |u (t)| dt. (11)

If we write the inequalities (10) and (11) in the
inequality (9), we get the following result:

|u (t)| ≤ |A|+ |B|+
∫ ℓ1

ℓ0

|f0 (t)| |u (t)| dt

+

∫ ℓ1

ℓ0

|f1 (t)| |u (t)| dt+ β−1 ∥G∥∞

≤ |A|+ |B|+ max
[ℓ0,ℓ1]

|u (t)|
∫ ℓ1

ℓ0

|f0 (t)| dt

+max
[ℓ0,ℓ1]

|u (t)|
∫ ℓ1

ℓ0

|f1 (t)| dt+ β−1 ∥G∥∞

≤ |A|+ |B|+ ∥u∥∞
∫ ℓ1

ℓ0

|f0 (t)| dt

+ ∥u∥∞
∫ ℓ1

ℓ0

|f1 (t)| dt+ β−1 ∥G∥∞ .

Thus, the proof of (4) is completed. Also, the
proof of (5) is almost the same to that of [39]. □

3. Uniform Mesh and Construction of
the difference scheme

In this part, we will obtain the difference scheme
for the (1)-(3) problem. For this we will work on
the uniform mesh.

ωh =

{
ti = ih, i = 1, 2, . . . , N − 1 : h =

ℓ

N

}
,

ω̄h = ωh ∪ {t0 = 0, tN = ℓ} .
where N is the number of discretization points.

Let’s give some notations for grid functions, where
yi is the approximate value for u(t) at grid points
ti.

ft̄,i :=
fi − fi−1

h
, ft,i :=

fi+1 − fi
h

,

f◦
t,i

:=
ft,i + ft̄,i

2
,

ft̄t,i :=
fi+1 − 2fi + fi−1

h2
, i = 1, 2, ..., N,

∥f∥∞ ≡ ∥f∥∞,ω̄h
:= max

0⩽i⩽N
|fi| .

Let’s start constructing the difference scheme
with the following equation for 1 ⩽ i ⩽ N − 1:

ξ−1
i h−1

ti+1∫
ti−1

Lu(t)φi(t)dt = 0, (12)

where the functions {φi(t)}N−1
i=1 have the form

φi(t) =


φ
(1)
i (t), ti−1 < t < ti,

φ
(2)
i (t), ti < t < ti+1,
0, otherwise,

where φ
(1)
i (t) and φ

(2)
i (t), respectively, are the so-

lution of the following problems:

εφ
(1)
i (t)− aiφ

(1)
i (t) = 0, ti−1 < t < ti,

φ
(1)
i (ti−1) = 0, φ

(1)
i (ti) = 1,

εφ
(2)
i (t)− aiφ

(2)
i (t) = 0, ti < t < ti+1,

φ
(2)
i (ti−1) = 0, φ

(2)
i (ti) = 1,

and the coefficient ξ−1
i in (12) as

ξ−1
i =

h−1

ti+1∫
ti−1

φi(t)dt


−1

.

If we rearrange (12), we get the following system

−ε2ξ−1
i h−1

ti+1∫
ti−1

φ′
i(t)u

′
(t) dt+εa−1

i h−1

ti+1∫
ti−1

φi(t)u
′ (t) dt

−g (ti, ui) +Ri = 0, i = 1, 2, ..., N − 1, (13)

where

Ri = εξ−1
i h−1

ti+1∫
ti−1

[a (t)− a (ti)]φi(t)u
′ (t) dt

−ξ−1
i h−1

ti+1∫
ti−1

φi(t)

ti+1∫
ti−1

d

dt
g(ξ, u (ξ) )K∗

0,i (t, ξ) dξ

 dt,

(14)
K∗

0,i (t, ξ) = T0 (t− ξ)− T0 (ti − ξ) .

If we benefit the formulas from [5], we have the
following system for 1 ≤ i ≤ N − 1 from (13)

−ε2ξ−1
i h−1

ti∫
ti−1

φ′
i(t)u

′
(t) dt− ε2ξ−1

i h−1

ti+1∫
ti

φ′
i(t)u

′
(t) dt

+ εaiξ
−1
i h−1

ti∫
ti−1

φi(t)u
′ (t) dt

+ εaiξ
−1
i h−1

ti+1∫
ti

φi(t)u
′ (t) dt−g (ti, ui) +Ri

= −ε2ξ−1
i h−1ut̄,i

ti∫
ti−1

φ
(1)′

i (t)dt
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−ε2ξ−1
i h−1ut,i

ti+1∫
ti

φ
(2)′

i (t)dt

+εaiξ
−1
i h−1ux̄,i

ti∫
ti−1

φ
(1)
i (t)dt

+εaiξ
−1
i h−1ut,i

ti+1∫
ti

φ
(2)
i (t)dt−g (ti, ui) +Ri

= −ε2ξ−1
i ut̄,iχ1,i − ε2ξ−1

i ut,iχ2,i + εaiξ
−1
i ux̄,iχ1,i

+εaiξ
−1
i ut,iχ2,i−g (ti, ui) +Ri = 0.

After the ut̄,i = u◦
t,i
− h

2ut̄t,i and ut,i = u◦
t,i
+ h

2ut̄t,i

are substituted in the above equation, the follow-
ing expression is obtained:

ε2
{
ξ−1
i

(
1 + 0.5ε−1hai (χ2,i − χ1,i)

)}
ut̄t,i

+εaiu◦
t,i
−g (ti, ui) +Ri = 0,

where

χ1,i = h−1

ti∫
ti−1

φ
(1)
i (t)dt, χ2,i = h−1

ti+1∫
ti

φ
(2)
i (t)dt.

So, from the above equations, the difference
scheme is defined for 1 ⩽ i ⩽ N − 1:

ε2θiut̄t,i + εaiu◦
t,i
−g (ti, ui) +Ri = 0, (15)

here

θi = ξ−1
i

(
1 +

(χ2,i − χ1,i)

2ε
hai

)
. (16)

Now, the approximations for the first and second
boundary conditions need to be determined. Let
tN0 and tN1 be the grid points nearest to ℓ0 and
ℓ1, respectively.

∫ ℓ1

ℓ0

f0 (t)u (t) dt =

∫ tN0

ℓ0

f0 (t)u (t) dt

+

∫ tN1

tN0

f0 (t)u (t) dt+

∫ ℓ1

tN1

f0 (t)u (t) dt, (17)

and∫ tN1

tN0

f0 (t)u (t) dt =

N1∑
i=N0

[∫ ti

ti−1

f0 (t) dt

]
u (ti) + r̄0

= K0 (u) + r̄0, (18)

where

K0 (u) =

N1∑
i=N0

[∫ ti

ti−1

f0 (t) dt

]
u (ti) , (19)

r̄0 =

N1∑
i=N0

∫ ti

ti−1

[
f0 (t)

∫ ti

ti−1

u′ (ξ) (T0 (t− ξ)− 1) dξ

]
dt.

Thus, we get the difference approximation corre-
sponding to the first boundary value as:

u0 −K0 (u) = A+ r0, (20)

where

r0 =

∫ tN0

ℓ0

f0 (t)u (t) dt+

∫ ℓ1

tN1

f0 (t)u (t) dt+ r̄0.

(21)
Now we get the difference approtimation corre-
sponding to the second boundary value as follows:

uN −K1 (u) = B + r1, (22)

where

K1 (u) =

N1∑
i=N0

[∫ ti

ti−1

f1 (t) dt

]
u (ti) , (23)

r1 =

∫ tN0

ℓ0

f1 (t)u (t) dt+

∫ ℓ1

tN1

f1 (t)u (t) dt+ r̄1,

(24)

r̄1 =
∑N1

i=N0

∫ ti
ti−1

[
f1 (t)

∫ ti
ti−1

u′ (ξ) (T0 (t− ξ)− 1) dξ
]
dt.

If the error values in the (14), (21) and (24) are
neglected, the following difference chart is found
for 1 ⩽ i ⩽ N − 1:

ε2θiyt̄t,i + εaiy◦
t,i
−g (ti, yi) = 0, , (25)

y0 = K0 (y) +A, (26)

yN = K1 (y) +B. (27)

4. Stability of the Difference Scheme

Here, we give the stability of the finite difference
method with the Theorem 1 and the evaluation
of the error functions with the Lemma 2.

The error term z is z = y − u for 1 < i < N .

ε2θizt̄t,i+εaiz◦
t,i
−[g (ti, yi)− g (ti, ui)] = Ri, (28)

z0 = K0 (z) + r0, (29)

zN = K1 (z) + r1. (30)

Lemma 2. The estimates are valid for the terms
Ri, r0 and r1 to be obtained with the help of results
of Section 1 and Lemma 1

∥R∥∞,ωh
≤ Ch, (31)

|r0| ≤ Ch, (32)

|r1| ≤ Ch. (33)
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Proof. We have from the expression (14) for Ri

on an arbitrary mesh as follows

|Ri| ≤ C

h+ h+

ti+1∫
ti−1

(
1 +

∣∣u′ (ξ)∣∣) dξ
 .

This inequality and (5) enable us to write the in-
equality as

|Ri| ≤ C

h+
1

ε

ti+1∫
ti−1

(
e−

c0t
ε + e−

c1(ℓ−t)
ε

)
dx

 .

(34)
The mesh is uniform with h = ℓN−1 for
1 ≤ i ≤ N . So, from the above inequality, we get

|Ri| ≤ C
{
N−1 + ε−1h

}
≤ Ch.

Let us evaluate (32) using the expression (21) for
r0 as

|r0| ≤
N1∑

i=N0

∫ ti

ti−1

[
|f0 (t)|

∫ ti

ti−1

∣∣u′ (ξ)∣∣ |T0 (t− ξ)− 1| dξ

]
dt

+

∫ tN0

ℓ0

|f0 (t)| |u (t)| dt+
∫ ℓ1

tN1

|f0 (t)| |u (t)| dt

≤ C max
[ti−1, ti]

|f0 (t)|
∫ ℓ

0

∣∣u′ (t)∣∣ dt+O (h)

≤ Ch. (35)

The proof of (33) is similar to the proof of the
inequality (32). All these complete the proof of
Lemma 2. □

Lemma 3. If zi is the solution of (28)-(30) and

γ̄ =

N∑
i=N0

∫ ti

ti−1

[|f0(t)|+ |f1(t)|] dt < 1.

Then there is the following the estimate

∥z∥∞,ω̄h
≤ C

(
β−1 ∥R∥∞,ωh

+ |r0|+ |r1|
)
. (36)

Proof. Using Lemma 2, we easily obtain
(36). □

Theorem 1. If u be the solution of (1)-(3) and y
be the solution of (25)-(27). Then, the following
estimate is satisfied.

∥y − u∥∞,ω̄h
≤ Ch.

This theorem gives the result of the convergence
of the proposed method with the help of Lemma
2 and Lemma 3.

5. Numerical Illustrations

Here we provide some numerical results that ex-
emplify the current method.

By using the quasilinearization technique, the
scheme (25)-(27) can be arranged as:

ε2θiy
(n)
t̄t,i

+ εaiy
(n)
◦
t,i

−g
(
ti, y

(n−1)
i

)
(37)

−∂g

∂y

(
ti, y

(n−1)
i

)(
y
(n)
i − y

(n−1)
i

)
= 0,

y
(n)
0 = h

N1∑
i=N0

f0,iy
(n−1)
i +A, (38)

y
(n)
N = h

N1∑
i=N0

f1,iy
(n−1)
i +B, (39)

where y
(0)
i for 1 ≤ i ≤ N and n ≥ 1 is the initial

guess.

Example 1. We apply the scheme (37)-(39) to
the following singularly perturbed problem with
integral boundary conditions:

ε2u′′+ε (1 + t)u′ = 2u−arctan (t+ u) , 0 < t < 1,

u (0) =

∫ 1

0.5
cos (πt)u (t) dt+ 1,

u (1) =

∫ 1

0.5
sin(πt)u (t) dt+ 1.

The exact solution of the problem is unknown.
For this reason, we have to use the double mesh
as:

eNε = max
i

∣∣∣uε,Ni − ũε,2N2i

∣∣∣ .
The rates of convergence are defined as

PN
ε =

ln
(
eNε /e2Nε

)
ln 2

.

The eN is the maximum errors as

eN = max
ε

eNε .

Table 1. Convergence rates and
maximum errors for ε and N .

ε ↓→ N 16 32 64 128

2−10 0.084154 0.042753 0.021547 0.010816

0.97 0.98 0.99

2−11 0.026562 0.015689 0.008531 0.004421

0.75 0.87 0.94

2−13 0.008590 0.004484 0.002283 0.001144

0.93 0.97 0.99

2−15 0.002299 0.001160 0.000580 0.000288

0.98 0.99 1.00

2−17 0.000585 0.000292 0.000145 0.000072

p=0.99 p=1.00 p=1.01
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Figure 1. Numerical solution curves
of Example 1.

Uniform convergence rates p and error values
are given in Table 1. p values are around one.
In Figure 1, the approximate solution curves
have been plotted for each of the values N =
16, 32, 64, 128, 256 for t = 0. As N values increase,
the approximate solution curves approach the co-
ordinate axes around t = 0 and t = 1. Here it can
be seen that the theoretical process is accurate
and reliable.

6. Conclusion

In the study, the finite difference method is used
to solve the problem with nonlocal conditions.
The difference scheme has been established with
the help of some integral forms on the uniform
mesh. The difference problem was solved by the
Gauss elimination method. Convergence analy-
sis was performed. Uniform convergence was ob-
tained from the first-order. The proposed method
has been applied to a test problem. Numerical
results show that the approaches described here
contribute greatly to the understanding of singu-
larly perturbed problem (see Table 1 and Figure
1). With the motivation given by this study, it
is aimed to apply to nonlocal boundary condition
and fuzzy problems with delay parameter with
singularly perturbation feature.
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