
       Corresponding Author. Email: goto-h@hosei.ac.jp 

 

73 

An International Journal of Optimization  

and Control: Theories & Applications 

Vol.3, No.2, pp.73-83 (2013) © IJOCTA 

ISSN: 2146-0957   eISSN: 2146-5703 

DOI: 10.11121/ijocta.01.2013.00140  

http://www.ijocta.com 

 

 

 

 

 

 

 

Model predictive control-based scheduler for repetitive discrete event 

systems with capacity constraints 
 

Hiroyuki Goto
a

 
 

a
Department of Industrial and System Engineering, Hosei University, Japan 

Email: goto-h@hosei.ac.jp 

 
(Received September 19, 2012; in final form April 04, 2013) 

 
Abstract. A model predictive control-based scheduler for a class of discrete event systems is designed 

and developed. We focus on repetitive, multiple-input, multiple-output, and directed acyclic graph 

structured systems on which capacity constraints can be imposed. The target system’s behaviour is 

described by linear equations in max-plus algebra, referred to as state-space representation. Assuming 

that the system’s performance can be improved by paying additional cost, we adjust the system 

parameters and determine control inputs for which the reference output signals can be observed. The 

main contribution of this research is twofold, 1: For systems with capacity constraints, we derived an 

output prediction equation as functions of adjustable variables in a recursive form, 2: Regarding the 

construct for the system’s representation, we improved the structure to accomplish general operations 

which are essential for adjusting the system parameters. The result of numerical simulation in a later 

section demonstrates the effectiveness of the developed controller. 
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1. Introduction 

The objective of this research is to design and 

implement a model predictive control (MPC) 

[1,2] based scheduler for a class of discrete event 

systems (DESs) [3,4]. A discrete event system is 

a dynamical system whose state evolves at 

discrete time instants. 

 We in particular focus on DESs with the 

following specifications: (1) repetitive, (2) 

multiple-input and multiple-output (MIMO), (3) 

first-in and first-out (FIFO), and (4) directed 

acyclic graph (DAG)-structured precedence 

relations [5,7]. In addition to these, we consider 

incurring capacity constraints between two 

arbitrary nodes. 

 The dynamics of such systems can be 

formulated by a pair of linear equations in max-

plus algebra [8,9], and a system whose behaviour 

is described by these equations is referred to as a 

max-plus linear system. Typical examples 

include manufacturing and transportation systems 

[10,11]. Since the form of the pair is similar to 

the state-space representation in modern control 

theory, several concepts in control theory have 

been applied to max-plus linear systems [12-15]. 

Amongst the related concepts, the frameworks 

for controlling manufacturing systems based on 

MPC provide cost effective schedulers, which 

can be roughly classified into two types. 

 One type deals with systems whose feature 

quantities of the system parameters are given [6], 

[16,18]. The control objective is to determine an 

optimal input time that minimises an objective 

function for given reference output times; the 

function includes an output error and a rate of 

change of input times. References [6], [16] 

consider a deterministic system, while [17] 

extends this to a stochastic case. Reference [18] 

takes into account external perturbation and 

considers stabilizing a system by feedback 

control. A typical feature of these works is that 
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the system parameters are either constant or vary 

stochastically around predetermined values. 

 The other type of framework handles systems 

in which the system parameters can be adjusted 

as well as the input times. For example, the 

framework in reference [7] first adjusts the 

system parameters to minimise both an 

operational cost and tardiness penalty, and then 

determines an input time which minimises a 

waiting cost. If we apply the framework to 

manufacturing systems, the controller aims to 

reduce the manufacturing cost, avoid delays for 

the due dates, and supply materials at as late as 

possible. 

 Reference [19] proposed an efficient method 

to handle the system parameters in the output 

prediction equation as adjustable variables by 

introducing the concept of a ‘cell’. The control 

framework is reduced to solving two optimisation 

problems in sequence. However, the application 

scope is currently restricted; the framework 

assumes that only a single job can be processed at 

one time in a single facility, and that the number 

of in-process jobs, which can exist between two 

adjacent facilities, is unlimited. 

 However, capacity constraints are 

occasionally incurred on several locations in 

most actual systems. Thus, a framework to 

control such systems needs be developed. In view 

of this, we develop an MPC based scheduler in 

which maximum capacity constraints in a single 

or between two arbitrary facilities can be 

incurred. The main contribution of this research 

is twofold. 

 The first contribution is regarding the output 

prediction equation. Starting from the state-space 

representation for systems with capacity 

constraints, we derived a prediction equation as 

functions of adjustable variables. Since it is hard 

to represent the resulting matrices equation in an 

explicit form, each block of the matrices is 

expressed in a recursive form. 

 The second contribution is an improvement of 

the structure of the ‘cell’. The previous structure 

is designed only for two special operations. 

However, in handling systems with capacity 

constraints, a framework for general addition and 

multiplication is required to construct an 

optimisation problem for adjusting the system 

parameters. We thus improve the structure and 

create procedures for these operations. 

2. Preliminaries 

2.1. Algebraic system 

We first define a set }{max  RR , where R  

represents the real set. Then, for x , y   maxR , 

we define three operators and two unit elements: 

),(max yxyx  , yxyx  , 

),min( yxyx  , )(  , and )0(e . In a 

conventional formalism, the special rule 

 )(    )(  is adopted. For a 

number set  , if maxRlx , ll x ={

ll xmax : if  ,  : if  } and ll x

={ ll xmin : if  ,  : if  }. For 

vectors x , y  
n
maxR  and a scalar a R , yx   

and ax  represents ii ][][ yx   and ai ][x , 

respectively, for all i  )1( ni  . For matrices 

X , Y nm maxR , Z qn maxR , and W qm maxR , we 

define ijijij ][][][ YXYX  , 

)][]([][
1 ljil

n

lij ZXZX   
, and ij]\[ WX

)][][(
1 ljli

n

l
WX  

. For the unit matrices, ε  is 

a matrix, all elements of which are  , while E  

is a matrix whose diagonal elements are e  and 

off-diagonal elements are  . The priority of 

operators   and \  is higher than that of   and 

 , and   is often omitted when no confusion is 

likely to arise. If X nn maxR  and b N , we define 

and write the b -th power of X  by EX 0  

and )1(   bb
XXX . 

2.2. State-space representation 

Let the token number, number of nodes, and 

number of external inputs and outputs be k , n , 

r , and m , respectively. We denote the 

processing, process start, process completion, 

input, and output times for the k -th token by 

)(kd n
maxR , )(k

x n
maxR , )(k

x n
maxR , 

)(ku r
maxR , and )(ky m

maxR , respectively. In 

control theory terminology, )(kd  and )(ku  are 

referred to as the system parameter and control 

input, respectively, while )(k
x  and )(k

x  

denote the state vector. 

 Moreover, we introduce the following 

representation matrices: 

kP  )]([diag kd , 
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







ij][F  

ijf : transition time from node j  to 

node i , 

 : if node i  is not a successor of 

node j , 









ij
h ][ )(

H  

e : maximum number of tokens 

between node i  and its downstream 

node j  is h . 

 : if otherwise, 









ij][B  

ijb : transition time from external 

input j  to node i , 

 : if node i  does not have an 

external input j , 









ij][C  

ijc : transition time from node j  to 

external output i , 

 : if node j  does not have an 

external output i , 

 

where kP nn maxR , F nn maxR , )(h
H nn maxR , B

rn maxR , and C nm maxR  are referred to as the 

weight, adjacency, capacity, input, and output 

matrices, respectively. 

 Then, the earliest process start, process 

completion, and output times of the k -th token 

are represented by the following equations [20]: 

 

)]()([)( )(

1
khkk hQ

hk uBxHAx   
, (1) 

)()( kk xCy  , (2) 

where 















)(

)(
)(

k

k
k

x

x
x , 










*

*

*

*

)(

)(

)(

)(

FP

FFP

PFP

FP
A

k

k

kk

k
k

,

  











E

H

ε

E
H

)1(
)1(

, 









ε

H

ε

ε
H

)(
)(

h
h

 2h ,

 

(3) 

TTT ][ εBB  , ][ CεC  . 

 
 

 Equations (1) and (2) are known as the state 

and output equations, respectively. Q  is the 

maximum capacity of the system. Operator * is 

called the Kleene star. For a DAG structured 

adjacency matrix G nn maxR , the Kleene star of 
G  is calculated as 

)1(1

0

* 




sls

l
GGEGG  ,  

where s  is an instance that satisfies εG  )1(s  

and εG s  )1( ns  . 

2.3. Design of an MPC controller 

The design of an MPC controller generally 

consists of the following three steps. 
1) Derive prediction and output equations 

2) Determine control inputs 

3) Apply the receding horizon method 

 In the first step, we apply the state equation 

Eq. (1) iteratively and derive prediction equations 

for the )1,,1,(  Nkkk  -th )1( N  tokens, 

where N  is known as the prediction horizon. We 

then apply the output equation Eq. (2) to the 

prediction equations, for which the output times 

of the corresponding tokens are predicted. 

 In the second step, we set reference signals for 

the output equations, which correspond to give 

target output times. We then construct an 

optimisation problem to determine a control law. 

To reduce the computation load, a technique to 

decrease the number of variables is often used. 

Given a certain constant )( NNc  , we assume 

that the adjustable variables for the 
)1,,,1(  NkNkNk cc  -th tokens 

remain unchanged, where cN  is known as 

control horizon. The variables include the control 

input )(ku  and system parameter )(kd . 

 In respect to the optimal parameters for the 

)1,,1,(  Nkkk  -th tokens, we apply only 

the first one, and the succeeding laws are 

determined after the token number is incremented 

and the parameters recalculated. This method is 

known as the receding horizon method, by which 

a feedback control is achieved. 

3. Proposed Framework 

In developing an MPC framework for systems 

with capacity constraints, first, we derive the 

prediction and output equations. Then, the system 

parameters are adjusted by solving an 

optimisation problem, and subsequently the 

optimal input time is determined. 

3.1. Prediction equation 

The prediction equation can be derived using Eq. 

(1). Letting the prediction horizon be N , we 

formally express the prediction equation for the 

)( lk  -th )10(  Nl  token as follows: 

)(

)()(

,0

,1

pk

hklk

pl

l

p

hl

Q

h













uΔ

xΦx
. (4) 

 For 0l , by comparing the coefficients of 

)( hk x  )1( Qh   and )(ku  in Eqs. (1) and 

(4), we have 
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)(
,0

h
kh HAΦ   )1( Qh  , BAΔ k0,0 . (5) 

 If 1l , we advance the token number k  in 

Eq. (1) for l  steps, by which 

)]()([

)(

)(

1
lkmlk

lk

mQ

m

lk





 



uBxH

Ax
. (6) 

is obtained. On the other hand, by replacing l  

with ml   in Eq. (4), we obtain 

)(

)()(

,0

,1

pk

hkmlk

pml

ml

p

hml

Q

h
















uΔ

xΦx
. (7) 

If Ql  , we substitute this for the first term on 

the right-hand side in Eq. (6). This yields 

])(

)(

)([

)(

,
)(

01

,
)(

11

lk

pk

hk

lk

pml
mml

p

Q

m

hml
mQ

m

Q

h

lk























uB

uΔH

xΦH

Ax

. (8) 

The comparison of the coefficient for )( hk x  

in Eqs. (4) and (8) yields 

hml
m

lk

Q

mhl ,
)(

1,  ΦHAΦ . (9) 

 On the other hand, if Ql  , Eq. (6) can be 

expanded as 

)]()(

)([)(

)(

1

)(

1

lkmlk

mlklk

mQ

lm

ml

mlk













uBxH

xHAx
. (10) 

 The second term on the right-hand side can be 

transformed into 

)(

)(

)(

1

)(

1

hk

mlk

hllQ

h

mQ

lm














xH

xH
. (11) 

 Using Eqs. (7) and (11), Eq. (10) is 

represented as follows: 

])()(

)(

)([

)(

)(

1

,
)(

01

,
)(

11

lkhk

pk

hk

lk

hllQ

h

pml
mml

p

l

m

hml
ml

m

Q

h

lk





























uBxH

uΔH

xΦH

Ax

. (12) 

Let us compare the coefficients of )( hk x  in 

Eqs. (4) and (12) again. If lQh  , i.e., 

hQl  , we obtain the following relationship 

)(
,

)(

1,
hl

lkhml
m

lk

l

mhl



 HAΦHAΦ . (13) 

On the other hand, if lQh  , i.e., hQl  , 

the third term on the right-hand side in Eq. (12) 

can be omitted and we obtain 

hml
m

lk

l

mhl ,
)(

1,  ΦHAΦ . (14) 

In view of Eqs. (9) and (14), hl ,Φ  can be 

expressed in the following unified manner 

hml
m

lk

lQ

mhl ,
)(

1, 



 ΦHAΦ , (15) 

for hQl  . 

 Next, we obtain pl ,Δ  by comparing the 

coefficients of )( pk u  in Eqs. (4), (8), and (12). 

If lp  , only the last terms in these equations are 

effective and we obtain 

BAΔ lkll , .  

If lp   and Ql  , the comparison of )( pk u  

in Eqs. (4) and (8) yields 

pml
m

lk

Q

mpl ,
)(

1,  ΔHAΔ . (16) 

If lp   and Ql  , the comparison of )( pk u  

in Eqs. (4) and (12) leads to 

pml
m

lk

l

mpl ,
)(

1,  ΔHAΔ . (17) 

Equations (16) and (17) can be then unified to 

pml
m

lk

lQ

mpl ,
)(

1, 



 ΔHAΔ , (18) 

for lp  . 

 Furthermore, we derive an output prediction 

equation for the )1,,1,(  Nkkk  -th tokens. 

Using Eqs. (2) and (4), the simultaneous output 

prediction equations for these tokens can be 

expressed as 

)()()( kkk UΔXΦY  , (19) 

where 

TTTT Nkkkk )]1()1()([)(  yyyY  ,  

TTTT Qkkkk )]()2()1([)(  xxxX  ,  

TTTT Nkkkk )]1()1()([)(  uuuU  ,  
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





















 QNNN

Q

Q

,12,11,1

,12,11,1

,02,01,0

ΦCΦCΦC

ΦCΦCΦC

ΦCΦCΦC

Φ







, (20) 























 1,11,10,1

1,10,1

0,0

NNNN ΔCΔCΔC

εΔCΔC

εεΔC

Δ







.

 

 

In this manner, the coefficient matrices Φ  and 

Δ  in the output prediction equation (19) are now 

derived. These matrices are functions of the 

system parameters )( lk d  )10(  Nl  

handled as adjustable variables, each block of 

which is expressed in a recursive form. 

3.2. Control objective 

The set of output prediction equations expressed 

in Eq. (19) is used to construct a control law for 

which the given reference output times are 

observed. 

 Let the reference output times for the 

)1,,1,(  Nkkk  -th tokens be )(kr , 

)1( kr ,  , )1(  Nkr , respectively. The 

well-known control laws are to adjust )( lk d  

and/or )( lk u  to satisfy 

)()()( kkk RUΔXΦ  , (21) 

where 

 TTTT Nkkkk )1()1()()(  rrrR  .  

 We assume that the operational and waiting 

costs can be reduced if we can enlarge )( lk d  

and )( lk u , respectively. On the other hand, a 

tardiness penalty is incurred if an actual output 

time exceeds the reference time. A control law is 

then designed by taking into account these three 

points. 

 Let lμ  be the tardiness vector for the )( lk  -

th )10(  Nl  token, i.e. 

}0,)]([)](max{[][ iiil lklk  ryμ  

)1( mi  . 
 

One natural idea for control objective is, recalling 

Eq. (21), to enlarge )( lk d  and )( lk u , and 

decrease lμ  under a constraint 

μRUΔXΦ  )()()( kkk , (22) 

where TT
N

TT ][ 110  μμμμ  NmR  can be 

interpreted as the set of artificial variables. 

However, if we formulate this objective in a 

straightforward manner, the number of variables 

and constraints increases very sharply as the 

prediction horizon increases, and the computation 

time inflates accordingly. Hence, we use a 

lightweight method used in [21] which is 

understood as a greedy method; we determine 

)( lk d  and )( lk u  in two separate steps. 

3.3. Adjustment of the system parameters 

An optimisation problem is constructed and 

solved to adjust the system parameters )( lk d  

)10(  Nl . First, we ignore the effect of the 

input times )(kU  in Eq. (22), and formulate a 

control objective as 

μRXΦ  )()( kk , (23) 

where TT
N

TT ][ 110  μμμμ  NmR  and 

0lμ  for all l  )10(  Nl . (24) 

Recalling Eq. (20), the j -th row of the l -th row 

block in Eq. (23) )10,1(  Nlmj  can be 

rewritten as 

jlj

ijihl

n

i

Q

h

lk

hk

][)]([

)]([][ ,11

μr

xCΦ



  ,  

for all j  and l  )10,1(  Nlmj . This 

can be further reduced to the following 

simultaneous inequalities. 

ijjljihl hklk )]([)]([][][ ,  xrμCΦ , 
(25) 

for all h , i , j , and l  ( Qh 1 , ni 1 ,
 ,

mj 1 , )10  Nl . For the other 

constraints, we assume that the lower and upper 

bounds on the system parameters are as follows: 

maxmin )(0 ddd  lk  )10(  Nl . (26) 

 With respect to the objective function, we 

consider reducing both the operational cost and 

tardiness, and formulate the objective function as 




 



 


1

0 1

1

0 1

][)]([
N

l

j

m

j

lj

N

l

n

i

ii lkJ μd  , (27) 

where i  and j  )0(  are the penalties for 

operational cost and tardiness, respectively. 

 Consequently, the optimisation problem for 

)( lk d  and lμ  is summarised as 

minJ  subject to Eqs. (24)–(26). (28) 
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Since this problem has the form of a linear 

programming problem, we can solve the problem 

by using an efficient algorithm such as the 

interior point method [22]. 

 In addition to these, we consider introducing 

the concept of control horizon to reduce the 

number of variables. Letting the control horizon 

be cN , we assume 

ici Nklk )]1([)]([  dd  for all l  

)11(  NlNc . 
 

Applying this concept, the number of system 

parameters can be decreased from nN   to nNc 
. According to [21], we can obtain sufficient 

performance even if we set 1cN . 

3.4. Determination of the input times 

In the second step of the control law, the input 

times )(kU  are determined. If the control inputs 

are small enough not to affect the output times, 

the earliest output times are predicted as 

)()( kk XΦY  .  

 If the values of the state vector are sufficiently 

large, )(kY  may exceed the reference output 

time )(kR . For such cases, we aim to adjust the 

input times to complete the k -th token at )(kY  

and not at )(kR . This policy can be expressed as 

)()()( kkk RXΦUΔ  . (29) 

We should note here that the term )(kXΦ  

appears on the right-hand side compared to Eq. 

(21). In Eq. (29), only )(kU  is a variable vector, 

while the others are constant vectors and 

matrices. 

 To reduce the waiting cost, the input times 

should be as large as possible in observance of 

Eq. (29). Using a lightweight formula known as 

the residuation theory [5], the optimal solution 

for )(kU  is calculated as follows: 

)]()([\)( kkk RXΦΔU  . (30) 

The optimal input times )(ku , )1( ku ,  ,

)1(  Nku  are then obtained using this result. 

 In the last step, we consider applying the 

concept of receding horizon method to achieve a 

feedback control. For the obtained optimal input 

times, we give an actual control input only for the 

first step. The inputs for the subsequent steps are 

recalculated after k  is incremented and the 

values of the latest state vector are obtained. We 

adopt and give only the first block of Eq. (30) for 

the optimal input, the specific form of which is 

expressed as 

)}(\){()( 0,

1

0
lkk l

N

l





zΔCu , (31) 

where 

)()()( ,1
lkhklk hl

Q

k
  

rxΦCz .  

 Using the optimal solutions given in Eqs. (28) 

and (31), we can operate the system at a lower 

operational cost observing the reference output 

times. 

3.5. Improvement of the cell’s structure 

To solve the optimisation problem constructed in 

section 3.3, a method for deriving and 

representing hl ,Φ  in Eq. (25) as a function of the 

system parameters )( lk d  )10(  Nl  is 

essential. This matrix is calculated iteratively 

using Eqs. (5), (13), (15), and (18), and kA  

includes the Kleene star of the weighted 

adjacency matrices as shown in Eq. (3). 

 Reference [19] proposed a method for 

computing the transition matrix in the state-space 

representation as a function of the system 

parameters by introducing the concept of a ‘cell’. 

However, the method is designed only for 

calculating the Kleene star and multiplying a 

diagonal matrix. 

 On the other hand, in handling systems with 

capacity constraints, a framework for general 

addition and multiplication in max-plus algebra is 

required. Thus, we improve the structure of a 

cell. 

 Figure 1 depicts the improved structure and an 

example. Each resulting matrix is described by 

collection of cells and each element of which is 

described by one cell. For a given matrix X , Src 

and Dst store the column and row numbers of 

matrix X , respectively. If there is no cell that 

has (Src, Dst)= ),( ij , this indicates ji][X . 

Arrays Coef() and Pows() are used for 

representing the coefficient and power of a 

function of the system parameters )( lk d  
)10(  cNl . Arrays Mins() and Maxs() are 

used for recording the minimum and maximum 

weighted sums for given lower and upper bounds 

of the system parameters mind  and maxd . 

 The arrays’ size is equal to the number of 

irreducible terms. Let S  and s  be the number of 

irreducible terms and the term number in the cell, 

respectively. Then, the type and size of the arrays 

are Coef() S
R , Pows()

)( cNnS 
Z , Mins() S

R  

and Maxs() S
R . 
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 We now consider the case for X 33
max
R , 

)4,2,1(min d , )8,3,3(max d , and 2 cNN . 

Then, the cell in Figure 1 indicates  3][ 31X

2
231 )(1)1()( kdkdkd  , S 2, 1min ][d  

41][ 3min d =5, 83][][ 3max1max  dd =11, 


2

2min ][d 4, and 
2

2max ][d 6. 

 Using this structure, the resulting matrices in 

the state-space representation and output 

equations can be represented as functions of the 

system parameters. Since the computations for 

the Kleene star of a matrix and the multiplication 

of a diagonal matrix have already been developed 

in [19], we newly develop the remaining 

operations required to derive the output 

prediction equation. 

 

 
Figure 1. The structure and an example of a cell. 

 

3.5.1. Addition 

Two given cells with equal Src and Dst can 

simply be added by concatenating the Coef(), 

Pows(), Mins(), and Maxs() of the two cells. 

However, a naïve concatenation of these may 

yield redundant terms. Thus, a procedure for 

removing the redundant terms, which is 

considered as a branch and bound [23], is needed. 

This procedure is repeated for all rows and 

columns of the given matrices. 

3.5.2. Multiplication 

To compute ZX   for matrices X nm maxR  and 

Z qn maxR , the calculation of ljil ][][ ZX   for all 

l  )1( nl   is essential. For two given cells x 

and z that have (Src, Dst)= ),( il  and (Src, Dst)=

),( lj , the resulting cell has (Src, Dst)= ),( ij . Let 

the number of terms in cells x and z and their 

term numbers be xS , zS , xs , and zs , 

respectively. Then, recalling the property of the 

distributive law, arrays Coef(), Pows(), Maxs(), 

and Mins() are multiplied (added in conventional 

algebra) for all pairs of xs  and zs  

)1,1( yyxx SsSs  . If cell x does not exist, 

i.e., 0xs , the resulting cell is equal to cell z 

and (Src, Dst) is changed to ),( ij , and vice 

versa. The addition of the resulting cell to the 

previous result is repeated for all l  )1( nl  . 

3.5.3. Branch and bound 

After the above addition or multiplication above, 

the resulting cell may have redundant terms that 

have no effect on the result. Such terms should be 

removed from the cell to reduce the computation 

time. For a target cell x, we can remove the terms 

that cannot be the maximum value. In the first 

step, we remove terms s  ),1( MssSs   that 

satisfy 

)(Coef)(Mins)(Coef)(Maxs MM ssss   

where 

)](Coef)(Mins[argmax ,2,1 jjs SjM    .  

In the case of Figure 1, 1Ms  holds and the 

second term 2s  is removed. 

 Next, we evaluate the order relations for all 

pairs of terms i  and j  ),,1( jiSji  . If 

)(Coef)(Coef ji   and ),(Pows),(Pows ljli   

for all l  )1( Nnl  , the value of term i  is 

constantly equal to or smaller than term j , and 

thus term i  can be removed from the current cell. 

If tight bounds were set for )( lk d  in Eq. (26), 

the significant number of resulting terms would 

be reduced. In view of this, this procedure can be 

seen as a kind of branch and bound. 

3.5.4. Difference from the previous structure 

The difference between the previous structure in 

[19] and the proposed one in this paper is that 

element Dst, and arrays Mins() and Coef() are 

appended. By appending Dst, the structure of a 

cell becomes self-descriptive and general 

operation for multiplication is achieved. Array 

Mins() is used in the branch and bound 

procedure, and plays a role in reducing the 

complexity of the resulting matrix. The original 

objective of appending array Coef() is to improve 

the descriptive ability, and the direct benefit here 

is that a lag time between two successive 

processes can be taken into account. 

4. Numerical Simulation 

We present an application example of a 

manufacturing system. Figure 2 depicts a simple 

tandem structured manufacturing system with 

four facilities, one external input, and one 

Dst

Pows

s

3



100001 100001 

000020 000020

3

16

115

4

CoefMins Maxs

1Src

)(kd )1( kd
(term number) 
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external output. The values in parentheses (*) 

represent the system parameters, which 

correspond to the processing times, while the 

values in brackets [*] represent the maximum 

number of in-process jobs that can exist in a 

single facility or between two facilities. For 

instance, facility 2 can process a maximum of 

three jobs, and the maximum number of in-

process jobs that can exist between facilities 2 

and 3 is five. Since the ratio of the maximum 

capacity [*] to the system parameter (*) gives the 

effective throughput (jobs per unit time) for each 

facility, facility 4 provides the highest 

throughput. We assume that the transition times 

between two adjacent facilities, starting 

upstream, are 0.2, 0.3, and 0.4, respectively. By 

incurring an additional operational cost, the 

processing times can be reduced, the minimum 

values of which are 0.5 less than the original 

ones. Then, we have the following representation 

matrices and vectors: 


















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1
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


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

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














5.2

5.1
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5.1

mind , 





















3

2

5

2
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.
  

The capacity matrices )(h
H  are generated by 

executing the following computation for all h  

)51(  h : 





ij
h ][ )(

H  
e : if hij ][Q , 
 : otherwise. 

For the weights in the objective function Eq. 

(27), we assume: 

)2,1,3,1(),,,( 4321  , 1001  .  

Now we simulate the schedule for )(40 K  jobs. 

For reference output times, we set 0)1( r , 

0.2)1()(  krkr  for 2011,52(  kk ,

)4026  k , and 0.1)1()(  krkr  for 

)2521,106(  kk . This means that the 

output interval in the normal state is 2.0, but this 

is reduced by half for 106  k  and 2521  k

. Thus, the facilities must speed up in advance for 

these perturbations. 

 Figure 3 illustrates the profile of the system 

parameter )(2 kd  for varying prediction horizons 

N =1, 2, 5, 10, and 15 with control horizon cN
=1. At the beginning stage, the parameter is set to 

the normal value (=5.0) for all cases. Then, for 

N =1, it decreases sharply to the minimum value 

4.5 at k 9 and 23. This phenomenon occurs 2 or 

3 steps after the interval of the reference output 

time has been decreased. This lag is due to the 

capacity of facility 3. For N =2, the parameter is 

decreased at an earlier stage than for N =1. For 

N =5 and 10, the parameter decreases and 

recovers more smoothly at even an earlier stage, 

and does not decrease to the minimum limit. 

Furthermore, for N =15, the parameter does not 

decrease and remains constant all through the 

jobs. 

 Figure 4 depicts the output error for N =1, 2, 

5, 10, and 15 with cN =1. We define the error for 

job k  as }0,)]([)](max{[ jj kk ry  , which can 

be interpreted as tardiness for the reference 

output time. For N =1 and 2, tardiness occurs 

soon after the interval of the reference output 

time has been decreased. By contrast, for N =5, 

the output time is moved up before k 5 and 20 

to avoid tardiness, but tardiness eventually occurs 

at k 10 and 25. For N =10, the output times are 

moved up at 91  k  and 2412  k , and 

tardiness is completely avoided. Tardiness is also 

avoided for N =15 and the output times are 

further moved up. In the light of Figures 3 and 4, 

if we set the prediction horizon N  to a large 

value, we can avoid tardiness for the reference 

output time with only a small additional 

operational cost. 

 Table 1 shows the number of constraints for 

the linear programming problem in Eq. (28) and 

the performance of the controller. We define the 

performance index T  as 

 

 

 

 





K

k

m

j jjj

K

k

n

i ii

kk

kT

1 1

1 1

}0,)]([)](max{[

)]([

ry

d




. 

 

where the first and second terms represent the 

sum of the operational cost and penalty for 

tardiness, respectively. Clearly, the performance 

is improved as the prediction horizon N  

increases. On the other hand, since the number of 

constraints increases, so too does the computation 

time to obtain the internal representation of the 

output prediction equations and to solve the 

linear programming problem. 
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Figure 2. A simple system with four facilities 

 

 

Figure 3. System parameter d2(k) for varying N=1, 2, 5, and 10. 

 

Figure 4. Output error for varying N=1, 2, 5, and 10. 

 

Table 1. The number of constraint inequalities. 

Prediction horizon N =1 N =2 N =5 N =10 N =15 

Num. constraints 11 26 145 934 3,533 

Performance T  666.50 -34.07 -845.45 -980.09 -982.79 

 

 

5. Conclusion 

We have developed an MPC controller for a class 

of MIMO-FIFO discrete event systems with 

adjustable system parameters, in which capacity 

constraints exist in a single facility or between 

two arbitrary facilities. We first derived an output 

prediction equation as functions of the system 

parameters, each block of the resulting matrices 

of which is obtained in a recursive form.  

 

 

 

We then improved the structure of a cell for 

system’s internal representation, and created 

procedures for general addition and 

multiplication in max-plus algebra. Through a 

numerical simulation, we have demonstrated that 

the proposed MPC controller achieves good 

performance if the prediction horizon is set to a 

large value. 
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